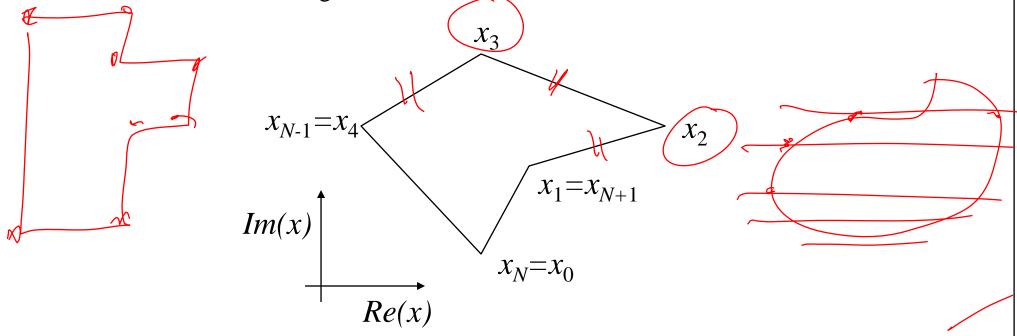
Berechnung der Fourierkoeffizienten von Polygonzügen

Bei Polygonzügen lässt sich das Integral entlang der Geraden explizit lösen und man erhält Formeln mit expliziter Abhängigkeit von den Eckpunkten des Polygons.

Bei der Abtastung von Konturen erhält man in der Regel nicht-äquidistante Polygonzuge. Damit ist der Einsatz der schnellen Fouriertransformation (FFT, siehe DBV-I) zur Berechnung der FK nicht unmittelbar möglich, bzw. man benötigt eine zusätzliche äquidistante Interpolation der Daten.

Die nachfolgende explizite Formulierung ist in der Regel vorzuziehen, insbesondere, wenn man die Punkte entlang von Geraden eliminiert.

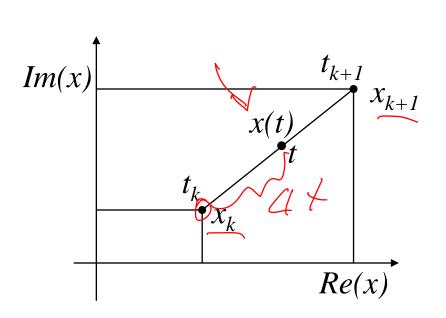


Durch den abschnittweisen linearen Verlauf zerfällt das Integral in:

$$c_n = \frac{1}{T} \sum_{k=0}^{N-1} \int_{t_k}^{t_{k+1}} \underbrace{x(t) \cdot e^{-jn\omega t}} dt$$

mit: $e^{-jn\omega t} = \cos(n\omega t) - j\sin(n\omega t)$

Die Interpolation entlang der Polygonabschnitte ergibt:



$$x(t) = \underbrace{x_k + \underbrace{(x_{k+1} - x_k)}_{\Delta x_k}} \frac{\Delta t}{t_{k+1} - t_k}$$

mit: $\Delta t = t - t_k$

bzw.:
$$\Delta x(t) = x(t) - x_k = \Delta x_k \frac{\Delta t}{t_{k+1} - t_k}$$

Abschnittweise analytische Integration:

$$\int e^{-jn\omega t} dt = \frac{j}{n\omega} e^{-jn\omega t}$$
und:
$$\int te^{-jn\omega t} dt = \frac{1}{(n\omega)^2} e^{-jn\omega t} + \frac{j}{n\omega} te^{-jn\omega t}$$

$$= \frac{1}{(n\omega)^2} e^{-jn\omega t} (1 + jn\omega t)$$

Für die Eckpunkte eines geschlossenen Polygonzugs:

$$x_i = x_k$$
 für: $i \equiv k \mod N$

berechnet man die ersten und zweiten Differenzenglieder:

$$\Delta x_i = x_{i+1} - x_i$$

$$\Delta^2 x_i = \Delta x_{i+1} - \Delta x_i = x_{i+2} - 2x_{i+1} + x_i$$

und daraus normierte Differenzen:

$$\Delta z_i = \Delta x_i / |\Delta x_i|$$

$$\Delta^2 z_i = \Delta z_{i+1} - \Delta z_i$$

Der nullte FK gibt die Lage des Linienschwerpunktes an und berechnet sich zu:

$$c_0 = \frac{1}{2T} \sum_{k=0}^{N-1} (x_k + x_{k+1}) |\Delta x_k|$$

$$Im(x)$$

$$X_{s_2}$$

$$X_{s_1}$$

$$X_{s_0}$$

$$X_{s_0}$$

$$Re(x)$$

$$x_{s} = \frac{\sum x_{s_{k}} \cdot m_{k}}{\sum m_{k}} = \frac{1}{T} \sum_{k=0}^{N-1} \frac{(x_{k} + x_{k+1})}{2} |x_{k+1} - x_{k}|$$

$$= \frac{1}{2T} \sum_{k=0}^{N-1} (x_{k} + x_{k+1}) |\Delta x_{k}| \neq c_{0}$$

Alle anderen Fourierkoeffizienten berechnen sich bei nichtäquidistenten Stützstellen exakt zu:

$$c_{n} = \frac{T}{(2\pi n)^{2}} \sum_{k=0}^{N-1} (\Delta z_{k-1} - \Delta z_{k}) e^{-jn(\frac{2\pi}{T})t_{k}}$$

$$= -\frac{T}{(2\pi n)^{2}} \sum_{k=0}^{N-1} \Delta^{2} z_{k-1} e^{-jn(\frac{2\pi}{T})t_{k}}$$

Mit den Teilbogenlängen:

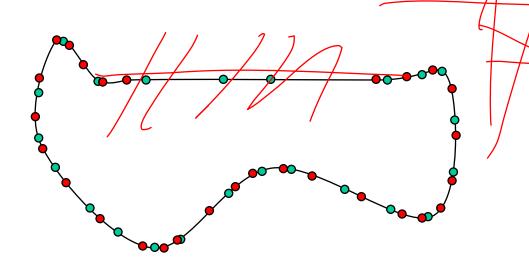
$$t_k = \sum_{i=0}^{k-1} |\Delta x_i|$$
 $k > 0, t_0 = 0$

Diese aus den zweiten Differenzen abgeleiteten, charakteristischen Konturgrößen stehen in enger Beziehung zur fundamentalen Konturbeschreibung mit Hilfe der *Krümmung* bzw. deren Berechnung mit Hilfe von *Differenzenquotienten* (mit der Winkeländerung eliminiert man die Lage und Orientierung und bekommt eine intrinsische Beschreibung).

Repräsentation der Kontur durch eine unterschiedliche Menge von Punkten

Von großer praktischer Bedeutung ist die Tatsache, dass als Grundlage der Fourierbeschreibung einer Kontur, die Anzahl und die Lage der Abtastpunkte entlang der Kontur unerheblich ist, solange diese den Verlauf hinreichend genau repräsentieren. In beiden Fällen erhält man annähernd die gleichen FK.

Dabei bietet sich insbesondere an, Zwischenpunkte entlang von Geraden zu unterdrücken!



Die Äquivalenzklasse aller ähnlicher Muster

Für die Gruppe der Ähnlichkeiten ergeben sich als zulässige Veränderungen eines Musters x(t) gegenüber einem Referenzmuster $x^0(t)$:

- 1. eine Translation um den komplexen Wert z,
- 2. eine Rotation um den Winkel Φ um eine körperfesten Bezugspunkt x
- 3. eine Aufpunktverschiebung um den Wert t_0 und
- 4. eine radiale Streckung um den Faktor R bezüglich x_B .

Angewandt auf das Referenzmuster ergibt dies:

$$x(t) = x^{0}(t + t_{0}) \cdot R \cdot e^{j\Phi} + z \qquad (4.1.5)$$

Die Äquivalenzklasse aller ähnlicher Fourierkoeffizienten

Die Auswirkungen der Ähnlichkeitstransformation auf die Fourierkoeffizienten ergeben sich wegen der Linearität der Fouriertransformation wie folgt. Deren Berechnung erfolgt unter der Annahme einer auf $T = 2\pi$ normierten Bogenlänge.

$$c_{0} = c_{0}^{0} \cdot R \cdot e^{j\Phi} + z \qquad (4.1.6)$$

$$c_{n} = c_{n}^{0} \cdot R \cdot e^{j(\Phi + n \cdot t_{0})} \quad \text{für } n \neq 0 \qquad (4.1.7)$$

Der Fourierkoeffizient c_0 gibt lediglich die Lage des Linienschwerpunktes an und ist invariant gegen eine Aufpunktverschiebung.

Die anderen Fourierkoeffizienten verändern ihr Argument in Abhängigkeit von Rotation und Aufpunktverschiebung und ihren Betrag in Abhängigkeit von einer zusätzlichen Streckung, sind aber unabhängig von einer Translation.

Invarianzeigenschaften des Leistungsspektrums

Wie unschwer aus Gl. 4.1.7 hervorgeht, bildet das Amplitudenspektrum der Fouriertransformierten (die Beträge der Fourierkoeffizienten) lageinvariante Merkmale bzgl. der Äquivalenzklasse kongruenter Muster (Euklidsche Bewegung). Allerdings wird damit nur die notwendige Bedingung der Invarianz erfüllt; Vollständigkeit ist nicht gegeben, da beliebige Phasenvariationen unterdrückt werden.

Siehe dazu das Bild mit der Veränderung der Phase bei c_1 (Kap. 4c, S. 3).

Ähnlichkeitsinvariante Fourierdeskriptoren

Hier kann im Gegensatz zur Klasse CT ein *vollständiger* und *minimaler* Satz von lage- und skalierungsinvarianten Merkmalen (Fourierdeskriptoren) von den Fourierkoeffizienten abgeleitet werden,

Idee: man normiert deren Beträge und fixiert die Phasen durch eine eindeutige Nebenbedingung.

Man muss dabei gegenüber den Fourierkoeffizienten zu genau vier Freiheitsgraden weniger kommen, entsprechend den vier (fünf) angegebenen Veränderungen (R,Φ,t_0,z) .

Die komplexen Invarianten werden definiert durch folgenden Satz.

Satz: Bezüglich der komplexen Musterklasse $x \in \mathbb{F}^N$ (bandbegrenzte Konturmuster mit $-N/2 \le n \le +N/2$) bilden die komplexen Merkmale

$$\{\tilde{x}_{n} := \frac{|c_{n}|}{|c_{q}|} e^{j(\Phi_{n} + \alpha \Phi_{r} - \beta \Phi_{q})}\} \qquad n = \pm 1, \pm 2, \dots, \pm N/2 \qquad (4.2.1a)$$

$$\alpha = \frac{q - n}{r - q} \quad \beta = \frac{r - n}{r - q} \qquad (4.2.1b)$$

$$r = q + s \quad q \in \mathbb{N} \qquad (4.2.1b)$$

$$s \triangleq \text{Grad der Rotations symmetrie}$$

(ausschliesslich \tilde{X}_q und $\text{Im}(\tilde{X}_r)$) einen *vollständigen* und *minimalen* Satz von Invarianten in Bezug auf die Gruppe der ebenen Bewegungen (Translation und Rotation) und der radialen Streckung (Gruppe der Ähnlichkeiten), bei einem auf die folgenden Werte normierten Referenzmuster $x^0(t)$

$$x_B^0 = 0 \quad (c_0^0 = x_s)$$
 (4.2.1c)
(d.h. der körperfeste Bezugspunkt liegt im Koordinatenursprung)

$$\begin{vmatrix} c_q^0 | = 1 \\ \Phi_q^0 = 0 \\ \Phi_r^0 = 0 \end{aligned}$$
 (4.2.1d)

$$\Phi_q^0 = 0$$
 (4.2.1e)

$$\Phi_r^0 = 0$$
 (4.2.1f)

Die Menge der Invarianten ist minimal, d.h. streicht man eines der Merkmale, so geht die Vollständigkeit bzgl. der Klasse \mathbb{F}^N verloren.

Die Minimalität wird auch deutlich daran, dass die Freiheitsgrade $\{\Phi_q, \Phi_r, |c_q|, \text{Re}(c_0), \text{Im}(c_0)\}$ genau um die Anzahl der Freiheitsgrade des Musterraumes $\{t_0, R, \Phi, \text{Re}(z), \text{Im}(z)\}$ reduziert werden.

AAA

Beweis:

Der Beweis erfolgt konstruktiv, indem alle Originalparameter des Referenzmusters in eindeutiger Weise aus den Invarianten rekonstruiert werden.

Die eigentliche Schwierigkeit bei der Phasennormierung ergibt sich aus der Phasenmehrdeutigkeit $mod(2\pi)$; d.h. bei den gemessenen Phasen weiß man nicht wie oft 2π durchlaufen wurde.

Die in (4.2.1c-f) angegebenen Normierungsbedingungen für das Referenzmuster legen genau die vier Freiheitsgrade Lage (z), Größe (R), Orientierung (Φ) und Aufpunktverschiebung (t_0) fest.

Für den Betrag der Invarianten ergibt sich aus (4.1.7) und (4.2.1d)

$$\left| \tilde{x}_n \right| = \frac{\left| c_n \right|}{\left| c_q \right|} = \frac{\left| c_n^0 \right| \cdot R}{\left| c_q^0 \right| \cdot R} = \left| c_n^0 \right|$$

(4.2.2)

Also eine eineindeutige Beziehung zwischen:

$$|\tilde{x}_n|$$
 und $|c_n^0|$

In manchen Anwendungsfällen kann eine Vergrößerungsinvarianz unerwünscht sein (z.B. Qualitätskontrolle). Für diesen Fall können die Beträge einfach definiert werden durch

$$\left|\tilde{x}_n\right| = \left|c_n\right| \tag{4.2.3}$$

Da die Argumente der Fourierkoeffizienten nach (4.1.7) additiv durch die zulässigen Veränderungen beeinflusst werden, soll eine allgemeine *Linearform* zur Eliminierung verwendet werden. Beachtet man, dass alle Argumente der Fourierkoeffizienten eines unbekannten Musters x(t) nur bekannt sind $mod(2\pi)$, und berücksichtigt man in einem Ansatz für die absoluten Werte ein entsprechend Vielfaches g_i von 2π , so erhält man aus (4.2.1a) unter Beachtung von Gl. (4.1.7)

$$\arg(\tilde{x}_n) = \Phi_n + \alpha \cdot \Phi_r - \beta \cdot \Phi_q$$

$$= \Phi_n^0 + \Phi + n \cdot t_0 + g_n \cdot 2\pi$$

$$+ \alpha(\Phi_r^0 + \Phi + r \cdot t_0 + g_r \cdot 2\pi)$$

$$-\beta(\Phi_q^0 + \Phi + q \cdot t_0 + g_q \cdot 2\pi)$$
(4.2.4)

Und daraus mit (4.2.1e-f)

$$\arg(\tilde{x}_{n}) = \Phi_{n}^{0} + \Phi(1 + \alpha - \beta) + t_{0}(n + \alpha r - \beta q) + 2\pi(g_{n} + \alpha g_{r} - \beta g_{q})$$
(4.2.5)

Wegen der Invarianz müssen die Faktoren bei Φ und t_0 verschwinden:

$$1+\alpha-\beta \stackrel{!}{=}0$$

$$n+\alpha r-\beta q \stackrel{!}{=}0$$
(4.2.6)

Daraus ergeben sich die in (4.2.1b) angegebenen Bedingungen für die Linearfaktoren:

$$\alpha = \frac{q - n}{r - q}$$

$$\beta = \frac{r - n}{r - q}$$
(4.2.7)

Womit die notwendige Bedingung der Invarianz bereits erfüllt ist.

Die hinreichende Bedingung der Vollständigkeit erfordert jedoch eine eineindeutige Beziehung zwischen den Invarianten $\arg(\tilde{x}_n)$ und der Referenzphase Φ_n^0 Gl. (4.2.4) eingesetzt ergibt:

$$\arg(\tilde{x}_n) = \Phi_n^0 - \frac{2\pi}{r - q} [(r - q)g_n + (q - n)g_r - (r - n)g_q] \quad (4.2.8)$$

Geht ein Muster bei einer Rotation um den Schwerpunkt mit $\Phi=2\pi/s$ in sich selbst über, so liegt eine Rotationssymmetrie vom Grade s vor. Für Rotationswinkel und Aufpunktverschiebung bedeutet das die Äquivalenz von

$$\Phi \sim \Phi \operatorname{mod}(2\pi/s),$$

$$t_0 \sim t_0 \operatorname{mod}(2\pi/s) \tag{4.2.9}$$

und für die Fourierkoeffizienten folgt daraus, dass nur für bestimmte Indizes ihre Werte von Null verschieden sein können, nämlich

$$c_n \equiv 0$$
 für $n \neq 1 + k \cdot s$, $k \in \mathbb{Z}$ (4.2.10)

Macht man damit einen allgemeinen Ansatz für die Indizes r,q und n in (4.2.8), so ergibt sich

$$n = 1 + K \cdot s,$$

 $q = 1 + K_1 \cdot s,$
 $r = 1 + K_2 \cdot s,$ $K, K_1, K_2 \in \mathbb{Z}$ (4.2.11)

Eingesetzt in Gl. (4.2.8) ergibt

$$\arg(\tilde{x}_n) = \Phi_n^0 - 2\pi \frac{s}{r - q} [(K_2 - K_1)g_n + (K_1 - K)g_r - (K_2 - K)g_q]$$

$$= \Phi_n^0 + 2\pi \frac{s}{r - q} \cdot g, \qquad g \in \mathbb{Z}$$
(4.2.12)

Mit der Bedingung von

$$r - q = s (4.2.13)$$

lässt sich in Gl. (4.2.12) ein eineindeutiger Zusammenhang zwischen der Referenz- und Invariantenphase herstellen.

Gl. (4.2.12) lässt sich eindeutig nach Φ_n^0 auflösen, und man erhält

$$\Phi_n^0 = (\arg(\tilde{x}_n)) \operatorname{mod}(2\pi) = \Phi_n + \alpha \cdot \Phi_r - \beta \Phi_q$$
 (4.2.14)

Die Minimalität der Invarianten erkennt man einfach wiederum daran, daß für eine Rekonstruktion eines Musters der Klasse \mathbb{F}^N i.a. alle Fourier-koeffizienten c_n^0 und damit auch alle Invarianten erforderlich sind.

Um eine große Störsicherheit bei der Berechnung der Invarianten zu bekommen, sollte man bei der Wahl der beiden Bezugsgrößen c_q , c_r darauf achten, die betragsgrößten Fourierkoeffizienten zu verwenden.

Bei gestörten Mustern ist (4.2.10) nicht ideal erfüllt. Als Maß für die Rotationssymmetrie vom Grade s bei gestörten Mustern kann die folgende Summe

$$\sum_{n\neq 1+ks} |c_n|, \quad k \in \mathbb{Z}$$

(4.2.15)

mit einer zusätzlichen Schwellwertabfrage verwendet werden.

In den meisten Fällen eignet sich der i.a. dominante Fourierkoeffizient c_1 zur Normierung (q = 1). Liegt außerdem keine Rotationssymmetrie vor (s = 1), so vereinfacht sich die Berechnung der Fourierdeskriptoren von Satz (4.2.1) zu

$$\{\tilde{x}_n := \frac{|c_n|}{|c_1|} e^{j(\Phi_n + (1-n)\Phi_2 - (2-n)\Phi_1)}\}$$

(4.2.16)

wegen

$$q = 1$$
, $s = 1$, $r = 2$,
 $\alpha = (1-n)$, $\beta = (2-n)$

(4.2.1b)

Ermittlung der Transformationsparameter

Neben der reinen Klassifikation ist in vielen Fällen auch die genaue Ermittlung von Lage, Orientierung, Aufpunktverschiebung und Streckungsfaktor von Bedeutung. So z.B. für das gezielte Greifen eines Industrieroboters, wo man zusätzlich den körperfesten Bezugspunkt x_B an einen für das Ergreifen günstigen Punkt legen kann.

Die unbekannten Werte erhält man aus den für die Normierung verwendeten Größen der Fourierkoeffizienten (4.2.1c-f). Für die *Streckung* ergibt sich

$$R = |c_q|$$
 wegen: $|c_q^0| = 1$ (4.2.18)

Rotationswinkel Φ und Aufpunktverschiebung t_0 erhält man aus den Argumenten von c_q und c_r (vgl. 4.1.7), für deren Absolutwerte entsprechend Gl. (4.2.4) gilt

$$\Phi_{q} = \Phi_{q}^{0} + \Phi + q \cdot t_{0} + g_{q} \cdot 2\pi,$$

$$\Phi_{r} = \Phi_{r}^{0} + \Phi + r \cdot t_{0} + g_{r} \cdot 2\pi$$
(4.2.19)

Daraus lässt sich unter Beachtung der Normierungsbedingungen (4.2.1e-f) ($\Phi_q^0 = \Phi_r^0 = 0$) und der Nebenbedingung r - q = s durch Subtraktion der unbekannte *Aufpunkt* ermitteln

$$t_0 = \left(\frac{\Phi_r - \Phi_q}{r - q}\right) \operatorname{mod}(2\pi/s) \tag{4.2.20}$$

Vergl. Gl. (4.2.9).

Die *Rotation* erhält man ebenfalls aus (4.2.19) zu

$$\Phi = \left(\frac{r\Phi_q - q\Phi_r}{r - q}\right) \mod(2\pi/s) \tag{4.2.21}$$

Aus dem Fourierkoeffizienten c_0 , welcher die Lage des Schwerpunktes angibt, kann die *Translation* ermittelt werden

$$z = x_B = c_0 - c_0^0 \cdot R \cdot e^{j\Phi}$$
 (4.2.22)

Diese Größen sind alle in Bezug auf das durch Gl. (4.2.1c-f) normierte Referenzmuster zu sehen.

Weitere Eigenschaften der Fourierdeskriptoren

- Die FDen sind stetig
- Durch den integralen Charakter werden Rauschstörungen geglättet
- Wenn man sich approximativ mit einer konstanten Zahl von FDen begnügt, erhält man eine lineare Berechnungskomplexität O(N).
 - Sie können mit derzeit gebräuchlichen Prozessoren in Videoechtzeit berechnet werden!

Transformation des Originalraums in eine *kanonische* Darstellung

Überführung der direkten Objektrepräsentation in die intrinsischen, invarianten Gestaltsparameter "Fourierdeskriptoren" und die Transformations- oder Bewegungsparameter "Position, Größe und Drehlage":

