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Pattern recognition from learning
examples

Try to estimate a function 7:p"— {1
using training data—that is, N-
dimensional patterns xi and class labels
Yi,

(Xlayl) aaaa (xlayl)eRNX{il}
such that 7/ will correctly classify new
examples(x,y), which were generated
from the same underlying probability
distribution P(x,y) as the training data.




Hyperplane classifiers

SV classifiers are based on the class of
hyperplanes (w-x)+b=0 we RY,be R
Corresponding to decision functions
S (x)=sign ((w-x)+0b)
Linear separable data.
Given [ training data that is linear separable, looks

for the separating hyperplane with largest
margin.

Suppose training patterns labeled +1 is above a hyperplane,

patterns labeled -1 is below it.
xow+b=+1(y, = +1) marginis 2 /|jw ||
xiwH+b<=1(y,==1)

i.e. minimizing ||w|2 ,subject to a set of / constraints y,(x;-w+b)=120




solution

Equivalent with maximizing (quadratic programming problem)

1
L,=Xa. -2 a.a,y, YV x, x,
i L)

under constraints )<, <C ay=0
solution is of the form w = 2 a.y. x,

decision function J (X) = sign (Z a;y;(x-x)+0b)

crucial property: both quadratic prégramming problem and the
decision function depend only on dot products between
patterns

kernels

A kernel is a function & such that for all a,be A
k(a,b) =¢(a)- ¢(b).

where ®is a mapping from A to a feature space X.

Compute values of kernel function between original data to
replace the dot products between the maps of the

original data in other dot product space.

Decision function become:
f(x)=sign (L a,y,K(x,x)+b)




Advantages of kernel

The classification is take place in other space, but the result
can be concluded in the original space without knowing
the mapping.

Avoid the expensive computation in computing the mapping
function and the dot products in high-dimensional space.

nonlinear classifiers.

Nonlinear classifiers

Map the training data
nonlinearly into a higher-
dimensional feature
space via @, and
construct a separating
hyperplane with
maximum margin there.
This yields a nonlinear
decision boundary in
input space. By the use
of kernel function, it is
possible to compute the separating hyperplane without
explicitly carrying out the map into the feature space.

F(x) = sign (3 a,y,K(x,x)+b)

Nonlinear decision function, which is determined by the kernel.




Example kernels

Polynomial kernel:

k(x,9) = (x-p)°
eg.d=2and x, y e R?* then CD(x)= (xf,«/lexz,xﬁ)
More generally, it can be prove that for every kernel that

gives rise to a positive semi-definit matrix (k£ (x,, x ))
it can be constructed a map @, such

that k(x,y) = (®(x) ®(y)) -

Example kernels (cont)

Radial basis function kernels:

Sigmoid kernels:

k(x,y)=tanh(x(x-y)+0)




Non-vector-data classification

Not all data comes naturally as vectors.

Data could be any “structured objects” such as sequences
of different lengths, trees, piece of text, chemical
materials, etc.

To apply linear method to such data:

» Kernels for non-vector-data
dynamic time warping kernel

» Kernels for feature mappings
casebased features
text data
chemical materials

On-line HWR

In On-line HWR patterns are defined as variable-size
sequence of feature vectors that may have been distorted
in particular wa?/]s, each vector computed from sampled
coordinates of the pen tip curve.

######4# character no. 9:
U 1 # label & no. components
25 (3-199) (0 177) (0 157) (0 146) (0 123) (6 95)
(9 82) (16 66) (29 39) (43 18) (49 12) (66 3)
(84 0) (92 1) (110 5) (124 16) (138 37) (150 86)
(153-127) (152 166) (148 182) (146 191) (145 197) (140 197)

(135 191)
######4 character no. 13:
V 1 # label & no. components
18 (0°199) (10 167) (12 151) (23 108) (35 59) (48 19)
(53 6) (66 0) (70 7) (79 37) (84 57) (95 103)
(110 141) (117 159) (133 185) (142 193) (152 199) (164 195)

Since SVM techniques are based on feature spaces with fixed
dimension, SVM method can’t apply to those data directly.




On-line HWR data

compute intermediate sample points such that
the length of the vector sequences is equal.

Dynamic time warping

Given 2 vector sequences
S = (f1o 1)) K= (i ryy) liori€ R
Define alignment path ¢ =(¢(1),...,¢(N)) each
¢(n) = (g5(n), 45 (M) € {L,..., N5} x{L,..., N}

Define local distance e.g. d (¢,,r ;) = ”t,- _ j”z

The distance of 2 vector sequences wrt a particular®

1 v
Dy (3,N) = Vi—'ld(t%(")’r%(n))




Dynamic time warping (cont)

The distance of the 2 vector sequences:
the smallest distance with respect to any alignment path.

D(S,SK) = D¢*(S,g{) = mqjln{D(/ﬁ(Sam)}
That alignment path is called Viterbi path ¢ .

It is convenient to model ®as a sequence of local transitions.
Use Sakoe-Chiba transitions.

Only allow forward steps of size 1 in T,or R or both of them.
i.,e. o(n+1)-o(n) equals (1,0),(0,1) or (1,1).

Dynamic time warping (an example)

tl’tz’ts’tvts"" Vol lsr:

G = (L1, (2.1), (3.2), (4.3). (5.3)...)




N;

Compute the distance of 2 vector
sequences and the Viterbi path
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Apply SVM for On-line HWR data

Gaussian Dynamic time warping kernel
radial basis function

k() =expl 7| =1)

K(p,, p;)=expcD(p;, p)))

Disadvantage: positive definiteness for GDTW kernel can’'t be
proved, so the solution of the optimization algorithm is
not guaranteed to be the global optimum.




Case-based features

Often there are natural matching functions that may apply
to structured objects.

Map a pair of objects to a real-valued score.
Create feature vector:

Given any function f: 24X 42>R, and an indexed set of cases
al,...,an a possible feature space mapping is:

¢(b) =< f(alab)r“7 f(anab) >

The feature vector have been computed explicitly.
No computational advantage in using a kernel.




Text data

Text is considered as a sparse vector by using a dictionary, each
dimension for each possible word.

Each entry is defined as the frequence of the words in the
dictionary that have appeared in the text.

The result vectors is a sparse vector with only a few non-zero
elements.

Sparse vector kernels

With an efficient sparse representation the dot-product of two
sparse vectors can be computed in a time proportional to the
total number of non-zero elements in the two vectors.

[eoNolNolelol o]
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Chemical materials

String representation:

167780

CCOC (=0)C(CC(C)C)NC(=0)C(Cclccec(ccl)N(CCCLl)CCCL)NC(=0)C 26;
c-Cc-Cc-C-C=0,C-C-C-C-N-C-C-C-c:c:c:c-N-C-C-Cl,C-C-C-C-N-C-C-N-C-C,C-C-C-C-N-C-C-N-

-C-N-C=0,C-C-0-C-C-N-C=0,C-C-0-C=0,C1-C-C-N-C-C-
-0-C-C,Cl-C-C-N-c:c:c:c-C-C-C=0,Cl-C-C-N-
1-C-C-N-c:c:c:c-C-C-N-C=0,Cl-C-C-N-c:c:c:c:c:c,0=C-C-C-
-C-C-C-c:c:c:c-N-C-C-Cl,0=C-C-N-C-C-N-C=0, 0=C-C-N-C=0, 0=C-N-
tcic:c:c:c-C-C-C-N-C-C-C-C,c:c:c:c:c:c—-C-C-C-N-C-C-0-C-
N-C-C

Q
|
Q
|
Q
|
|
|
|
aQ

For some chemical material classes try to find the
characteristic set of sub-fragments for each class,
combine them to form a dictionary.

New materials is mapped to a vector by using the dictionary.

Conclusion

Apply kernel method to structured
objects:

Compute a kernel function to measure
similarity between 2 objects.

Construct feature vectors explicitly.
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