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Abstract

Training high-quality CLIP models typically requires enor-
mous datasets, which limits the development of domain-
specific models – especially in areas that even the largest
CLIP models do not cover well – and drives up train-
ing costs. This poses challenges for scientific research
that needs fine-grained control over the training proce-
dure of CLIP models. In this work, we show that by em-
ploying smart web search strategies enhanced with knowl-
edge graphs, a robust CLIP model can be trained from
scratch with considerably less data. Specifically, we demon-
strate that an expert foundation model for living organisms
can be built using just 10M images. Moreover, we intro-
duce EntityNet, a dataset comprising 33M images paired
with 46M text descriptions, which enables the training of a
generic CLIP model in significantly reduced time.

1. Introduction
Contrastive Language-Image Pretraining (CLIP) [29] has
become a cornerstone for training Vision-Language Mod-
els (VLMs). CLIP models learn high-quality visual embed-
dings and establish a link to the semantic level of brief text
descriptions by training on pairs of images and their corre-
sponding text descriptions collected from the web. The fea-
tures and the link between images and text have been used
directly for, e.g., zero-shot classification or text-to-image
retrieval, and enable dialogues with visual input, such as in
the LLaVA family of models [20–22]. The link can also be
exploited in the opposite direction to enable text-conditional
image generation, e.g., Stable Diffusion [28].

Training state-of-the-art CLIP models is computation-
ally expensive. The original CLIP model has seen 12.8B
image-text pairs, and later works have scaled this fur-
ther [8, 10]. This need for scale has limited most of the
research to finetuning, which comes with reduced architec-
tural flexibility and control over the data selection. It is par-
ticularly problematic for analytic research that demands full

Figure 1. We demonstrate how to harvest datasets for training
CLIP models with an improved quality-cost trade-off, either for
a generic domain (top) or an expert domain (bottom).

control over training to find causes of emergent behavior.
The effort to collect vast datasets is also a key bottleneck

for building foundation models for expert domains. Al-
though CLIP models are supposed to be generic and cover
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most of the world, they are not good enough for use in spe-
cific expert domains such as medicine or biology. Building
foundation models for expert domains requires an efficient
data collection process, taking into account the availability
of fewer data samples in these domains.

Our goal is to tackle these challenges from the dataset
side while keeping the CLIP algorithm fixed. This strategy
is backed by recent literature. For example, Li et al. [18]
explored CLIP “along three dimensions: data, architec-
ture, and training strategies” and they stress the “signifi-
cance of high-quality training data”. For Large Language
Models (LLMs), data curation was shown to reduce train-
ing time and model size, achieved through heavily filtered
publicly available web data and synthetic data [2]. With
the dataset creation process, we aim (1) for improved per-
formance in the expert domain of living organisms, in or-
der to demonstrate the creation of expert foundation mod-
els; and (2) we aim for a good trade-off between training
efficiency and model performance on the broad domain of
the visual world, in order to enable compute-efficient from-
scratch analysis of fully functional CLIP models.

We built a dataset we named EntityNet, where we lever-
aged knowledge graphs and targeted web image search.
Specifically, from the knowledge graphs Wikidata and
WordNet, we collected 135k entities (e.g. eagle) as well
as their aliases and descriptions. We extracted entity at-
tributes from Wikidata related to color, partonomy, behav-
ior, and other aspects, which we then used to guide an LLM
in generating entity-attribute queries for image search.. For
example, from the entity plastic and the attribute small we
generated the search term small plastic item.

The resulting EntityNet consists of 33M images paired
with 45M alt texts and 613k text labels from the knowledge
graphs. The dataset is partitioned into a subset of 10M
images of living organisms, capturing high-quality visual
and semantic information about the taxonomy of animals,
plants, and funghi, as well as a subset of 23M images cov-
ering a wide range of categories, such as tools, geographical
features, materials, and buildings. Notably, from this pro-
cess we obtain not only alt texts, but also a link back to the
knowledge graph information that was used to create the
search query for a given image. We show that this infor-
mation can be used during training to achieve better perfor-
mance than by training on alt texts alone. The method of
creating our dataset is largely generic and can be applied to
other knowledge graphs.

Training on this dataset, we obtain a foundation model
that is both specialized on the target expert domain and is
also able to understand the overall visual world. In our
domain-specific evaluations on iNaturalist and RareSpecies,
the model demonstrates robust generalization and clearly
surpasses CLIP models trained on much more data (Fig-
ure 1). On ImageNet, we demonstrate our dataset to be

Figure 2. We create a dataset for vision-language pretraining:
First, we extract entities from knowledge graphs, then generate
attributes and natural types for them. We search for different com-
binations of entities, attributes, and types in image search engines,
and collect alt texts for each image. Finally, we train our model on
the combined data.

highly compute efficient and to achieve a performance com-
parable to models trained 20x longer (Figure 1).

• We propose a method to automatically create a vision-
language dataset based on a given knowledge graph and
an image search engine.

• We apply this method to create the EntityNet dataset, con-
sisting of 33M images paired with 45M alt texts and sup-
plementary text information from the knowledge graphs.

• We train an expert CLIP model for living organisms on
a single 8xL40S machine from scratch in 55 hours. This
EntityNet-CLIP is highly specialized in the target expert
domain of living organisms, and comparably strong on
ImageNet.

• We evaluate our model and a suite of other CLIP models
for object classification, image retrieval, and domain shift
robustness. In the expert domain of animals and plants,
our model achieves higher performance than models with
orders of magnitude more parameters or training data. It
is also much stronger than CLIP models that specialize
only for this domain. In the generic domain, our model
performs remarkably well given the low amount of com-
pute required to train it.

2. Related work

Datasets. Many recent works investigated ways
to build large-scale datasets for multimodal training.
Radford et al. [29] train the original CLIP model on a closed
set of 400M images, with the model weights being released,
but not the data. They build their dataset by collecting
image-text pairs, where the text includes frequent terms
derived from Wikipedia or WordNet nouns, and approxi-
mately balance the classes in the result. As a first approach
to create a public dataset of this size, Schuhmann et al. [33]
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built a dataset with 400 million image-text pairs by filter-
ing HTML data from Common Crawl (LAION-400M) [30].
Their main method of filtering is to remove all image-
text pairs that have less than 0.3 similarity estimated by
the CLIP model. In a follow-up work, they [34] scaled
their approach up one order of magnitude with the mul-
tilingual LAION-5B dataset. Xu et al. [48] intended to
replicate the original CLIP’s data curation approach. They
collected image-text pairs from CommonCrawl and filtered
them using Wikipedia and WordNet, then balanced the re-
sults. Gadre et al. [10] proposed DataComp, a filtering chal-
lenge with a candidate pool of up to 13B image-text pairs
from CommonCrawl, where the goal is to filter this candi-
date pool and to run a fixed training pipeline on the resulting
data. They proposed a baseline DataComp-1B dataset with
1.4B pairs filtered with a combination of CLIP score and
clustering CLIP embeddings to find images close to Ima-
geNet [7] training examples. Fang et al. [8] trained a Data
Filtering Network on an internal dataset of 357M human-
verified image-text pairs and finetuned it on a set of pub-
lic, human-annotated datasets. They filtered 42B candidates
into the DFN-5B dataset and trained the current top model
of the OpenCLIP leaderboard [14].

These large datasets have mostly replaced smaller
datasets like ConceptualCaptions12M (CC12M) [4], which
relies on unimodal heuristics and Google Cloud Vision
APIs to predict image-text similarity. Another popular
small dataset is Yahoo Flickr Creative Commons 15M
(YFCC15M), a subset of 15M image-text pairs obtained
from the YFCC100M dataset which is based on Flickr [38].
Although many works are mostly concerned with scaling
up multimodal datasets and models as much as possible, we
aim to improve research on high-quality CLIP models in
scenarios where data and compute efficiency is important,
for example, for setting up a CLIP model for an expert do-
main or for scientific analysis of CLIP training.

Stevens et al. [35] aimed for a general vision model
named BioCLIP for organismal biology and curated the
TreeOfLife-10M dataset based on the Encyclopedia of
Life [1], iNaturalist 2021 [41] and BIOSCAN-1M [11].
BioCLIP is trained on a mix of english and latin entity
names. For evaluation, they curated the RareSpecies bench-
mark, which tests generalization to 400 species unseen dur-
ing training. While the authors of BioCLIP used biological
domain knowledge to build their dataset, we rather rely on
knowledge graphs and propose a dataset collection method
for arbitrary domains.

Training algorithms. Various works are concerned with
improving CLIP from the algorithmic side. Li et al. [16]
simply train on low resolution first, then finetune on higher
resolution later. In another work [17], the authors addition-
ally mask a substantial portion of the image to further re-
duce the amount of input during training. Zhai et al. [51]

propose using a sigmoid loss which reduces the computa-
tional load especially in big distributed settings. They fol-
low up [39] by extending the training objective using multi-
ple previously developed techniques, including captioning-
based pretraining [45], self-distillation [24] and online data
curation [40] into one unified recipe. Vasu et al. [42] en-
hance their training data with synthetic captions created by
an image captioning model and use an ensemble of CLIP
teachers to train their model. This way, they can increase
the learning efficiency by transferring knowledge from big-
ger models to their smaller models. Chen et al. [5] evalu-
ate the choice of vision encoder and design a hybrid archi-
tecture that improves over vanilla vision transformers when
trained under the CLIP framework. Such algorithmic im-
provements are orthogonal to our research, since they would
potentially also improve training on our dataset. In this
work, we focus on data improvements and fix the algorithm
and architecture choices, since this also allows to easily and
fairly compare to a big set of already trained Vision Trans-
former (ViT) based CLIP models.

Li et al. [18] scale down CLIP and analyse the influ-
ence of different data, architecture, and training strate-
gies. They find that especially large models need larger
datasets, and data quality plays an important role. They
create higher quality datasets by applying CLIP filtering to
the 3.4B WebLI dataset [6], while we aim to use a different
dataset collection process.

3. Dataset creation
In this section, we outline our dataset creation process, con-
sisting of four main steps: entity extraction, attribute gen-
eration, query building, and image search. This process is
generally applicable to all visual domains covered by the
underlying knowledge graph. In this work, we construct a
dataset covering the majority of common visual entities in
our world. Within this broad domain, we particularly fo-
cus on animals and plants, referred to as the living subset in
this section. See Figure 2 for an illustration of the dataset
creation process.

3.1. Entity extraction
A high-quality list of visual entities forms the basis for our
dataset. We build our list of entities from the Wikidata
knowledge graph [43], taking advantage of the hierarchical
structure provided by the subclass of relation within Wiki-
data. For example, the entity dog is a subclass of the pet en-
tity, which in turn is a subclass of domesticated animal en-
tity. Through this hierarchy, we can easily collect all entities
under a particular governing or super-entity. First, we man-
ually build a list of 21 super-entities that cover most phys-
ical and visual entities in Wikidata. For the living subset,
the super-entities are just animal and plant. Examples of
non-living super-entities are food, building, or physical tool,
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Table 1. Examples of entities and additional information as ex-
tracted from the Wikidata knowledge graph. Name, description,
and aliases are used as text labels during training. The number
of sitelinks are considered a proxy for an entity’s popularity. The
name and aliases are used during search.

Entity Description Sitelinks Aliases

tiger species of big cat 216 tigress, tigers,
Panthera tigris

chest box-shaped type
of furniture

51 coffer, kist

muscle
car

type of high-
performance car

30 high
performance car

with all super-entities listed in the supplementary material.
Next, we extract all entities from Wikidata that are linked
to at least one of the super-entities through the subclass of
relation. For animals and plants, Wikidata also models their
biological taxon hierarchy via the parent taxon relation. Be-
cause the taxon hierarchy substantially increases the cover-
age of our living subset, we use it together with the regular
subclass hierarchy to extract living entities. Note that we do
not want to include named entities (e.g., specific persons).
Since Wikidata models these via the instance of relation,
our extraction process excludes them by using only the sub-
class of and parent taxon relations. For every entity, we
also download its name, description, aliases, and its num-
ber of Wikimedia sitelinks 1 as additional information. See
Section 3.1 for examples of entities. Finally, we apply two
filtering steps: First, we remove all entities with a sitelink
count below a predefined threshold, eliminating very rare
or low-quality entities which are unlikely to produce strong
search results. We find that this filtered list of entities still
contains a significant amount of non-visual entities. To ad-
dress this, we use a LLM to classify each entity as visual or
non-visual, discarding the non-visual ones.

For our expert domain, the living subset, we also add all
nouns from WordNet [9] that are a subclass of the living
thing node, excluding humans, named entities and entities
that cannot be seen with the bare eye, e.g., microorganisms.

Finally, we employ heuristic methods to detect and re-
move potentially offensive entities via a profanity filter.

3.2. Attribute generation
Besides searching for the entities directly, we also aim to
search for variations of them in different contexts, by com-
bining them with attributes. We manually define 6 visual at-
tribute categories we want to search for: Color, Pattern and
texture, Parts, Shape and size, Environment, and Other. We
extract potential attributes for each entity from the Wikidata

1The number of Wikimedia sitelinks is a commonly used and high-
quality proxy for the popularity of an entity [26].

Table 2. Examples of attributes and corresponding search queries
for different entities as generated by the LLM. Search queries are
used for image search and during training.

Entity Category Attribute Search query

rock Pattern and
texture

porous porous rock

wolf Environment snow wolf in the snow
residence Parts arches arches in residence

architecture
garlic Shape and

size
big big garlic bulb

farm Other tourist tourists visiting a
farm

boot Color multicolor multicolored boots

knowledge graph and prompt an LLM 2 with this entity and
attribute information to generate a list of visual attributes.
For each attribute we also generate a search query combin-
ing the attribute itself with the corresponding entity. See
Section 3.2 for examples of generated attributes and search
queries. We generate between 1 and 10 attributes per cate-
gory and generate them for the most popular entities only,
as image search engines fail to respect attributes in search
queries for rare entities, where they often even struggle to
return good results for the entity alone.

3.3. Query building

For the entities themselves, we use their names and aliases
as search queries. We search entity-attribute combinations
using the search queries generated by the LLM. We then
build another set of queries based on the attributes: First,
we determine the natural type for each entity. The natural
type of an entity is the super-entity that a human would most
likely associate with it, e.g., bird for eagle, or clothing for
hat. It is neither too general nor too specific, and can typi-
cally be used to disambiguate the entity from other entities
with the same name. Here, we use an LLM to select the
most fitting super-entity from an entity’s super-class hierar-
chy as its natural type. We also let the LLM generate a short
description as to why the selected natural type is a good fit
for the entity and use it during training as a potential text la-
bel. We then replace entity mentions in the attribute search
queries with their natural types. For example, the attribute
query eagle in its nest may turn into bird in its nest, or black
BMW M4 into black car.

2In particular, we use three LLMs and merge their generated attributes:
Qwen2.5 7B [49], OpenAI GPT-4o, and OpenAI GPT-4o mini (both ac-
cessed via the API at platform.openai.com)
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3.4. Image search and filtering
We execute our search queries using the image search APIs
of Bing and Google. Initial tests on the living subset re-
vealed Bing’s search results to be of much higher quality
at a lower cost, so we rely solely on the Bing API for all
other queries. The image search APIs also provide the URL
for the website hosting the image, which we use to collect
alt texts from the HTML image tag. After downloading im-
ages and alt texts, we perform the following postprocessing
steps:
• Similar to Changpinyo et al. [4], we apply relaxed filter-

ing heuristics. We do not use any multimodal filtering but
instead rely on the search engines to provide image-text
correspondences. We remove text that is longer than 500
chars or formatted in JSON. We also remove images with
an aspect ratio of more than 4 or covering less than 4096
pixels.

• We deduplicate all downloaded images using the
Self-Supervised Descriptor for Image Copy Detection
method (SSCD) [27]. For duplicates, we retain the largest
image and collect all unique alt texts from the duplicates.

• We detect duplicates between the images and all evalua-
tion datasets using the same SSCD method.
Our final dataset comprises approximately 33M images

and 45M alt texts, obtained from 416k queries. This
amounts to 79 images per query and 1.4 alt texts per image
on average. The total cost for all image search API calls
was around 10,000$. See Section 3.4 for an overview over
the building blocks and proportions of our dataset.

4. Experimental setup
4.1. Training
We trained all models using the standard CLIP loss [29]
with a batch size of 8,192 for pretraining and 32,768 dur-
ing finetuning, along with random resized crop augmenta-
tion. We sampled text labels from both the image alt texts
and knowledge graph - for each image, 50% of the time we
chose a random alt text for a given image, and 50% of the
time we chose randomly between search query, aliases, or
descriptions of the corresponding entity. Our training code
is based on OpenCLIP [14]. Further training details and an
example for the text sampling can be found in the supple-
mentary material. We trained all models for 18 epochs using
AdamW [23]. Training on 33M images takes ∼55 hours on
8 L40s GPUs with 48GB VRAM per GPU.

4.2. Evaluated models
On our EntityNet dataset, we trained ViT CLIP models of
size B-32 and B-16 from random initialization. For a com-
parison with a similarly sized dataset, we also trained mod-
els on CC12M by downloading all available URLs, and then
detecting and removing duplicates relative to the evalua-

tion datasets using the same procedure as detailed in Sec-
tion 3.4, obtaining 9.3M images. We finetuned B-32 and
B-16 CLIP models trained on DataComp-1B on our dataset
to compare finetuning and pretraining performance. In ad-
dition to the models trained on EntityNet and CC12M, we
evaluate the original OpenAI CLIP [29] and models pre-
trained on DataComp-M/L/1B, CommonPool-M/L [10], and
DFN-5B [8]. We also compare with the domain expert
model BioCLIP [35], a ViT-B-16 CLIP model finetuned
from OpenAI-CLIP on 10M biological image-text pairs.

4.3. Object classification evaluation

To test the VLMs on object classification we use the same
procedure as CLIP [29]. Given an image I , class names
C1, ..., CN , image encoder f and text encoder g, we embed
the image using the image encoder v = f(I). To acquire a
text embedding for class Cc, the CLIP authors started by
directly encoding the class names as wc = g(Cc), e.g.,
dog. Alternatively, they created several prompts P using
templates, e.g., graffiti of a dog, a photo of the cool dog,
etc., then encoded each prompt, and computed the average
embedding: wc =

∑
p∈P g(p)/|P |. They referred to this

approach as using “context prompts”. Finally, given the im-
age and text embeddings, the prediction p is the class which
has the highest cosine similarity to the image. We evalu-
ate all models on just encoding the class name, as well as
on using the average embedding of the 80 context prompts
that the CLIP authors used for ImageNet, and report the
higher top-1 accuracy. For zero-shot object classification,
we require models to not have trained on the training set
of the benchmark, in order to test “generalization to unseen
datasets” [29]

Benchmarks in the generic domain. We eval-
uate on ImageNet [7], a popular image classification
benchmark [32]. We use the ILSVRC2012 validation
set, which contains 50,000 images from 1,000 classes.
The classes include simple objects such as park bench,
but also more fine-grained labels like 23 types of ter-
rier dogs, e.g., Staffordshire Bull Terrier. We fur-
ther evaluate the robustness under distribution shifts on
ImageNet-A [13], ImageNet-R [12], ImageNet-Sketch [46],
ImageNet-V2 [31], and ObjectNet [3] as proposed by
Taori et al. [36]. ImageNet-A contains 7500 samples of 200
ImageNet classes. The samples were adversarially filtered
to make ResNet-50s misclassify them, providing a more
challenging test. ImageNet-R contains 30000 renditions,
such as paintings or embroidery, of 200 ImageNet object
classes. ImageNet-Sketch contains 50000 sketches, cover-
ing 200 ImageNet classes. ImageNet-V2 replicates the orig-
inal ImageNet generation process, providing an additional
10000 test images. The object-centered ObjectNet contains
18574 images from 113 ImageNet classes with control over
background, rotation and viewpoint.
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Table 3. Details of our EntityNet dataset. We show the number of unique elements for each column, e.g. the number of images after
deduplication or all unique entity aliases in the respective sets.

Query set Images Queries Entities Aliases Attributes Alt texts Example query

World entity 23M 158k 74k 101k - 23M ship
World entity + attribute 19M 139k 6k 16k 20k 16M small handbag
Living entity 9M 72k 63k 51k - 8M kohlrabi
Living entity + attribute 9M 53k 1k 3k 5k 6M tropical plant

All 33M 416k 135k 149k 23k 45M -

Benchmarks in the expert domain. We evaluate our
models on iNaturalist 2021 [41], a fine-grained species
classification benchmark that contains 100k images in
the validation set of 10k different species. Similar to
Parashar et al. [25], we test models on both the english
common name and the latin taxon name. We report the
best results over both languages. We further test on the
Caltech-UCSD Birds (CUB) [44] dataset, which contains
5,794 images of birds in the original author’s test set, each
annotated as one of 200 fine-grained bird species, e.g.,
grasshopper sparrow. Additionally, we evaluate on the
Rare Species benchmark proposed by Stevens et al. [35],
that comprises 400 species with 30 images each specifically
tailored to assess generalization to unseen taxa. To com-
ply with the benchmark requirements of not seeing the test-
ing 400 species during training, we exclude all entities and
queries from our dataset that appear in RareSpecies, using
substring matching. As class names, we evaluate all text
types proposed by Stevens et al. [35]: combinations of the
latin taxonomy and the english common name. Same as in
Section 4.3 we evaluate on both the CLIP ImageNet prompt
and no prompt, and report the better of both accuracies.

4.4. Retrieval evaluation
We evaluate the COCO Karpathy test split [15], a subset
of 5000 samples from the MS-COCO [19] dataset paired
with 5 text each. We also evaluate the 1000 samples in
the Karpathy test split of Flickr30k [50] annotated with 5
texts per image, as well as on the 3600 image-text pairs in
XM3600 [37]. We report the average of image-to-text and
text-to-image recall@1 over all datasets.

5. Results
We evaluate CLIP pretrained from scratch on our Enti-
tyNet dataset and CLIP models trained on other datasets.
In Figures 1 and 3 we contrast the effectiveness of mod-
els with their training cost. We show the results in detail
in Section 5. In the generic domain, our models surpass
others trained on similarly sized datasets while achieving
comparable performance on object classification with mod-
els trained 20x longer. On image-text retrieval, our model
performs similarly to models trained on the same amount

Figure 3. Results on image retrieval and robustness against distri-
bution shifts on ImageNet.

of compute. While our pipeline creates a dataset efficient
for understanding objects and their properties, understand-
ing complex scenes still requires learning mainly from the
alt texts more than from objects and attributes. In the expert
domain, we outperform even the largest CLIP models on the
challenging iNaturalist 2021 dataset, which requires classi-
fying images among 10k fine-grained species. Our model
also excels on CUB by distinguishing 200 bird species bet-
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Table 4. Results for training CLIP B-32 and B-16 on our EntityNet dataset from scratch. We mark the best and second best result. To
measure training cost, we calculate the total MACs (multiply–accumulate operations) performed during training. We only compare zero-
shot results and mark results as “–” if the model does not fulfill the zero-shot requirements.

Arch. Dataset MACs Images in Image- Retrie- Distr. iNat. CUB Rare
(1e18) dataset (M) Net val shift 2021 Species

B-32 CC12M 3.7 9.3 28.6 25.6 18.3 0.7 9.2 –
B-32 CommonPool-M 2.9 128.0 27.2 20.2 19.8 0.8 10.1 –
B-32 DataComp-M 2.9 14.0 29.7 19.5 20.5 1.0 16.8 –
B-32 OpenAI 288.6 400.0 63.4 49.6 48.7 7.4 51.8 –
B-32 DataComp-1B 295.4 1400.0 69.2 54.0 56.3 12.6 73.8 –

B-32 EntityNet (ours) 13.1 32.7 61.5 37.2 41.0 26.1 79.5 42.7

B-16 BioCLIP TreeOfLife-10M 61.3 10.4 18.6 0.8 15.4 – 78.1 38.1
B-16 CommonPool-L 78.2 1280.0 57.8 45.6 47.0 4.1 35.1 –
B-16 DataComp-L 78.2 140.0 63.1 49.4 51.1 6.1 48.1 –
B-16 DataComp-1B 791.4 1400.0 73.5 57.4 64.4 15.3 79.0 –
B-16 OpenAI 784.6 400.0 68.3 52.1 58.6 9.2 56.1 –

B-16 EntityNet (ours) 36.0 32.7 66.2 39.8 47.4 32.0 85.3 47.1

L-14 OpenAI 3328.4 400.0 75.5 54.3 71.4 12.0 62.9 –
L-14 DataComp-1B 3338.6 1400.0 79.2 61.8 74.9 21.1 85.5 –
L-14 DFN-2B 3338.6 2000.0 81.4 64.2 74.8 21.6 86.5 –
H-14 DFN-5B 22164.0 5000.0 83.4 68.7 76.3 25.1 88.1 –

Table 5. Results for finetuning the DataComp-1B CLIP model on the EntityNet dataset. We mark the best and second best result. To
measure training cost, we calculate the total MACs (multiply–accumulate operations) performed during training.

Arch. Dataset MACs Images in Image Retrie- Distr. iNat CUB
(1e18) dataset (M) -Net val shift 2021

B-32 DataComp-1B (Base model) 295.4 1400.0 69.2 54.0 56.3 12.6 73.8
B-32 EntityNet 13.3 32.7 69.5 50.8 53.3 29.5 83.3
B-32 EntityNet (only living organisms) 4.2 10.2 48.2 31.2 33.3 37.0 87.0

B-16 DataComp-1B (Base model) 791.4 1400.0 73.5 57.4 64.4 15.3 79.0
B-16 EntityNet 36.1 32.7 73.5 52.2 61.0 34.9 86.5
B-16 EntityNet (only living organisms) 11.3 10.2 51.4 34.8 39.2 42.7 90.3

ter than all other CLIP models of the same size. Fur-
ther, when compared to the expert model BioCLIP, trained
specifically for organismal biology at a similar training cost,
our model demonstrates superior performance. On the Rare
Species benchmark, our model classifies the species unseen
during training better than the expert biology model, show-
ing the effectiveness of our dataset collection method over
a manually designed living organism training set.

We investigate improving existing CLIP models via fine-
tuning in Section 5. The results show that our dataset can
be leveraged to create expert CLIP models that outperform
both the base model and our model pretrained from scratch
on the expert domain. This improvement comes at the cost
of trading off some capabilities in the other domains. When
finetuning only on the expert domain, we trade off more ca-

pabilities, yet obtain even stronger experts.

We further validate and verify our design choices
through a component analysis in Section 5. Training sep-
arately on the generic and the domain expert part of our
dataset reveals that, while the best generic model emerges
from training on everything, a slightly better expert model
is the result of training only on the expert domain (first ta-
ble segment). However, generalization to unseen species
slightly benefits when training on the full dataset, showing
that our generic domain data can enhance generalization ca-
pabilities within the expert domain. We also observe that
generating and downloading attribute queries contributes to
improved performance of the pretrained model.

In the second segment of the table, we evaluate the mix-
ture of alt text and knowledge graph labels used during
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Table 6. Analysis of performance when varying dataset composition, text sampling and dataset size. We mark the best and second best
result. To measure training cost, we calculate the total MACs (multiply–accumulate operations) performed during training.

Arch. Dataset MACs Images in Image- Retrie- Distr. iNat. CUB Rare
(1e18) dataset (M) Net val shift 2021 Species

B-32 Everything 13.1 32.7 61.5 37.2 41.0 26.1 79.5 42.7
B-32 No living organisms 9.0 22.5 39.2 32.1 28.0 0.8 6.2 6.9
B-32 Only living organisms 4.1 10.2 36.0 16.5 21.0 28.6 83.2 42.0
B-32 No attribute queries 8.7 21.8 54.8 28.6 33.8 25.6 79.7 39.2

B-32 50% alt text 13.1 32.7 61.5 37.2 41.0 26.1 79.5 42.7
B-32 100% alt text 13.1 32.7 59.1 38.3 38.1 22.9 78.8 39.7
B-32 0% alt text 13.1 32.7 55.7 13.5 35.5 24.2 78.1 29.7

B-32 Full size 13.1 32.7 61.5 37.2 41.0 26.1 79.5 42.7
B-32 1/2 size 6.6 16.4 54.1 30.3 33.6 20.1 74.1 36.6
B-32 1/4 size 3.3 8.2 45.2 23.5 25.7 13.2 64.9 28.0
B-32 1/8 size 1.6 4.1 33.3 16.6 17.7 7.3 47.8 19.4
B-32 1/16 size 0.8 2.0 19.9 9.4 10.0 2.8 27.4 11.8

training. Notably, both training only on alt texts or only
on knowledge graph labels mostly performs worse than our
50-50 mix. The exception is image-text retrieval, where
training fully on alt text performs slightly better. Potentially,
the knowledge graph labels are less useful for learning the
matching between longer text queries and images, and more
useful for learning fine-grained object classification.

Finally, we reduce the scale of our dataset by powers of
two. While the model performance expectedly drops with
reduced dataset size, the efficiency of our dataset per data-
point stays high, with the model still reaching 33% accuracy
on ImageNet with only 4M images.

6. Limitations
The proposed data harvesting approach assumes that there
is a knowledge graph for the target domain and that there
is a searchable database with noisy pairing of images and
text. Especially, the latter assumption can induce extra ef-
fort in some domains. In the medical domain, for exam-
ple, there are massive amounts of paired image-text data,
but the data is not publicly available and not connected to a
regular search engine. The search queries must be adapted
appropriately to the respective local database. Another lim-
itation is the small, but significant drop in performance on
image-text retrieval and classifying ImageNet distribution
shifts in the generic domain, when finetuning a large model
with EntityNet. First, our dataset by design has a strong
focus on the expert domain and trades off some perfor-
mance in the generic domain during finetuning. Second,
our search pipeline finds many clean object-centric images
and annotates them with entity information, which tremen-
dously helps understanding object semantics, but to im-
prove efficiency on image-text retrieval in a similar way,
one needs to tackle the quality of alt texts and their align-

ment to the images [47]. Finally, we focused on searching
photos, which explains slightly lower accuracy when classi-
fying paintings and sketches – the EntityNet dataset simply
contains a lower percentage of such types of images than
datasets like CommonPool.

7. Conclusions
We demonstrated how to use knowledge graphs to harvest
datasets that are efficient for training CLIP models. Our
strategy allows us to create an expert domain dataset with
little manual effort, enabling the development of CLIP mod-
els that significantly outperform standard models in the ex-
pert domain. The expert domain dataset can be used either
for training a model from scratch or for finetuning an ex-
isting vanilla model. The substantial size and diversity of
the expert domain dataset ensures that the good generaliza-
tion properties of CLIP exist also in the expert domain, in
contrast to training with an over-specialized expert dataset.

Furthermore, we demonstrated that the proposed har-
vesting strategy is also viable to create a common domain
dataset, which allows us to achieve a better quality-compute
trade-off than training with previous datasets. Future work
can use our EntityNet dataset to train CLIP models with all
emergent properties much more efficiently, thus allowing
for experiments, where training can be controlled. So far,
this has been possible only with models of lacking quality.
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A. Detailed results
We show extensive results on object classification in Sec-
tion A. For a more detailed analysis of model capabilities on
ImageNet, we split the classes into living (410 classes) and
other (590 classes) using WordNet: Since ImageNet labels
are built on WordNet nouns, we simply select all labels that
are children of the living things node for the living set. On
iNaturalist, in addition to the 2021 version, we also evaluate
on the 2019 version which contains 3,030 images in the val-
idation set, each annotated with one of 1,010 species. We
test with the same protocol as on iNaturalist 2021, testing
on both english and latin class names and reporting the best
accuracy. We show additional results on retrieval in Sec-
tion A and object classification under distribution shift in
Section A.

B. Qualitative examples of our dataset
We show randomly sampled images and corresponding tex-
tual information of our dataset in Figures 4, 5, 6, and 7.
We show an example of our text label sampling strategy in
Section B.

C. Hyperparameter settings
We report hyperparameters for our experiments in Sec-
tion E. Similar to Li et al. Li et al. [17], we reduce the con-
text size of the text encoder down from 77 to 32 to reduce
VRAM and training time requirements. For a fair compar-
ison with other CLIP models, we report all training cost
and training duration as if the training was run at a context
length of 77.

D. Image Search APIs
Google The Google Image Search API is available via
the Google Cloud Platform, and requires an existing pro-
grammable search engine to function. It returns up to 10
images per request and page with a limit of 10 pages, i.e.,
100 images per query. It costs 5$ per 1,000 API calls, re-
sulting in costs of about 500$ to download 1M images. We
found the search results from the Google API to be quite
different, and arguably worse, from the ones returned when
using the regular Google image search. For all our API re-
quests we set the parameter imgColorType to color, img-
Type to photo, lr to lang en, and excludeTerms to drawing
clipart illustration cartoon vector painting. This way we
get mostly real-world images in our search results. We addi-
tionally add all aliases and the natural type of the sought en-
tity to the orTerms parameter for entity and entity-attribute
queries. Because the Google API returns only up to 10
images per request and page, we search for the following
number of pages: 2 pages each for entity queries, 4 pages
each for entity-attribute queries, and 10 pages each for all
natural-type-attribute queries. We started our search with
queries from the living subset on both the Google and Bing
APIs. We found the quality and value-for-money ratio of
the Bing API to be better, and therefore switched to only
using Bing for all other queries.

Bing The Bing Image Search API is available via Mi-
crosoft Azure. It returns up to 150 images per request and
has no restrictions on the number of accessible pages. It
costs 18$ per 1,000 API calls, resulting in costs of about
120$ to download 1M images. In our experience, the re-
turned images closely match the ones from the regular Bing
image search. For all our API requests we set the parame-
ter imageType to Photo and color to ColorOnly. Unlike the
Google API, Bing does not have a way to specify orTerms
via a separate request parameter, so we add the natural type
of the sought entity to the search query directly, e.g., we
search for jaguar animal. The Bing API returns 150 images
per request and page, we request one page for each query.

E. Querying entities with SPARQL
The SPARQL query over Wikidata used to harvest all enti-
ties under a super-entity is displayed in Figure 8. It returns
a list of entities from a specified target domain as defined
by one or more super-entities. The super-entities can be
determined manually by searching for appropriate entities
on the Wikidata website. For example, if we want to build a
dataset about vehicles, we can set the super-entity to vehicle
(Q42889), as done in Section E. We list the super-entities
we considered for our dataset and the relevant statistics in
Section E for included and Section E for excluded super-
entities.
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Table 7. Detailed object classification results. The table is grouped into training from scratch, finetuning, and analyzing components, the
groups are separated by double horizontal lines. Each part is again split by single horizontal lines into groups of same model size or same
component analysis. Models marked with ⋆ are finetuned. We mark the best and second best result. To measure training cost, we calculate
the total MACs (multiply–accumulate operations) performed during training. We only compare zero-shot results and mark results as “–” if
the model does not fulfill the zero-shot requirements.

Arch. Dataset MACs Images in ImageNet iNaturalist CUB Rare
(1e18) dataset 1k Living other 2019 2021 species

# Classes → 1,000 410 590 1,010 10k 200 400

B-32 CC12M 3.7 9.3 28.6 27.6 31.1 2.0 0.7 9.2 –
B-32 CommonPool-M 2.9 128.0 27.2 20.6 33.5 2.6 0.8 10.1 –
B-32 DataComp-M 2.9 14.0 29.7 25.5 34.5 3.0 1.0 16.8 –
B-32 OpenAI 288.6 400.0 63.4 65.5 63.1 10.9 7.4 51.8 –
B-32 DataComp-1B 295.4 1400.0 69.2 71.2 69.1 16.7 12.6 73.8 –

B-32 EntityNet 13.1 32.7 61.5 68.5 57.9 38.3 26.1 79.5 42.7

B-16 ⋆ BioCLIP TreeOfLife-10M 61.3 10.4 18.6 44.3 2.6 – – 78.1 38.1
B-16 CommonPool-L 78.2 1280.0 57.8 53.2 62.4 6.9 4.1 35.1 –
B-16 DataComp-L 78.2 140.0 63.1 61.8 65.3 9.1 6.1 48.1 –
B-16 DataComp-1B 791.4 1400.0 73.5 75.9 73.2 19.5 15.3 79.0 –
B-16 OpenAI 784.6 400.0 68.3 71.5 67.4 12.5 9.2 56.1 –

B-16 EntityNet 36.0 32.7 66.2 73.9 62.0 42.2 32.0 85.3 47.1

L-14 OpenAI 3328.4 400.0 75.5 78.9 74.5 15.2 12.0 62.9 –
L-14 DataComp-1B 3338.6 1400.0 79.2 82.1 78.4 23.6 21.1 85.5 –
L-14 DFN-2B 3338.6 2000.0 81.4 83.7 80.9 24.1 21.6 86.5 –
H-14 DFN-5B 22164.0 5000.0 83.4 85.4 83.2 31.4 25.1 88.1 –

B-32 DataComp-1B (Base model) 295.4 1400.0 69.2 71.2 69.1 16.7 12.6 73.8 –
B-32 ⋆ EntityNet 13.3 32.7 69.5 73.6 67.8 41.5 29.5 83.3 –
B-32 ⋆ EntityNet (only living organisms) 4.2 10.2 48.2 76.3 30.9 49.3 37.0 87.0 –

B-16 DataComp-1B (Base model) 791.4 1400.0 73.5 75.9 73.2 19.5 15.3 79.0 –
B-16 ⋆ EntityNet 36.1 32.7 73.5 78.1 71.5 46.7 34.9 86.5 –
B-16 ⋆ EntityNet (only living organisms) 11.3 10.2 51.4 80.2 33.8 54.3 42.7 90.3 –

B-32 EntityNet Everything 13.1 32.7 61.5 68.5 57.9 38.3 26.1 79.5 42.7
B-32 EntityNet (no living organisms) 9.0 22.5 39.2 17.5 56.1 1.7 0.8 6.2 6.9
B-32 EntityNet (only living organisms) 4.1 10.2 36.0 68.5 15.4 41.4 28.6 83.2 42.0
B-32 EntityNet (no attribute queries) 8.7 21.8 54.8 63.0 50.4 36.4 25.6 79.7 39.2

B-32 EntityNet 50% alt text 13.1 32.7 61.5 68.5 57.9 38.3 26.1 79.5 42.7
B-32 EntityNet 100% alt text 13.1 32.7 59.1 66.5 55.4 36.4 22.9 78.8 39.7
B-32 EntityNet 0% alt text 13.1 32.7 55.7 64.4 51.5 35.4 24.2 78.1 29.7

B-32 EntityNet Full size 13.1 32.7 61.5 68.5 57.9 38.3 26.1 79.5 42.7
B-32 EntityNet 1/2 size 6.6 16.4 54.1 61.5 50.5 30.7 20.1 74.1 36.6
B-32 EntityNet 1/4 size 3.3 8.2 45.2 52.4 41.8 23.4 13.2 64.9 28.0
B-32 EntityNet 1/8 size 1.6 4.1 33.3 39.6 30.5 14.5 7.3 47.8 19.4
B-32 EntityNet 1/16 size 0.8 2.0 19.9 25.0 18.1 7.6 2.8 27.4 11.8

B-32 EntityNet batch size 2,048 13.1 32.7 59.7 65.4 57.2 31.5 21.0 74.1 38.7
B-32 EntityNet batch size 4,096 13.1 32.7 60.9 67.0 58.0 36.2 24.1 77.6 41.0
B-32 EntityNet batch size 8,192 13.1 32.7 61.5 68.5 57.9 38.3 26.1 79.5 42.7
B-32 EntityNet batch size 16,384 13.2 32.7 60.5 68.2 56.6 38.8 26.9 81.2 42.1
B-32 EntityNet batch size 32,768 13.3 32.7 58.6 67.0 54.2 39.5 26.3 81.3 41.7
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Table 8. Detailed retrieval results. The table is grouped into training from scratch, finetuning, and analyzing components, the groups are
separated by double horizontal lines. Each part is again split by single horizontal lines into groups of same model size or same component
analysis. Models marked with ⋆ are finetuned. We mark the best and second best result. To measure training cost, we calculate the total
MACs (multiply–accumulate operations) performed during training.

Arch. Dataset MACs Images in Retrieval COCO test F30K test XM3600 test
(1e18) dataset Average I2T T2I I2T T2I I2T T2I

B-32 CC12M 3.7 9.3 25.6 22.4 15.2 37.2 27.1 26.1 25.5
B-32 CommonPool-M 2.9 128.0 20.2 18.3 11.2 29.9 18.9 23.6 19.6
B-32 DataComp-M 2.9 14.0 19.5 17.1 11.0 26.0 18.0 23.6 21.5
B-32 OpenAI 288.6 400.0 49.6 50.1 30.5 77.5 58.8 43.4 37.2
B-32 DataComp-1B 295.4 1400.0 54.0 53.5 37.1 78.8 61.1 48.3 45.3

B-32 EntityNet 13.1 32.7 37.2 32.8 22.2 52.3 37.8 40.6 37.3

B-16 ⋆ BioCLIP TreeOfLife-10M 61.3 10.4 0.8 0.4 0.2 0.9 0.6 1.8 1.1
B-16 CommonPool-L 78.2 1280.0 45.6 44.4 28.8 68.3 51.0 42.1 39.2
B-16 DataComp-L 78.2 140.0 49.4 48.7 32.2 73.5 55.1 44.7 42.1
B-16 DataComp-1B 791.4 1400.0 57.4 57.5 40.2 84.9 67.3 47.9 46.5
B-16 OpenAI 784.6 400.0 52.1 52.5 33.1 81.9 62.0 43.8 39.3

B-16 EntityNet 36.0 32.7 39.8 36.0 25.2 57.1 43.3 39.9 37.1

L-14 OpenAI 3328.4 400.0 54.3 56.3 36.5 85.1 65.2 44.5 38.4
L-14 DataComp-1B 3338.6 1400.0 61.8 63.2 45.8 89.5 73.4 50.4 48.6
L-14 DFN-2B 3338.6 2000.0 64.2 65.7 48.6 89.6 75.3 53.6 52.7
H-14 DFN-5B 22164.0 5000.0 68.7 72.3 53.9 93.0 80.2 57.6 55.4

B-32 DataComp-1B (Base model) 295.4 1400.0 54.0 53.5 37.1 78.8 61.1 48.3 45.3
B-32 ⋆ EntityNet 13.3 32.7 50.8 48.1 34.4 72.1 57.1 47.8 45.6
B-32 ⋆ EntityNet (only living organisms) 4.2 10.2 31.2 28.0 19.7 44.8 33.7 30.9 29.9

B-16 DataComp-1B (Base model) 791.4 1400.0 57.4 57.5 40.2 84.9 67.3 47.9 46.5
B-16 ⋆ EntityNet 36.1 32.7 52.2 50.4 36.4 75.6 59.4 47.3 44.3
B-16 ⋆ EntityNet (only living organisms) 11.3 10.2 34.8 31.8 22.8 51.7 37.1 33.5 32.0

B-32 EntityNet Everything 13.1 32.7 37.2 32.8 22.2 52.3 37.8 40.6 37.3
B-32 EntityNet (no living organisms) 9.0 22.5 32.1 28.6 18.7 46.3 33.6 33.2 32.3
B-32 EntityNet (only living organisms) 4.1 10.2 16.5 12.8 9.8 23.4 15.3 19.0 18.6
B-32 EntityNet (no attribute queries) 8.7 21.8 28.6 23.6 16.1 41.3 27.3 32.3 30.8

B-32 EntityNet 50% alt text 13.1 32.7 37.2 32.8 22.2 52.3 37.8 40.6 37.3
B-32 EntityNet 100% alt text 13.1 32.7 38.3 35.2 23.2 53.4 39.8 40.5 38.0
B-32 EntityNet 0% alt text 13.1 32.7 13.5 8.7 6.1 19.2 11.7 18.3 17.0

B-32 EntityNet Full size 13.1 32.7 37.2 32.8 22.2 52.3 37.8 40.6 37.3
B-32 EntityNet 1/2 size 6.6 16.4 30.3 27.0 17.6 42.7 29.7 33.3 31.6
B-32 EntityNet 1/4 size 3.3 8.2 23.5 19.5 13.0 31.1 22.9 27.6 27.2
B-32 EntityNet 1/8 size 1.6 4.1 16.6 12.8 8.7 20.7 14.2 21.9 20.9
B-32 EntityNet 1/16 size 0.8 2.0 9.4 7.1 5.0 10.0 7.1 13.9 13.5

B-32 EntityNet batch size 2,048 13.1 32.7 35.6 30.8 20.9 50.2 37.2 38.2 36.4
B-32 EntityNet batch size 4,096 13.1 32.7 36.4 31.6 22.1 51.7 37.0 39.1 37.2
B-32 EntityNet batch size 8,192 13.1 32.7 37.2 32.8 22.2 52.3 37.8 40.6 37.3
B-32 EntityNet batch size 16,384 13.2 32.7 35.8 32.2 21.8 50.5 36.9 37.2 36.1
B-32 EntityNet batch size 32,768 13.3 32.7 34.5 31.0 20.8 48.9 34.5 36.2 35.3
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Table 9. Detailed results on ImageNet distribution shifts. The table is grouped into training from scratch, finetuning, and analyzing
components, the groups are separated by double horizontal lines. Each part is again split by single horizontal lines into groups of same
model size or same component analysis. Models marked with ⋆ are finetuned. We mark the best and second best result. To measure
training cost, we calculate the total MACs (multiply–accumulate operations) performed during training. INet: ImageNet.

Arch. Dataset MACs Images in INet Ave- INet INet Object- INet INet
(1e18) dataset (M) 1K rage V2 R Net Sketch A

# Classes → 1,000 – 1000 200 1000 1000 200

B-32 CC12M 3.7 9.3 28.6 18.3 24.2 34.5 12.1 16.0 4.7
B-32 CommonPool-M 2.9 128.0 27.2 19.8 22.5 33.0 20.9 18.4 4.3
B-32 DataComp-M 2.9 14.0 29.7 20.5 24.4 34.0 19.7 19.3 4.9
B-32 OpenAI 288.6 400.0 63.4 48.7 56.0 69.4 44.2 42.3 31.5
B-32 DataComp-1B 295.4 1400.0 69.2 56.3 60.8 78.2 55.2 56.8 30.5

B-32 EntityNet 13.1 32.7 61.5 41.0 53.6 58.8 32.6 45.0 14.9

B-16 ⋆ BioCLIP TreeOfLife-10M 61.3 10.4 18.6 15.4 17.7 16.0 3.2 7.3 32.9
B-16 CommonPool-L 78.2 1280.0 57.8 47.0 50.0 68.4 49.1 45.9 21.7
B-16 DataComp-L 78.2 140.0 63.1 51.1 55.2 71.8 53.1 49.7 25.5
B-16 DataComp-1B 791.4 1400.0 73.5 64.4 66.0 83.6 63.7 60.4 48.4
B-16 OpenAI 784.6 400.0 68.3 58.6 61.9 77.7 55.3 48.2 49.9

B-16 EntityNet 36.0 32.7 66.2 47.4 59.2 64.1 40.9 48.9 23.9

L-14 OpenAI 3328.4 400.0 75.5 71.4 69.9 87.9 69.0 59.6 70.7
L-14 DataComp-1B 3338.6 1400.0 79.2 74.9 72.0 90.8 74.3 68.0 69.6
L-14 DFN-2B 3338.6 2000.0 81.4 74.8 74.6 90.0 74.1 68.3 66.8
H-14 DFN-5B 22164.0 5000.0 83.4 76.3 77.4 93.0 68.4 72.8 69.9

B-32 DataComp-1B (Base model) 295.4 1400.0 69.2 56.3 60.8 78.2 55.2 56.8 30.5
B-32 ⋆ EntityNet 13.3 32.7 69.5 53.3 61.9 74.2 47.9 56.8 25.6
B-32 ⋆ EntityNet (only living organisms) 4.2 10.2 48.2 33.3 43.1 56.7 19.1 32.1 15.8

B-16 DataComp-1B (Base model) 791.4 1400.0 73.5 64.4 66.0 83.6 63.7 60.4 48.4
B-16 ⋆ EntityNet 36.1 32.7 73.5 61.0 66.5 79.0 56.6 59.8 42.9
B-16 ⋆ EntityNet (only living organisms) 11.3 10.2 51.4 39.2 46.1 62.1 25.9 35.1 26.8

B-32 EntityNet Everything 13.1 32.7 61.5 41.0 53.6 58.8 32.6 45.0 14.9
B-32 EntityNet (no living organisms) 9.0 22.5 39.2 28.0 33.6 37.7 29.1 32.0 7.5
B-32 EntityNet (only living organisms) 4.1 10.2 36.0 21.0 31.5 39.6 8.1 17.6 8.1
B-32 EntityNet (no attribute queries) 8.7 21.8 54.8 33.8 47.9 49.2 24.4 36.9 10.5

B-32 EntityNet 50% alt text 13.1 32.7 61.5 41.0 53.6 58.8 32.6 45.0 14.9
B-32 EntityNet 100% alt text 13.1 32.7 59.1 38.1 51.1 55.6 30.1 40.8 13.1
B-32 EntityNet 0% alt text 13.1 32.7 55.7 35.5 48.0 53.0 27.1 36.8 12.4

B-32 EntityNet Full size 13.1 32.7 61.5 41.0 53.6 58.8 32.6 45.0 14.9
B-32 EntityNet 1/2 size 6.6 16.4 54.1 33.6 47.2 51.0 24.4 36.5 8.9
B-32 EntityNet 1/4 size 3.3 8.2 45.2 25.7 39.1 39.9 18.1 25.6 5.9
B-32 EntityNet 1/8 size 1.6 4.1 33.3 17.7 28.5 28.7 12.0 15.3 4.2
B-32 EntityNet 1/16 size 0.8 2.0 19.9 10.0 17.2 17.6 6.8 5.7 2.8

B-32 EntityNet batch size 2,048 13.1 32.7 59.7 40.4 52.5 59.4 31.3 44.5 14.4
B-32 EntityNet batch size 4,096 13.1 32.7 60.9 41.0 53.0 60.0 32.1 44.9 14.9
B-32 EntityNet batch size 8,192 13.1 32.7 61.5 41.0 53.6 58.8 32.6 45.0 14.9
B-32 EntityNet batch size 16,384 13.2 32.7 60.5 39.7 53.2 58.0 30.6 42.9 13.8
B-32 EntityNet batch size 32,768 13.3 32.7 58.6 37.2 51.3 54.6 27.9 40.6 11.6
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Entity + attribute
running polecat

A wonderful polecat in its woodland surroundings

Polecats Unveiled: Sleek Predators in the Countryside
(Mustela Putorius) - Glenlivet Wildlife

Polecats Unveiled: Sleek Predators in the Countryside
(Mustela Putorius)

Black Polecat Photos and Premium High Res Pictures - Getty
Images

Do Cats Eat Ferrets – What You Should Know! –
FAQcats.com

Do Cats Eat Ferrets – What You Should Know!

Entity + attribute
summer Canada goose

Canada Geese Goose Branta - Free photo on Pixabay -
Pixabay

Canada Geese Goose Branta · Free photo on Pixabay

Facts about geese

Canada Geese Goose Branta Free Photo On Pixabay Pixabay,
45% OFF

Entity + attribute
wild tortoise

Greek Tortoise Testudo Graeca Hiding Shell Stock Photo
1425661328 | Shutterstock

Elongated Tortoise Indotestudo Elongata Yellow Tortoise
Stock Photo 1463951543 | Shutterstock

Entity
Orbea decaisneana

Orbea decaisneana subs. hesperidum f. cristata

Entity + attribute
old walrus

What Is A Walrus?

What is a Walrus - Walrus Habitat and Behavior - Wild Focus
Expeditions

Portrait of an old bull walrus resting on his teeth, tooth walker

Figure 4. Randomly sampled images from the EntityNet living subset together with query type, search query, and alt texts (separated by
new lines).
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Entity
Junı́n red squirrel

Curious Eurasian Red Squirrel, Sciurus Vulgaris, Running and
Jumping . . .

Entity
chile pine

Araucaria araucana - Wikipedia

Araucaria araucana - Wikipedia, la enciclopedia libre

Araucaria araucana - Wikipedia | Trees to plant, Denver
botanic gardens ...

a tall tree in the middle of a forest

Araucaria araucana - Wikipedia | Denver botanic gardens, Out-
door plants ...

Monkey Puzzle Plant main

Monkey Puzzle Plant Care & Growing Basics: Water, Light,
Soil, Propagation etc.

Entity
Cedronella canariensis

Cedronella canariensis

Entity
Barbuda Warbler

In the face of elite tourism projects, the Barbuda Warbler isn’t
the only one that might lose its home

Barbuda Warbler - Setophaga subita - Birds of the World / -
Barbuda Warbler

Natural type + attribute
long neck animal

The Strange Elegance of the Giraffe-Necked Antelope | The
Ark In Space

Figure 5. Randomly sampled images from the EntityNet living subset together with query type, search query, and alt texts (separated by
new lines).
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Natural type + attribute
carpaccio with lemon

Tuna Carpaccio with Fennel and Lemon Recipe - Great
British Chefs

Tuna carpaccio with fennel and lemon

Natural type + attribute
index finger nail

A Macro Of Index Finger Nail Stock Footage
SBV-301021776 - Storyblocks

Entity
akaogiite

Akaogiite Cut Out Stock Images

Entity
public bookcase

manufacta est: public bookcase

Entity
BK 117

Eurocopter-Kawasaki BK-117B-2 - DRF - Deutsche
Rettungsflugwacht | Aviation Photo #1053819 | Airliners.net

Eurocopter-Kawasaki BK-117B-2 - DRF - Deutsche
Rettungsflugwacht

Figure 6. Randomly sampled images from the EntityNet non-living subset together with query type, search query, and alt texts (separated
by new lines).
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Entity
cowboy boots

Ariat Heritage Rough Stock Cowboy Boots - Square Toe -
Country Outfitter

Entity + attribute
nacre jewelry

Genuine Nacre Necklace Pearl Jewelry Mother Of Pearls
Beads | Etsy

Entity + attribute
small artificial pond

Small backyard pond decoration. Artificial pond in garden.
Pool aquatic plants. Pond border decoration. photo

Small backyard pond decoration. Artificial pond in garden.
Pool aquatic plants. Pond border decoration.

Small backyard pond decoration. Artificial pond in garden.
Pool aquatic plants. Pond border decoration. 9562060 Stock
Photo at Vecteezy

Small backyard pond decoration. Artificial pond in garden.
Pool aquatic plants. Pond border decoration. Free Photo

Entity + attribute
berimbau at rest

Premium AI Image | Best Berimbau With Handle Isolated On
White Background

Entity + attribute
assembled motherboard

Red Team rocking: Build the ultimate AMD gaming PC |
PCWorld

amd fx cpu

Figure 7. Randomly sampled images from the EntityNet non-living subset together with query type, search query, and alt texts (separated
by new lines).
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Table 10. Example of our text label sampling strategy for an image returned from the entity query of zipper. Probability mass is split 50/50
between image alt texts and texts from the knowledge graph. Between alt texts, we chose uniformly. Between knowledge graph texts we
chose the search query 25% of the time, a description 10% of the time (uniformly between descriptions), and an alias otherwise (uniformly
between all aliases).

Text Chance Source

Zipper PNG 25% Alt text
yellow zipper PNG image 25% Alt text

zipper 12.5% Search query
zip 5.5% Alias
dingy 5.5% Alias
clasp locker 5.5% Alias
fly 5.5% Alias
zip fastener 5.5% Alias
device for fastening the edges of an opening of fabric or other
flexible material

2.5% Description

A device used for fastening, typically made of physical material. 2.5% Description

Table 11. Hyperparameters used for training and finetuning.

Dataset Model Batch Size Max LR
Weight
Decay

Epochs
Warmup
(epochs)

eps Beta 1 Beta 2

CC12M ViT-B/32 8k 5e-4 0.2 18 2 1e-8 0.9 0.98
CC12M ViT-B/16 8k 5e-4 0.2 18 2 1e-8 0.9 0.98
Ours ViT-B/32 8k 5e-4 0.2 18 2 1e-8 0.9 0.98
Ours ViT-B/16 8k 5e-4 0.2 18 2 1e-8 0.9 0.98
Ours, finetuning ViT-B/32 32k 5e-5 0.2 18 2 1e-8 0.9 0.98
Ours, finetuning ViT-B/16 32k 5e-5 0.2 18 2 1e-8 0.9 0.98
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PREFIX wdt: <http://www.wikidata.org/prop/direct/>

PREFIX wd: <http://www.wikidata.org/entity/>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX schema: <http://schema.org/>

PREFIX wikibase: <http://wikiba.se/ontology#>

PREFIX skos: <http://www.w3.org/2004/02/skos/core#>

SELECT DISTINCT

?ent

?label

?desc

?links

(GROUP_CONCAT(DISTINCT ?alias; SEPARATOR=";;;") AS ?aliases)

WHERE {

VALUES ?typ { wd:Q42889 }

?ent wdt:P279* ?typ .

?ent rdfs:label ?label .

FILTER(LANG(?label) = "en")

?ent ^schema:about/wikibase:sitelinks ?links .

FILTER(?links >= 5)

OPTIONAL {

?ent schema:description ?desc .

FILTER(LANG(?desc) = "en")

}

OPTIONAL {

?ent skos:altLabel ?alias .

FILTER(LANG(?alias) = "en")

}

}

GROUP BY ?ent ?label ?desc ?links

ORDER BY DESC(?links)

Figure 8. Generic SPARQL query for extracting entities from Wikidata that are related to a given set of super-entities. The super-entities
are manually set within the VALUES ?typ { ... } clause. In this example it is the motor car entity wd:Q42889. A minimum number of
sitelinks can also be specified to filter out unpopular entities, here it is set to 5.
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Table 12. Vehicle entities and accompanying information as extracted from the Wikidata knowledge graph. Showing the first 5 and last 5
out of 17,015 entities. Note that we only collect entities with sitelinks ≥ 5. The corresponding SPARQL query is shown in Figure 8.

Identifier Name Description Sitelinks Aliases

Q1420 motor car motorized road vehicle
designed to carry one to eight
people rather than primarily
goods

237 auto / motor vehicle / motor cars /
motorcar / cars / car / automobiles /
automobile / autocar

Q11442 bicycle pedal-driven two-wheel vehicle 203 bike / Bicycles / cycle / pushbike /
pedal cycle / pedal bike

Q197 airplane powered fixed-wing aircraft 196 airplane, aeroplane, plane / powered
fixed-wing aircraft / planes / plane /
aeroplane / fixed-wing powered
aircraft / fixed-wing airplane /
aeroplanes / fixed-wing aeroplane /
airplanes

Q870 train form of rail transport consisting
of a series of connected
vehicles

193 rail-train / trains / railway train /
railtrain / rail train / railroad train

Q11446 ship large buoyant watercraft 178 marine vessel / vessel / water vessel /
ships

Q813876 Bedford JJL motor vehicle 5
Q7077241 Odakyu 20000

series RSE
Japanese electric multiple unit
trainset

5 RSE / Romancecar RSE / Resort Super
Express / Odakyu Romancecar RSE /
20000 series

Q812263 Bavarian Pt 2/3 class of 97 German 2-4-0T
locomotives

5 ÖBB 770 / DR Class 70.0 / DRG Class
70.0

Q9177196 Bombardier
CRJ1000

regional jet airliner 5 CRJ1000

Q812260 Bavarian PtL 2/2 class of 6+29+13 German
0-4-0T locomotives

5 DB Class 98.3 / DRG Class 98.3 /
ÖBB 688
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Table 13. The super-entities for building our EntityNet dataset to describe the visual world. The aliases column refers to the set of all
aliases collected from the entities. The numbers in this table are slightly higher than the ones we report in the main paper, because they
refer to the raw counts of entities and aliases before profanity filtering and the removal of entities that return no results in the image search.

Super-entity Description Examples Entities Aliases

product Anything that can be offered to a market banh mi, navigation system, PlaySta-
tion 2

63,676 144,715

substance Any composed matter whose origin is either biolog-
ical, chemical, or mineral

solid lubricant, Chinese tea, eye cups 34,259 111,383

physical tool Physical item that can be used to achieve a goal Patient lift, police transport, instant
camera

32,727 71,227

animal Kingdom of multicellular eukaryotic organisms saw-scaled viper, Sporathraupis
cyanocephala, Rufous mouse-eared
bat

28,000 76,408

plant Living thing in the kingdom of photosynthetic eu-
karyotes

Whitebark Pine, Eucalyptus coc-
cifera, wig knapweed

28,000 55,925

material Substance that can occur in different amounts, all
with some similar [mixture of some] characteristics,
and with which objects can be made

dietary proteins, stone slab tomb, saf-
flower oil

18,021 40,822

vehicle Mobile machine used for transport, whether it has
an engine or not, including wheeled and tracked ve-
hicles, air-, water-, and space-craft

shipwrecks (objects), Evergreen A-
class container ship, VTOL aircraft

17,015 37,849

geographical feature Components of planets that can be geographically
located

hydrothermal Vents, grooves, street
lamp

8,683 19,030

food Any substance consumed to provide nutritional sup-
port for the body; form of energy stored in chemical

coffee milk, tikka, Friesian Clove 8,464 15,332

architectural structure Human-designed and -made structure rock temples, summerhouse, house of
worship

4,507 10,354

anatomical structure Entity with a single connected inherent 3d shape
that’s created by coordinated expression of the or-
ganism’s own dna

bronchi, maxillary wisdom tooth, tur-
tle shell

4,394 9,999

facility Place, equipment, or service to support a specific
function

public toilet, automobile servicing
shop, industrial park

2,767 6,740

physical activity Human physical activity consisting of voluntary
bodily movement by skeletal muscles

American rules football, archery,
water-skiing

2,228 4,422

clothing Covering worn on the body blucher shoe, G-suit, one-piece swim-
suit

1,929 4,313

building Structure, typically with a roof and walls, standing
more or less permanently in one place

shoestore, family restaurant, factory
outlet

1,655 3,964

musical instrument Device created or adapted to make musical sounds electroencephalophone, Chinese
flutes, oboe

1,450 3,493

organ Collection of tissues with similar functions nasal bone, cranial nerves, ulnar col-
lateral ligament of elbow

1,155 2,450

furniture Movable objects used to equip households, offices,
or shops for purposes such as storage, seating, sleep-
ing

faldstool, airline seat, bicycle parking
rack

388 933

body of water Any significant accumulation of water, generally on
a planet’s surface

dammed lake, deep-sea hydrothermal
vent, marshland

379 792

weather State of the atmosphere cold snap, tropical cyclone, sea of fog 151 304

precipitation Liquid or solid water that falls to the ground hail, thunderstorm, snowfall 43 72

Total Before deduplication 259,891 620,527

Total After deduplication 146,985 368,062

Total After deduplication, without animals and plants 90,985 235,795
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Table 14. We consider these super-entities either non-visual, irrelevant, or too specific and do not select related entities when building our
dataset.

Super-entity Description

abstract entity entity that does not have a physical existence, including abstract objects and properties

astronomical object physical body of astronomically-significant size, mass, or role, naturally occurring in a universe

city large human settlement

concept semantic unit understood in different ways, e.g. as mental representation, ability or abstract
object (philosophy)

continent large landmass identified by convention

country distinct territorial body or political entity

historical event particular incident in history that brings about a historical change

history past events and their tracks or records

imaginary character character known only from narrations (fictional or in a factual manner) without a proof of exis-
tence; includes fictional, mythical, legendary or religious characters and similar

language particular system of communication, often named for the region or peoples that use it

language structured system of communication

medical procedure process of medicine done to heal; course of action intended to achieve a result in the delivery of
healthcare

organization social entity established to meet needs or pursue goals

planet celestial body directly orbiting a star or stellar remnant

religion social-cultural system

representation entity or process that portrays something else, usually in a simplified or approximated manner

role social role with a set of powers and responsibilities within an organization

science systematic endeavor that builds and organizes knowledge, and the set of knowledge produced
by this system

social system patterned series of interrelationships existing between individuals, groups, and institutions

speciality field limited to a specific area of knowledge; specialization in an occupation or branch of learn-
ing; a specific use

star astronomical object consisting of a luminous spheroid of plasma held together by its own gravity

temporal entity thing that can be contained within a period of time, or change in state (e.g. events, periods, acts)

work of art aesthetic item or artistic creation; object whose value is its beauty only, not practical usefulness

written work any work expressed in writing, such as inscriptions, manuscripts, documents or maps

23


	Introduction
	Related work
	Dataset creation
	Entity extraction
	Attribute generation
	Query building
	Image search and filtering

	Experimental setup
	Training
	Evaluated models
	Object classification evaluation
	Retrieval evaluation

	Results
	Limitations
	Conclusions
	Detailed results
	Qualitative examples of our dataset
	Hyperparameter settings
	Image Search APIs
	Querying entities with SPARQL



