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ABSTRACT

Climate change is increasing the intensity and frequency of many extreme weather
events, including heatwaves, which results in increased thermal discomfort and
mortality rates. While global mitigation action is undoubtedly necessary, so is
climate adaptation, e.g., through climate-sensitive urban planning. Among the
most promising strategies is harnessing the benefits of urban trees in shading and
cooling pedestrian-level environments. Our work investigates the challenge of op-
timal placement of such trees. Physical simulations can estimate the radiative and
thermal impact of trees on human thermal comfort but induce high computational
costs. This rules out optimization of tree placements over large areas and con-
sidering effects over longer time scales. Hence, we employ neural networks to
simulate the point-wise mean radiant temperatures–a driving factor of outdoor hu-
man thermal comfort–across various time scales, spanning from daily variations to
extended time scales of heatwave events and even decades. To optimize tree place-
ments, we harness the innate local effect of trees within the iterated local search
framework with tailored adaptations. We show the efficacy of our approach across
a wide spectrum of study areas and time scales. We believe that our approach is a
step towards empowering decision-makers, urban designers and planners to proac-
tively and effectively assess the potential of urban trees to mitigate heat stress.

1 INTRODUCTION

Climate change will have profound implications on many aspects of our lives, ranging from the
quality of outdoor environments and biodiversity, to the safety and well-being of the human populace
(United Nations, 2023). Particularly noteworthy is the observation that densely populated urban
regions, typically characterized by high levels of built and sealed surfaces, face an elevated exposure
and vulnerability to heat stress, which in turn raises the risk of mortality during heatwaves (Gabriel
& Endlicher, 2011). The mean radiant temperature (Tmrt, °C) is one of the main factors affecting
daytime outdoor human thermal comfort (Holst & Mayer, 2011; Kántor & Unger, 2011; Cohen
et al., 2012).1 High Tmrt can negatively affect human health (Mayer et al., 2008) and Tmrt has
a higher correlation with mortality than air temperature (Thorsson et al., 2014). Consequently,
climate-sensitive urban planning should try to lower maximum Tmrt as a suitable climate adaption
strategy to enhance (or at least maintain) current levels of outdoor human thermal comfort.

Among the array of climate adaption strategies considered for mitigation of adverse urban thermal
conditions, urban greening, specifically urban trees, have garnered significant attention due to their
numerous benefits, including a reduction of Tmrt, transpirative cooling, air quality (Nowak et al.,
2006), and aesthetic appeal (Lindemann-Matthies & Brieger, 2016). Empirical findings from phys-
ical models have affirmed the efficacy of urban tree canopies in improving pedestrian-level outdoor
human thermal comfort in cities (De Abreu-Harbich et al., 2015; Lee et al., 2016; Chàfer et al.,
2022). In particular, previous studies found the strong influence of tree positions (Zhao et al., 2018;
Abdi et al., 2020; Lee et al., 2020). Correspondingly, other work has studied the optimization of tree
placements, deploying a wide spectrum of algorithms, such as evolutionary, greedy, or hill climbing

1Tmrt is introduced in more detail in Appendix A.
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(a) Hottest day in 2020.
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(b) Hottest week in 2020 (heatwave condition).

0 200 400

0

200

400

city-center

0 200 400

new r.a.

0 200 400

medium-age r.a.

0 200 400

old r.a.

0 200 400

industrial

−4

0

4 ∆
T

m
rt

[K
]

(c) year 2020.
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(d) decade from 2011 to 2020.

Figure 1: Optimizing tree placements can substantially reduce point-wise Tmrt, e.g., during heat-
waves, leading to improved outdoor human thermal comfort. Optimized placements of 50 added
trees (green crosses), each with a height of 12m and crown diameter of 9m, for the hottest day
(1(a)) and week in 2020 (1(b), the entire year 2020 (1(c)), and the entire decade from 2011 to
2020 (1(d)) across diverse urban neighborhoods (from left to right: city-center, recently devel-
oped new r.a. (residential area), medium-age r.a., old r.a., industrial area).

algorithms (Chen et al., 2008; Ooka et al., 2008; Zhao et al., 2017; Stojakovic et al., 2020; Wallen-
berg et al., 2022). However, these works were limited by the computational cost of physical models,
which rendered the optimization of tree placements over large areas or long time scales infeasible.

Recently, there has been increased interest in applications of machine learning in climate science
(Rolnick et al., 2022). For example, Briegel et al. (2023) and Huang & Hoefler (2023) improved
the computational efficiency of modeling and data access, respectively. Other works sought to raise
awareness (Schmidt et al., 2022), studied the perceptual response to urban appearance (Dubey et al.,
2016), or harnessed machine learning as a means to augment analytical capabilities in climate sci-
ence (e.g., Albert et al. (2017); Blanchard et al. (2022); Teng et al. (2023); Otness et al. (2023)).
Besides these, several works used generative image models or reinforcement learning for urban
planning, e.g., land-use layout (Shen et al., 2020; Wang et al., 2020; 2021; 2023; Zheng et al.,
2023). Our work deviates from these prior works, as it directly optimizes a meteorological quantity
(Tmrt) that correlates well with heat stress experienced by humans (outdoor human thermal comfort).

In this work, we present a simple, scalable yet effective optimization approach for positioning trees
in urban environments to facilitate proactive climate-sensitive planning to adapt to climate change in
cities.2 We harness the iterated local search framework (Lourenço et al., 2003; 2019) with tailored

2Code is available at https://github.com/lmb-freiburg/tree-planting.
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adaptations. This allows us to efficiently explore the solution space by leveraging the inherently
local influence of individual trees to iteratively refine their placements. We initialize the search with
a simple greedy heuristic. Subsequently, we alternately perturb the current best tree placements with
a genetic algorithm (Srinivas & Patnaik, 1994) and refine them with a hill climbing algorithm.

To facilitate fast optimization, we use a U-Net (Ronneberger et al., 2015) as a computational shortcut
to model point-wise Tmrt from spatio-temporal input data, inspired by Briegel et al. (2023). However,
the computational burden for computing aggregated, point-wise TM,ϕ

mrt with aggregation function ϕ,
e.g., mean, over long time periods M with |M |meteorological (temporal) inputs is formidable, since
we would need to predict point-wise Tmrt for all meteorological inputs and then aggregate them. To
overcome this, we propose to instead learn a U-Net model that directly estimates the aggregated,
point-wise TM,ϕ

mrt , effectively reducing computational complexity by a factor of O(|M |). Lastly,
we account for changes in the vegetation caused by the positioning of the trees, represented in the
digital surface model for vegetation, by updating depending spatial inputs, such as the sky view
factor maps for vegetation. Since conventional protocols are computationally intensive, we learn an
U-Net to estimate the sky view factor maps from the digital surface model for vegetation.

Our evaluation shows the efficacy of our optimization of tree placements as a means to improve
outdoor human thermal comfort by decreasing point-wise Tmrt over various time periods and study
areas, e.g., see Figure 1. The direct estimation of aggregated, point-wise TM,ϕ

mrt yields substantial
speed-ups by up to 400,000x. This allows for optimization over extended time scales, including fac-
tors such as seasonal dynamics, within large neighborhoods (500m x 500m at a spatial resolution of
1m). Further, we find that trees’ efficacy is affected by both daily and seasonal variation, suggesting
a dual influence. In an experiment optimizing the placements of existing trees, we found that alterna-
tive tree placements would have reduced the total number of hours with Tmrt >60 ◦C–a recognized
threshold for heat stress (Lee et al., 2013; Thorsson et al., 2017)–during a heatwave event by a sub-
stantial 19.7%. Collectively, our results highlight the potential of our method for climate-sensitive
urban planning to empower decision-makers in effectively adapting cities to climate change.

2 DATA

Our study focuses on the city of Freiburg im Breisgau (48°00’ N, 07°51’ E, southwest of Ger-
many, Baden-Württemberg). Following Briegel et al. (2023), we used spatial (geometric) and tem-
poral (meteorological) inputs to model point-wise Tmrt. The spatial inputs include: digital elevation
model; digital surface models with heights of ground and buildings, as well as vegetation; land cover
class map; wall aspect and height; and sky view factor maps for buildings and vegetation. Spatial
inputs are of a size of 500m x 500m with a resolution of 1m. Raw LIDAR and building outline
(derived from CityGML with detail level of 1) data were provided by the City of Freiburg (2018;
2021) and pre-processed spatial data were provided by Briegel et al. (2023). We used air temper-
ature, wind speed, wind direction, incoming shortwave radiation, precipitation, relative humidity,
barometric pressure, solar elevation angle, and solar azimuth angle as temporally varying meteo-
rological inputs. We used past hourly measurements for training and hourly ERA5 reanalysis data
(Hersbach et al., 2020) for optimization. Appendix B provides more details and examples.

3 METHODS

We consider a function fTmrt(s, m) to model point-wise Tmrt∈ Rh×w of a spatial resolution of
h × w. It can be either a physical or machine learning model and operates on a composite input
space of spatial s = [sv, s¬v] ∈ R|S|×h×w and meteorological inputs m ∈M from time period M ,
e.g., heatwave event. The spatial inputs S consist of vegetation-related sv (digital surface model for
vegetation, sky view factor maps induced by vegetation) and non-vegetation-related spatial inputs
s¬v (digital surface model for buildings, digital elevation model, land cover class map, wall aspect
and height, sky view factor maps induced by buildings). Vegetation-related spatial inputs sv are
further induced by the positions Tp ∈ Nk×h×w and geometry tg of k trees by function fv(tp, tg).
During optimization we simply modify the digital surface model for vegetation and update depend-
ing spatial inputs accordingly (see Section 3.3). To enhance outdoor human thermal comfort, we
want to minimize the aggregated, point-wise TM,ϕ

mrt ∈ Rh×w for a given aggregation function ϕ, e.g.,

3
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Algorithm 1 Iterated local search to find the best tree positions.
1: Input: ∆T t

mrt, fTM,ϕ
mrt

, number of trees k, number of iterations I , local optima buffer size b

2: Output: best found tree s∗ in S∗
3: s∗ ← TopK(∆T t

mrt, k) # Initialization
4: for i = 1, . . . , I do
5: s′ ← PerturbationWithGA(S∗, ∆T t

mrt) # Perturbation
6: s′∗ ← HillClimbing(s′) # Local search
7: S∗ ← TopK({fTM,ϕ

mrt
(s)|s ∈ S∗ ∪ s′∗)}, b) # Acceptance criterion

8: end for

mean, and time period M by seeking the tree positions

t∗p ∈ argmin
t′p

ϕ({fTmrt([fv(t
′
p, tg), s¬v], m) | ∀m ∈M}) , (1)

in the urban landscape, where we keep tree geometry tg fixed for the sake of simplicity.

Numerous prior works (Chen et al., 2008; Ooka et al., 2008; Zhao et al., 2017; Stojakovic et al.,
2020; Wallenberg et al., 2022) have tackled above optimization problem. Nevertheless, these studies
were encumbered by formidable computational burdens caused by the computation of Tmrt with
conventional (slow) physical models, rendering them impractical for applications to more expansive
urban areas or extended time scales, e.g., multiple days of a heatwave event. In this work, we present
both an effective optimization method based on the iterated local search framework (Lourenço et al.,
2003; 2019) (Section 3.1, see Algorithm 1 for pseudocode), and a fast and scalable approach for
modeling Tmrt over long time periods (Sections 3.2 and 3.3, see Figure 2 for an illustration).

3.1 OPTIMIZATION OF TREE PLACEMENTS

To search tree placements, we adopted the iterated local search framework from Lourenço et al.
(2003; 2019) with tailored adaptations to leverage that the effectiveness of trees is bound to a local
neighborhood. The core principle of iterated local search is the iterative refinement of the current
local optimum through the alternation of perturbation and local search procedures. We initialize
the first local optimum by a simple greedy heuristic. Specifically, we compute the difference in
Tmrt (∆T t

mrt) resulting from the presence or absence of a single tree at every possible position on
the spatial grid. Subsequently, we greedily select the positions based on the maximal ∆T t

mrt (TopK).
During the iterative refinement, we perturb the current locally optimal tree position configurations
using a genetic algorithm (Srinivas & Patnaik, 1994) (PerturbationWithGA). The initial pop-
ulation of the genetic algorithm comprises the current best (local) optima–we keep track of the five
best optima–and randomly generated placements based on a sampling probability of

p∆T t
mrt

=
exp∆T t

mrti,j/τ∑
i,j

exp∆T t
mrti,j/τ

, (2)

where the temperature τ governs the entropy of p∆T t
mrt

. Subsequently, we refine all perturbed tree
positions from the genetic algorithm with the hill climbing algorithm (HillClimbing), similar
to Wallenberg et al. (2022). In particular, we repeatedly cycle over all trees of s′∗, try to move them
within the adjacent eight neighbors, and accept the move if it improves TM,ϕ

mrt . If the candidate
s′∗ improves upon our current optima S∗, we accept and add it to our history of local optima S∗.
Throughout the search, we ensure that trees are not placed on buildings nor water, and trees have no
overlapping canopies. Algorithm 1 provides pseudocode.

Theoretical analysis It is easy to show that our optimization method finds the optimal tree place-
ments given an unbounded number of iterations and sufficiently good Tmrt modeling.
Lemma 1 (p∆T t

mrti,j
> 0). The probability for all possible tree positions (i, j) is p∆T t

mrti,j
> 0.

Proof. Since the exponential function exp in Equation 2 is always positive, it follows that
p∆T t

mrti,j
> 0 and the denominator is always non-zero. Thus, the probabilities are well-defined.

4
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Figure 2: Overview of TM,ϕ
mrt modeling. To account for changes in vegetation during optimization,

we modify the digital surface model for vegetation (DSM.V) and update depending spatial inputs
(sky view factor maps for vegetation) with the model fsvf . The model fTM,ϕ

mrt
takes these updated

vegetation-related sv and non-vegetation-related spatial inputs s¬v to estimate the aggregated, point-
wise TM,ϕ

mrt for a given aggregation function ϕ, e.g., mean, and time period M , e.g., heatwave event.

Theorem 1 (Convergence to global optimum). Our optimization method (Algorithm 1) converges
to the globally optimal tree positions as (i) the number of iterations approaches infinity and (ii)
the estimates of our Tmrt modeling (Sections 3.2 and 3.3) are proportional to the true aggregated,
point-wise TM,ϕ

mrt for an aggregation function ϕ and time period M .

Proof. We are guaranteed to sample the globally optimal tree positions with an infinite budget (as-
sumption (i)), as the perturbation step in our optimization method (PerturbationWithGA) ran-
domly interleaves tree positions with positive probability (Lemma 1). Since our optimization method
directly compares the effectiveness of tree positions using our TM,ϕ

mrt modeling pipeline–that yields
estimates that are proportional to true TM,ϕ

mrt values (assumption (ii))–we will accept them throughout
all steps of our optimization method and, consequently, find the global optimum.

3.2 AGGREGATED, POINT-WISE MEAN RADIANT TEMPERATURE MODELING

Above optimization procedure is zero-order and, thus, requires fast evaluations of Tmrt to be com-
putationally feasible. Recently, Briegel et al. (2023) employed a U-Net (Ronneberger et al., 2015)
model fTmrt to estimate point-wise Tmrt for given spatial and meteorological inputs at a certain point
in time. They trained the model on data generated by the microscale (building-resolving) SOLWEIG
physical model (Lindberg et al., 2008) (refer to Appendix C for more details on SOLWEIG). How-
ever, our primary focus revolves around reducing aggregated, point-wise TM,ϕ

mrt for an aggregation
function ϕ, e.g., mean, and time period M , e.g., multiple days of a heatwave event. Thus, above
approach would require the computation of point-wise Tmrt for all |M | meteorological inputs of the
time period M , followed by the aggregation with function ϕ.3 However, this procedure becomes
prohibitively computationally expensive for large time periods.

To mitigate this computational bottleneck, we propose to learn a U-Net model

fTM,ϕ
mrt

(·) ≈ ϕ({fTmrt
(·,m) | ∀m ∈M}) (3)

that directly approximates aggregated, point-wise TM,ϕ
mrt for a given aggregation function ϕ and time

period M . For training data, we computed aggregated, point-wise TM,ϕ
mrt for a specified aggrega-

tion function ϕ and time period M with aforementioned (slow) procedure. However, note that this
computation has to be done only once for the generation of training data. During inference, the
computational complexity is effectively reduced by a factor of O(|M |).

3For sake of simplicity, we assumed that the spatial input is static over the entire time period.
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3.3 MAPPING OF TREE PLACEMENTS TO THE SPATIAL INPUTS

During our optimization procedure (Section 3.1), we optimize the placement of trees by directly
modifying the digital surface model for vegetation that represents the trees’ canopies. However,
depending spatial inputs (i.e., sky view factor maps for vegetation) cannot be directly modified and
conventional procedures are computationally expensive. Hence, we propose to estimate the sky view
factor maps from the digital surface model for vegetation with another U-Net model fsvf . To train
this model fsvf , we repurposed the conventionally computed sky view factor maps, that were already
required for computing point-wise Tmrt with SOLWEIG (Section 3.2).

4 EXPERIMENTAL EVALUATION

In this section, we evaluate our optimization approach for tree placements across diverse study areas
and time periods. We considered the following five study areas: city-center an old city-center,
new r.a. a recently developed residential area (r.a.) where the majority of buildings were built
in the last 5 years, medium-age r.a. a medium, primarily residential district built 25-35 years
ago, old r.a. an old building district where the majority of buildings are older than 100 years,
and industrial an industrial area. These areas vary considerably in their characteristics, e.g.,
existing amount of vegetation or proportion of sealed surfaces. Further, we considered the following
time periods M : hottest day (and week) in 2020 based on the (average of) maximum daily air
temperature, the entire year of 2020, and the decade from 2011 to 2020. While the first two
time periods focus on the most extreme heat stress events, the latter two provide assessment over
the course of longer time periods, including seasonal variations. We compared our approach with
random (positioning based on random chance), greedy Tmrt (maximal Tmrt), greedy ∆Tmrt
(maximal ∆Tmrt), and a genetic algorithm. We provide the hyperparameters of our optimization
method in Appendix D. Model and training details for Tmrt and TM,ϕ

mrt estimation are provided in
Appendix E. Throughout our experiments, we used the mean as aggregation function ϕ. While all
optimization algorithms used the faster direct estimation of aggregated, point-wise TM,ϕ

mrt with the
model fTM,ϕ

mrt
, we evaluated the final found tree placements by first predicting point-wise Tmrt for all

|M |meteorological inputs across the specified time period M with the model fTmrt
and subsequently

aggregated these estimations. To quantitatively assess the efficacy of tree placements, we quantified
the change in point-wise Tmrt (∆Tmrt [K]), averaged over the 500m x 500m study area (∆Tmrt area-1

[Km-2]), or averaged over the size of the canopy area (∆Tmrt canopy area-1 [Km-2]). We excluded
building footprints and open water areas from our evaluation criteria. Throughout our experiments,
we assumed that tree placements can be considered on both public and private property.

4.1 EVALUATION OF MEAN RADIANT TEMPERATURE MODELING

We first assessed the quality of our Tmrt and TM,ϕ
mrt modeling (Sections 3.2 and 3.3). Our model

for estimating point-wise Tmrt (fTmrt , Section 3.2) achieved a L1 error of 1.93K compared to the
point-wise Tmrt calculated by the physical model SOLWEIG (Lindberg et al., 2008). This regression
performance is in line with Briegel et al. (2023) who reported a L1 error of 2.4K. Next, we assessed
our proposed model fTM,ϕ

mrt
that estimates aggregated, point-wise TM,ϕ

mrt for aggregation function ϕ

(i.e., mean) over a specified time period M (Section 3.2). We found only a modest increase in L1
error by 0.46K (for time period M=day), 0.42K (week), 0.35K (year), and 0.18K (decade)
compared to first predicting point-wise Tmrt for all M meteorological inputs with model fTmrt and
then aggregating them. While model fTM,ϕ

mrt
is slightly worse in regression performance, we want

to emphasize its substantial computational speed-ups. To evaluate the computational speed-up, we
used a single NVIDIA RTX 3090 GPU and averaged estimation times for TM,ϕ

mrt over five runs. We
found computational speed-ups by up to 400,000x (for the time period decade with |M | = 87, 672
meteorological inputs). Lastly, our estimation of sky view factors from the digital surface model for
vegetation with model fsvf (Section 3.3) achieved a mere L1 error of 0.047% when compared to
conventionally computed sky view factor maps. Substituting the conventionally computed sky view
factor maps with our estimates resulted in only a negligible regression performance decrease of ca.
0.2K compared to SOLWEIG’s estimates using the conventionally computed sky view factor maps.
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Table 1: Quantitative results (∆Tmrt area-1 [Km-2] ± standard error) for positioning 50 added trees
of a height of 12m and canopy diameter of 9m, yielding an additional canopy area size of 4050m2

(1.62% of each area), averaged over the five study areas.

Method day week year decade

random -0.1156 ± 0.0070 -0.0891 ± 0.0063 0.0179 ± 0.0025 0.0208 ± 0.0024
greedy Tmrt -0.1825 ± 0.0088 -0.1219 ± 0.0034 0.0160 ± 0.0014 0.0176 ± 0.0014
greedy ∆Tmrt -0.2248 ± 0.0094 -0.1791 ± 0.0065 -0.0206 ± 0.0032 -0.0212 ± 0.0053
genetic -0.2585 ± 0.0108 -0.1927 ± 0.0090 -0.0172 ± 0.0048 -0.0228 ± 0.0055

ILS† (ours) -0.2996 ± 0.0113 -0.2331 ± 0.0083 -0.0309 ± 0.0045 -0.0335 ± 0.0065
†: ILS = iterated local search.

Table 2: Ablation study over different choices of our optimization method for the time period week
averaged across the five study areas for 50 added trees of height of 12m and crown diameter of 9m.

TopK PerturbationWithGA HillClimbing Iterations ∆Tmrt area-1 [Km-2]

✓ - - - -0.1793

- ✓ ✓ ✓ -0.1955
✓ - ✓ ✓ -0.2094
✓ ✓ - ✓ -0.2337
✓ ✓ ✓ - -0.2302

✓ ✓ ✓ ✓ -0.2345

4.2 EVALUATION OF OPTIMIZATION METHOD

We assessed our optimization method by searching for the positions of k newly added trees. We
considered uniform tree specimens with spherical crowns, tree height of 12m, canopy diameter of
9m, and trunk height of 25% of the tree height (following the default settings of SOLWEIG).

Results Figure 1 illustrates the efficacy of our approach in reducing point-wise Tmrt across di-
verse urban districts and time periods. We observe that trees predominantly assume positions on
east-to-west aligned streets and large, often paved spaces. However, tree placement becomes more
challenging with longer time scales. This observation is intricately linked to seasonal variations, as
revealed by our analyses in Section 4.3. In essence, the influence of trees on Tmrt exhibits a duality–
contributing to reductions in summer and conversely causing increases in winter. Furthermore, this
dynamic also accounts for the observed variations in Tmrt on the northern and southern sides of the
trees, where decreases and increases are respectively evident. Table 1 affirms that our optimization
method consistently finds better tree positions when compared against the considered baselines.

Ablation study We conducted an ablation study by selectively ablating components of our
optimization method. Specifically, we studied the contributions of the greedy initialization
strategy (TopK) by substituting it with random initialization, as well as (de)activating per-
turbation (PerturbationWithGA), local search (HillClimbing), or the iterative design
(Iterations). Table 2 shows the positive effect of each component. It is noteworthy that the
iterated design may exhibit a relatively diminished impact in scenarios where the greedy initializa-
tion or first iteration already yield good or even the (globally) optimal tree positions.

4.3 ANALYSES

Given the found tree placements from our experiments in Section 4.2, we conducted analyses on
various aspects (daily variation, seasonal variation, number of trees, tree geometry variation). Fig-
ure 3 shows a noteworthy duality caused by daily and seasonal variations. Specifically, trees exert
a dual influence, reducing Tmrt during daytime and summer season, while conversely increasing it
during nighttime and winter season. To understand the impact of meteorological parameters on this,

7
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Figure 4: Increasing the number of trees (left) and tree height (right) has diminishing returns for the
reduction of Tmrt. Results are based on the experiment adding trees for the time period week.

we trained an XGBoost classifier (Chen et al., 2015) on each study area and all meteorological in-
puts from 2020 (year) to predict whether the additional trees reduce or increase Tmrt. We assessed
feature importance using SHAP (Shapley, 1953; Lundberg & Lee, 2017) and found that incoming
shortwave radiation Ig emerges as the most influential meteorological parameter. Remarkably, a
simple classifier of the form

y =

{
Tmrt decreases, Ig > 96Wm-2

Tmrt increases, otherwise , (4)

achieves an average accuracy of 97.9% ± 0.005%, highlighting its predictive prowess.

Besides the above, Figure 4 reveals a pattern of diminishing returns as we increase the extent of
canopy cover, achieved either by adding more trees or by using larger trees. This trend suggests
that there may be a point of saturation beyond which achieving further reductions in Tmrt becomes
progressively more challenging. To corroborate this trend quantitatively, we computed Spearman
rank correlations between ∆Tmrt canopy area-1 and the size of the canopy area; also including pre-
existing trees with a minimum height of 3m. We found high Spearman rank correlations of 0.72
or 0.73 for varying number of trees or tree heights, respectively. Notwithstanding the presence of
diminishing returns, we still emphasize that each tree leads to a palpable decrease in Tmrt, thereby en-
hancing outdoor human thermal comfort–an observation that remains steadfast despite these trends.

4.4 COUNTERFACTUAL PLACEMENT OF TREES

In our previous experiments, we always added trees to the existing urban vegetation. However, it re-
mains uncertain whether the placement of existing trees, determined by natural evolution or human-
made planning, represents an optimal spatial arrangement of trees. Thus, we pose the counterfactual
question (Pearl, 2009): could alternative tree positions have retrospectively yielded reduced amounts
of heat stress? To answer this counterfactual question, we identified all existing trees from the digital
surface model for vegetation with a simple procedure based on the watershed algorithm (Soille &
Ansoult, 1990; Beucher & Meyer, 2018)–which is optimal in identifying non-overlapping trees, i.e.,
the maximum point of the tree does not overlap with any other tree, with strictly increasing canopies
towards each maximum point–and optimized their placements for the hottest week in 2020 (heat-
wave condition). We only considered vegetation of a minimum height of 3m and ensured that the
post-extraction size of the canopy area does not exceed the size of the (f)actual canopy area.

Results We found alternative tree placements that would have led to a substantial reduction of
Tmrt by an average of 0.83K. Furthermore, it would have resulted in a substantial reduction of hours
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Figure 5: Alternative placements of existing trees substantially reduces Tmrt during daytime. Opti-
mization ran for the hottest week in 2020 (heatwave condition).

with Tmrt exceeding 60 ◦C–a recognized threshold for heat stress (Lee et al., 2013; Thorsson et al.,
2017)–by on average 19.7% throughout the duration of the heatwave event (week). This strongly
suggests that the existing placements of trees may not be fully harnessed to their optimal capacity.
Notably, the improvement by relocation of existing trees is significantly larger than the effect of
50 added trees (0.23K; see Table 1). Figure 5 visualizes the change in Tmrt across each hour of
the hottest week in 2020. Intriguingly, they reveal peaks during morning and afternoon hours. By
inspecting the relocations of trees (see Figure 10), we found that trees tend to be relocated from
spaces with already ample shading from tree canopies and buildings to large, open, typically sealed
spaces without trees, such as sealed plazas or parking lots.

5 LIMITATIONS

The main limitation, or strength, of our approach is assumption (ii) from Theorem 1 that the model
fTM,ϕ

mrt
yields estimates for that are (at least) proportional to the true aggretated, point-wise TM,ϕ

mrt for
aggregation function ϕ and time period M . Our experimental evaluation affirms the viability of
this approximation, but it remains an assumption. Another limitation is that we assumed a static
urban environment, contrasting the dynamic real world. Further, we acknowledge the uniform tree
parameterization, i.e., same tree geometry, species, or transmissivity. While varying tree geometry
could be explored further in future works, both latter are limitations of SOLWEIG, which we rely
on to train our models. In a similar vein, our experiments focused on a single city, which may
not fully encompass the diversity of cities worldwide. We believe that easier data acquisition of
spatial input data, e.g., through advances in canopy and building height estimation (Lindemann-
Matthies & Brieger, 2016; Tolan et al., 2023), could facilitate the adoption of our approach to other
cities. Further, our experiments lack a distinction between public and private property, as well as
does not incorporate considerations regarding the actual ecological and regulatory feasibility of tree
positions, e.g., trees may be placed in the middle of streets. Lastly, our approach does not consider
the actual zones of activity and pathways of pedestrians. Future work could address these limitations
by incorporating comprehensive data regarding the feasibility, cost of tree placements and pedestrian
pathways, with insights from, e.g., urban forestry or legal experts, as well as considering the point-
wise likelihood of humans sojourning at a certain location. Finally, other factors, such as wind,
air temperature, and humidity, also influence human thermal comfort, however vary less distinctly
spatially and leave the integration of such for future work.

6 CONCLUSION

We presented a simple and scalable method to optimize tree locations across large urban areas and
time scales to mitigate pedestrian-level heat stress by optimizing human thermal comfort expressed
by Tmrt. We proposed a novel approach to efficiently model aggregated, point-wise TM,ϕ

mrt for a
specified aggregation function and time period, and optimized tree placements through an instan-
tiation of the iterated local search framework with tailored adaptations. Our experimental results
corroborate the efficacy of our approach. Interestingly, we found that the existing tree stock is not
harnessed to its optimal capacity. Furthermore, we unveiled nuanced temporal effects, with trees
exhibiting distinct decreasing or increasing effects on Tmrt during day- and nighttime, as well as
across summer and winter season. Future work could scale our experiments to entire cities, explore
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different aggregation functions e.g., top 5% of the most extreme heat events, integrate density maps
of pedestrians, or optimize other spatial inputs, e.g., land cover usage.
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A MEAN RADIANT TEMPERATURE

The mean radiant temperature Tmrt [°C] is a driving meteorological parameter for assessing the
radiation load on humans. During the day, it is of particular importance in determining human
outdoor thermal comfort. Tmrt varies spatially, e.g., standing in direct sunlight on a hot day results in
a less favorable thermal experience for the human body than seeking shelter in shaded areas. Tmrt is
defined as the “uniform temperature of an imaginary enclosure in which radiant heat transfer from
the human body equals the radiant heat transfer in the actual non-uniform enclosure“ by ASHRAE
(2001). That is, Tmrt can be calculated by measured values of surrounding objects and their position
w.r.t. the person. Formally, Tmrt can be computed by

T4
mrt =

N∑
i=1

T 4
i Fp−i , (5)

where Ti is the surface temperature of the i-th surface and Fp−i is the angular factor between a per-
son and the i-th surface (ASHRAE, 2001). Alternatively, we can use the six-directional approach of
Höppe (1992) through estimation of short- and longwave radiation fluxes of six directions (upward,
downward, and the four cardinal directions), as follows:

Tmrt =
0.08(T up

p + T down
p ) + 0.23(T left

p + T right
p ) + 0.35(T front

p + T back
p )

2(0.08 + 0.23 + 0.35)
, (6)

where Tpr is the plane radiant temperature (Korsgaard, 1949).

B SPATIAL AND METEOROLOGICAL INPUT DATA

To predict point-wise Tmrt we use the following spatial inputs:

• Digital elevation model [m]: representation of elevation data of terrain excluding surface
objects.

• Digital surface model with heights of ground and buildings [m]: heights of ground and
buildings above sea level.

• Digital surface model with heights of vegetation [m]: heights of vegetation above ground
level.

• Land cover class map [{paved, building, grass, bare soil, water}]: specifies the land-usage.
• Wall aspect [°]: aspect of walls where a north-facing wall has a value of zero.
• Wall height [m]: specifies the height of a wall of a building.
• Sky view factor maps [%]: cosine-corrected proportion of the visible sky hemisphere from

a specific location from earth’s surface by the total solid angle of the entire sky hemisphere.

Figure 6 shows exemplar spatial inputs and Table 3 provides exemplar temporal (meteorological)
inputs. Note that the model fTmrt requires both spatial and temporal (meteorological) inputs, whereas
our proposed model fTM,ϕ

mrt
only requires spatial inputs, as it directly outputs aggregated, point-wise

TM,ϕ
mrt for a specified aggregation function ϕ and time period M with its respective meteorological

inputs.

The data comprises of a total of 61 areas, each spanning an area of 500m x 500m. Each area is
characterized by its spatial inputs (see above). Meteorological input data was provied by an urban
weather station located in the northern part of the city of Freiburg. For more details on the data
acquisition as well as pre-processing of data, refer to Briegel et al. (2023). The mean radiation
temperature was computed for 68 days with hourly resolution with SOLWEIG (Lindberg et al.,
2008) and provided by Briegel et al. (2023). We divided the data into training and test data by area,
i.e., the five areas to be optimized constituted the test set and the others constituted the training set.
We used this training-test split throughout all of our experiments.

We used this data to train fTmrt following Briegel et al. (2023). To train fTM,ϕ
mrt

, we computed aggre-

gated, point-wise TM,ϕ
mrt with fTmrt , i.e., we computed Tmrt for each time step and aggregated them
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(a) Digital surface
model for vegeta-
tion [m].

(b) Sky view factor
map for vegetation
[%].

(c) Digital elevation
model [m].

(d) Digital surface
model for ground
and buildings [m].

(e) Sky view factor
map for ground and
buildings [%].

(f) Land cover class
map [{paved, build-
ing, grass, bare soil,
water}].

(g) Wall aspect [°]. (h) Wall height [m].

Figure 6: Exemplar spatial inputs. Note that we omit sky view factor maps for vegetation or ground
and building for the four cardinal directions (north, east, south, west) for visualization.

Table 3: Exemplar meteorological inputs.

Date & time Air temper-
ature [°C]

Wind
speed [ms-1]

Wind di-
rection [°]

Incoming shortwave
radiation [Wm-2]

Precipi-
tation [mm]

Relative
humidity [%]

Barometric
pressure [kPA]

Elevation
angle [°]

Azimuth
angle [°]

2020-01-01 00:00:00 -1.31 1.97 107.72 0.0 0.0 75.88 976.4 0.0 343.009
2020-03-20 06:00:00 9.07 0.64 114.71 0.0 0.0 83.46 964.7 0.0 83.264
2020-06-20 11:00:00 18.43 1.15 314.46 652.27 0.02 68.04 966.2 59.601 135.899
2020-09-22 16:00:00 22.35 1.43 245.3 310.98 0.04 56.1 955.1 22.754 242.247
2020-12-21 21:00:00 7.19 4.25 202.69 0.0 0.51 87.82 963.0 0.0 282.195

with the aggregation function ϕ. This reduced the data to 61 and 5 for the training or test set, re-
spectively. To train fsvf , we repurposed the sky view factor maps that were already required for the
computation of Tmrt with SOLWEIG. Here, we masked out the five test areas for training and used
the remainder for training. Appendix E provides all training details of each model.

C MEAN RADIANT TEMPERATURE MODELING WITH SOLWEIG

SOLWEIG (Lindberg et al., 2008) is a popular method to estimate mean radiant temperature. It uses
spatial and temporal (meteorological) inputs to model Tmrt for a height of 1.1m of a standing or
walking rotationally symmetric person using the six-dimension approach presented in Appendix A.
We used the default model parameters:

• Emissivity ground: 0.95.
• Emissivity walls: 0.9.
• Albedo ground: 0.15.
• Albedo walls: 0.2.
• Transmissivity: 3%.
• Trunk height: 25% of tree height.

Below, we provide a list of limitations within the physical modeling with SOLWEIG, which our
approach consequently inherits, to make machine learning practitioners aware of these limitations:

• Static environment assumption: SOLWEIG assumes that the environment stays static. That
is, trees do not grow, infrastructure does not change nor seasonal affects are accounted for.
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• No distinction between different types of trees.

• No consideration of other important factors, such as wind, air temperature, and humidity.

Note that our approach inherits these limitations. Future progress in incorporating these in physical
modeling would also be reflected in our approach.

D HYPERPARAMETER CHOICES OF OPTIMZATION

We implemented the genetic algorithm with PyGAD4. Throughout our experiments, we used a popu-
lation size of 20 with steady-state selection for parents, random mutation and single-point crossover.
We used the current best optima (up to five) and random samples for the initial population. We
set the temperature τ of Equation 2 to 1. We kept the best solution throughout the evolution. We
used 1000 iterations within our optimization method. For the baseline genetic algorithm, we
used 5000 iterations to account for larger compute due to the iterative design of our optimization
approach.

For the HillClimbing algorithm, we adopted the design by Wallenberg et al. (2022). That is, we
repeatedly cycle over all trees and try to move them within the adjacent eight neighbors. We accept
the move if it improves upon the current aggregated, point-wise TM,ϕ

mrt . We repeat this process until
no further improvement can be found.

Lastly, we used five iterations within our iterated local search. We found this resulted in a good
trade-off between the efficacy of the final tree placements and total runtime.

E MODEL AND TRAINING DETAILS

Model details We adopted the U-Net architecture from Briegel et al. (2023). Specifically, the
models fTmrt and fTM,ϕ

mrt
receive inputs of size 16× h×w and predict Tmrt or TM,ϕ

mrt , respectively, of
size of h× w, where h and w are the height and width of the spatial input, respectively. The model
fsvf receives an input of size h× w (digital surface model for vegetation) and outputs the sky view
factor maps for vegetation of size of 5×h×w. All models use the U-Net architecture (Ronneberger
et al., 2015) with a depth of 3 and base dimensionality of 64. Each stage of the encoder and decoder
consist of a convolution or transposed convolution, respectively, followed by batch normalization
(Ioffe & Szegedy, 2015) and ReLU non-linearity.

Training details In the following, we provide the specific training details of all models.

• fTmrt : We trained the model with L1 loss function for ten epochs using the Adam op-
timizer (Kingma & Ba, 2015) with learning rate of 0.001 and exponential learning rate
decay schedule. We randomly cropped (256x256) the inputs during training.

• fTM,ϕ
mrt

: We trained the model with L1 loss function for 5000 epochs and batch size of 32
with Adam optimizer (Kingma & Ba, 2015) with learning rate of 0.001 and exponential
decay learning rate schedule. We randomly cropped (256x256) the inputs during training.

• fsvf : We trained the model with L1 loss function for 20 epochs with Adam optimizer
(Kingma & Ba, 2015) with learning rate of 0.001 and exponential decay learning rate
schedule. We randomly cropped (256x256) the inputs during training.

Note that we have not tuned hyperparamerters and improved modeling performance could be
achieved through hyperparameter optimization. However, since the goal of this work is provide
a case study how deep learning methods can effectively be used to adapt to climate change, we
omitted hyperparameter optimization.
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(a) Hottest day in 2020.
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(b) Hottest week in 2020 (heatwave condition).

Figure 7: Evaluation of aggregated results with fTmrt (top row of subfigures), i.e., predicting Tmrtfor
each point in time and then aggregating the results, yields comparable results to evaluating with
SOLWEIG (bottom row of the subfigures).

F SUPPLEMENTARY EXPERIMENTAL RESULTS

F.1 COMPARISON OF OUR EVALUATION PROTOCOL TO SOLWEIG

We compared our evaluation protocol, i.e., predicting Tmrt for each time step with fTmrt and then
aggregating results with the aggregation function ϕ, to running evaluation with SOLWEIG instead.
Figure 7 compares the results for the time periods day and week. Note that the other time periods,
i.e., year and decade, are prohibitively expensive to evaluate with SOLWEIG. We find that our
evaluation protocol closely matches SOLWEIG’s results, i.e., L1 errors of 0.296K and 0.25K for
day or week, respectively. This affirms the validity of our evaluation strategy.

F.2 TREE PLACEMENTS DURING SUMMER VS. WINTER SEASON

Figure 8 compares the tree placements during summer and winter season. We observe that trees are
predominately positioned at large, open areas and clustered together during summer season, whereas
they are more broadly spread over the neighborhood during winter season.
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(b) Winter.

Figure 8: Comparison of tree placements between summer and winter season.
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Figure 9: Optimization of tree positions yields significantly more reduction in Tmrt. It is especially
pronounced for fewer number of trees. This shows the importance of optimizing the the positions of
trees.
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Figure 10: The alternative tree placements (Section 4.4) often move from north-to-south streets to
west-to-east streets as well as open, typically paved spaces. Red indicates that vegetation (i.e., tree)
was added, whereas blue indicates that vegetation was removed.

F.3 IMPACT OF THE NUMBER OF TREES VS. OPTIMIZATION

Figure 9 shows the importance of the right positioning of trees through the optimization in compar-
ison with the number of trees. It is therefore not only important to plant trees, but also to consider at
which location they can be used most effectively.

F.4 ALTERNATIVE PLACEMENTS IN THE COUNTERFACTUAL SCENARIO

Figure 10 visualizes the change in vegetation for our experiments from Section 4.4. We observe
that trees were moved from north-to-south to west-to-east aligned streets as well as to large open,
typically sealed spaces, such as sealed plazas or parking lots.

4https://github.com/ahmedfgad/GeneticAlgorithmPython, License: BSD-3
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G BROADER IMPACT

We believe that our approach can empower urban decision-makers selecting effective measures for
climate-sensitive urban planning and climate adapation, reduces power consumption, and democra-
tizes access to planning tools to smaller communities as well as citizens. However, our approach
could also be used improperly for urban planning by ignoring other important factors, such as the
influence of trees on wind patterns, heavy rain events, or legal requirements. Moreover, adverse
individuals may manipulate results to further their personal goals, e.g., they do not want trees in
front of their homes, which may not necessarily align with societal goals.

Carbon footprint estimate All components of our optimization approach cause carbon dioxide
emissions. We estimated the emissions for our final experiments (including training of models, opti-
mization, ablations etc.) using the calculator by Lacoste et al. (2019).5 Experiments were conducted
using an internal infrastructure, which has a carbon efficiency of 0.385 kgCO2eq/kWh.6 A cumula-
tive of ca. 380 h of computation was performed on various GPU hardware. Emissions are estimated
to be ca. 39 kgCO2eq. Note that the actual carbon emissions over the course of this project is
multiple times larger.

5https://mlco2.github.io/impact/
6 Note that carbon efficiency figures for 2023 were not released at time of writing.
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