

Pattern recognition from learning
examples
Try to estimate a function
$$f: \mathbb{R}^N \to \{\pm 1\}$$

using training data—that is, N-
dimensional patterns **x**_i and class labels
 y_i , $(x_1, y_1), ..., (x_l, y_l) \in \mathbb{R}^N \times \{\pm 1\}$
such that f will correctly classify new
examples(**x**, y), which were generated
from the same underlying probability
distribution **P**(**x**, y) as the training data.

ker	nels
A kern	el is a function k such that for all $a, b \in A$ $k(a,b) = \phi(a) \cdot \phi(b).$
where	Φ is a mapping from A to a feature space X.
rep	te values of kernel function between original data to lace the dot products between the maps of the ginal data in other dot product space.
Decisio	on function become:
	$f(x) = sign \left(\sum a_i y_i K(x, x_i) + b\right)$

Apply SVM for On-line HWR data Gaussian Dynamic time warping kernel radial basis function $k(x,y) = \exp(-\gamma ||x-y||^2)$ $K(p_i,p_j) = \exp(-\gamma D(p_i,p_j))$ Disadvantage: positive definiteness for GDTW kernel can't be proved, so the solution of the optimization algorithm is not guaranteed to be the global optimum.

UNIPEN section	Approach	Error rate E	UNIPEN Database Type
	DAG-SVM-GDTW	4.0 % 3.8 %	Train-R01/V07 rand. chosen 20 %/20 % Train/Test rand. chosen 40 %/40 % Train/Test
la (digits)	SDTW [1]	4.5 % 3.2 %	Train-R01/V07 rand. chosen 20 %/20 % Train/Test rand. chosen 40 %/40 % Train/Test
	MLP [12]	3.0 %	DevTest-R02/V02
	HMM [9]	3.2 %	Train-R01/V06 4 % "bad characters" removed
1b (upper case)	DAG-SVM-GDTW	7.6 % 7.6 %	Train-R01/V07 rand. chosen 20 %/20 % Train/Tes rand. chosen 40 %/40 % Train/Tes
	SDTW [1]	10.0 % 8.0 %	Train-R01/V07 rand. chosen 20 %/20 % Train/Tes rand. chosen 40 %/40 % Train/Tes
	HMM [9]	6.4 %	Train-R01/V06 4 % "bad characters" removed
	DAG-SVM-GDTW	11.7 %	Train-R01/V07 rand. chosen 10 %/10 % Train/Tes rand. chosen 20 %/20 % Train/Tes
Ic (lower case)	SDTW [1]	13.0 % 11.4 % 9.7 %	Train-R01/V07 rand. chosen 10 %/10 % Train/Tes rand. chosen 20 %/20 % Train/Tes rand. chosen 66 %/33 % Train/Tes
	MLP[12]	14.4 %	DevTest-R02/V02
	HMM-NN hybrid [6]	13,2 %	Train-R01/V07
	HMM [9]	14,1 %	Train-R01/V06 4 % "bad characters" removed

With an efficient sparse representation the dot-product of two				
sparse vectors can be com total number of non-zero e				
	Ο	0		
	1	1		
\longrightarrow	0	0		
	0	1 :		
	0	U 1		
	0			

