Watermarking technology used in CBIR

Henrik Skibbe

Seminar CBIR
Watermarking technology used in CBIR

- Introduction
- Digital watermarks
- Embedding an invisible & robust watermark
- Watermarks & CBIR
- Used features
- Test results
- Conclusion
Introduction

Digital media is largeley distributed

INTERNET
CD
DVD

Everybody can make lossless and unlimited copies of digital contents.
Introduction

Finding methods for

copy protection
copyright protection
authentification
searching information
Introduction (protection)

Conventional cryptographic systems permit only valid keyholders access to the encrypted data.

Problem:

While our data is encrypted nobody can access them, once they are decrypted there is no way to avoid reproduction.
Introduction

Solutions:

digital watermarks

visual information retrieval
Digital watermarks
Digital watermarks

There are two kinds of watermarks:

visible

invisible
Digital watermarks

A visible watermark contains a visible message or a logo. A key is necessary to remove it from the marked image.

Useful for:

demonstration, indicating the ownership
Digital watermarks

More interesting are the invisible watermarks. There are two classes of watermarks:

- fragile
- robust
Digital watermarks

Fragile watermarks

fragile to most modifications

useful for content authentication & integrity attestation
Digital watermarks

Robust watermarks

robust to nearly any kind of image processing operations, like

cropping, blurring, compressing

used for copyright protection & ownership verification
embedding an invisible & robust watermark

Our goal:
similar as possible

& robust
Mean Squared Error

\[MSE = \frac{1}{mn} \sum_{i}^{m} \sum_{j}^{n} ||I(i, j) - K(i, j)||^2 \]
Peak signal-to-noise ratio

$$PSNR = 10 \cdot \log \left(\frac{MAX^2}{MSE} \right) = 20 \cdot \log \left(\frac{MAX_I}{\sqrt{MSE}} \right)$$

MAX is the maximum pixel value of the image. f.ex. 255
The color space YUV

Converting the image from RGB to YUV color space. We use the Y (brightness) channel to store our watermark in.

\[
\begin{pmatrix}
Y \\
U \\
V
\end{pmatrix} = \begin{pmatrix}
0.299 & 0.587 & 0.114 \\
-0.148 & -0.289 & 0.437 \\
0.615 & -0.515 & -0.100
\end{pmatrix} \begin{pmatrix}
R \\
G \\
B
\end{pmatrix}
\]

- Robust against modifying the image’s colors
- Robust against JPEG compression
Where to store hidden informations?
Using the DCT domain!

- Changing coefficients is less „visible“ & much more robust than directly changing a pixel’s value
- Part of the JPEG compression method
- There are fast algorithms for DCT & IDCT

\[
F_{x,y} = \frac{C(x) \cdot C(y)}{4} \cdot \sum_{i=0}^{7} \sum_{j=0}^{7} f_{i,j} \cos \left(\frac{(2i + 1) \cdot x \cdot \pi}{16} \right) \cdot \cos \left(\frac{(2j + 1) \cdot y \cdot \pi}{16} \right)
\]

\[
C(n) = \begin{cases}
\frac{1}{\sqrt{2}}, & n = 0 \\
1, & n \neq 0
\end{cases}
\]
Dct coefficients

→ We will use **8x8 blocks** for embedding bits of our watermark

→ Changing **lower frequencies** are more robust against JPEG compression

→ But also have the most influence to the image’s quality!!

→ We will **not change the DC coefficient**, so the image is robust against changing its brightness
Dither modulation

Using one DCT coefficient to encode one bit.

4 DCT coefficients, so we can encode 4 hidden bits into each 8x8 block.
Bit alignment

15 coefficients / block

6

3
Bit alignment

- robust against cropping
- redundant bits
Dither modulation

* even intervals are representing a 0
* odd intervals a 1

an interval is even, if

\[\left\lfloor \frac{x}{\Delta} \right\rfloor = \text{even}, \forall (x \in I \land x \geq 0) \]
Dither modulation

A DCT coefficient should represent a "1" and is already in an interval which represents a "1".

To make its information more robust, we move it into the middle of the interval.
Dither modulation

A DCT coefficient should represent a "0" but is in an interval which represents a "1".

We move it to the nearest interval which represents a "0".
Watermarking process

[Diagram showing the watermarking process with IDCT, RGB to Y, UV, DCT, DM, and images of a train]
Watermarks & CBIR
Idea:

embedding image related information into the image using the watermarking technique
Watermark & CBIR

Concrete:

extracting features from the image and save them into a feature vector.

creating a watermark, which bits are identical to it.

embed the watermark
Watermarking & CBIR

[Diagram of watermarking process involving feature extraction and embedding]

- Extracting features
- Embedding

[Images of mountainous landscape and watermarking elements]
Used features

Haar Integral

statistic moments

Hu moments

\[A[f](X) = \frac{1}{2\pi NM} \int_{\phi=0}^{\frac{2\pi}{N}} \int_{t_0}^{t} f(gX)d\phi dt dt_0 \]

\[M_k(r) = E \left((X - r)^k \right) \]

\[m_{pq} = \sum_{i=1}^{N_x} \sum_{y=1}^{N_y} x^p y^p I(x, y) \]
Haar integral

\[A[f](X) = \frac{1}{2\pi NM} \int \int \int f(gX) d\phi dt_1 dt_0 \]

Monte-Carlo-Method, \ M(0,1) * M(2,0)
Statistic moments

\[M_2(\mu) = E((X - \mu)^2) \]

\[s = \frac{M_3(\mu)}{\sigma^3} \]

\[k = \frac{M_4(\mu)}{\sigma^4} - 3 \]
Hu moments

\[m_{pq} = \sum_{i=1}^{N_x} \sum_{y=1}^{N_y} x^p y^q I(x, y) \]

\[\mu_{pq} = \sum_{i=1}^{N_x} \sum_{y=1}^{N_y} (x - \bar{x})^p (y - \bar{y})^q I(x, y) \]

\[\eta_{pq} = \frac{\mu_{pq}}{\mu_{00}}, \quad \gamma = \frac{p + q + 2}{2} \]

\[\phi_1 = \eta_{20} + \eta_{02} \]

\[\phi_2 = (\eta_{20} - \eta_{02})^2 + 4\eta_{11}^2 \]

\[\phi_3 = (\eta_{30} - 3\eta_{12})^2 + (3\eta_{21} - \eta_{03})^2 \]

\[\phi_4 = (\eta_{30} + \eta_{12})^2 + (\eta_{21} + \eta_{03})^2 \]
Test results

Interval size / compression

Retrieve watermark > 85% identical to the original information
Test results

Interval size / MSE
Test results

Interval size / PSNR

PSNR

\[\Delta \]

<table>
<thead>
<tr>
<th>Interval size</th>
<th>PSNR</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>50.00</td>
</tr>
<tr>
<td>6</td>
<td>45.00</td>
</tr>
<tr>
<td>8</td>
<td>40.00</td>
</tr>
<tr>
<td>10</td>
<td>35.00</td>
</tr>
<tr>
<td>12</td>
<td>30.00</td>
</tr>
<tr>
<td>14</td>
<td>25.00</td>
</tr>
<tr>
<td>16</td>
<td>20.00</td>
</tr>
<tr>
<td>20</td>
<td>15.00</td>
</tr>
</tbody>
</table>
Robustness against attacks

Test image: 384 x 256, marked with a 48x48 bit watermark
Cropping
Cropping 2
„Blobs“
More „Blobs“ 😊
Brightness – 25%
Brightness + 25%
Color

93.4%
Color 2

91.6%
Gaussian blur, radius 1,0
Median filter, aperture 3

89%
negative
Conclusion

• Invisible watermark
• Robust against cropping, blurring, [translation, scaling], …
• Easy to implement & fast
• No extra space for feature vector needed

• Not robust against rotation