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Abstract

Active learning is particularly of interest for semantic
segmentation, where annotations are costly. Previous aca-
demic studies focused on datasets that are already very di-
verse and where the model is trained in a supervised man-
ner with a large annotation budget. In contrast, data col-
lected in many driving scenarios is highly redundant, and
most medical applications are subject to very constrained
annotation budgets. This work investigates the various
types of existing active learning methods for semantic seg-
mentation under diverse conditions across three dimensions
- data distribution w.r.t. different redundancy levels, inte-
gration of semi-supervised learning, and different labeling
budgets. We find that these three underlying factors are de-
cisive for the selection of the best active learning approach.
As an outcome of our study, we provide a comprehensive us-
age guide to obtain the best performance for each case. We
also propose an exemplary evaluation task for driving sce-
narios, where data has high redundancy, to showcase the
practical implications of our research findings.

1. Introduction
The objective of active learning is the reduction of anno-

tation cost by selecting those samples for annotation, which
are expected to yield the largest increase in the model’s per-
formance. It assumes that raw data can be collected in abun-
dance for most large-scale data applications, such as au-
tonomous driving, but annotation limits the use of this data.
Semantic segmentation is particularly costly, as it requires
pixel-level annotations. Active learning is, besides weakly
supervised and semi-supervised learning, among the best-
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Dataset↓ Annotation Budget
Low High

Supervision→ AL SSL-AL AL SSL-AL
Diverse 3 3 3 3
Redundant 3 3 3 3

Table 1: We study current active learning (AL) methods for
semantic segmentation over 3 dimensions - dataset distribu-
tion, annotation budget, and integration of semi-supervised
learning (SSL-AL). Green cells denote newly studied set-
tings in this work. Previous AL works correspond to the
grey cells. This work provides a guide to use AL under all
the above conditions.

known ways to deal with this situation.

In a typical deep active learning process, a batch of sam-
ples is acquired from a large unlabeled pool for annotation
using an acquisition function and is added to the training
scheme. This sampling is done over multiple cycles un-
til an acceptable performance is reached or the annotation
budget is exhausted. The acquisition function can be either
a single-sample-based acquisition function, where a score
is given to each sample individually or a batch-based ac-
quisition function, where a cumulative score is given to
the whole selected batch. Existing active learning meth-
ods for semantic segmentation assign the score to the sam-
ple either based on uncertainty [15, 35, 25] or represen-
tational value [37, 35, 34]. Most AL methods in the lit-
erature are evaluated on datasets like PASCAL-VOC [10],
Cityscapes [6], and CamVid [1]. The shared attribute be-
tween these AL benchmark datasets is that they are highly
diverse, as they were initially curated to provide compre-
hensive coverage of their corresponding domains. This cu-
ration process, however, is a sort of annotation because it is
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Figure 1: We analyse and compare single-sample-based AL
and batch-based AL on datasets with different levels of re-
dundancy. The figure shows the difference between the
best-performing single-sample-based AL method and best
performing batch-based AL method. We find that batch ac-
quisition performs better for redundant datasets, and single-
sample acquisition performs better for diverse datasets. The
integration of semi-supervised learning with active learning
(SSL-AL) performs well for batch-based acquisition.

typically not feasible in an entirely automated way.
State-of-the-art active learning methods for segmenta-

tion have been evaluated only in a particular experimental
setup - highly diverse benchmark datasets with a compar-
atively large annotation budget; see Table 1. We seek an-
swers to specific missing questions not captured by previ-
ous works.
1. How do different active learning methods perform
when the dataset has many redundant samples? Sam-
ples with highly overlapping information are referred to as
redundant samples, for example, the consecutive frames of
a video. Many commonly used segmentation datasets were
originally collected as videos for practical reasons, e.g.,
Cityscapes, CamVid, BDD100k [39]. Since active learn-
ing methods were only tested on filtered versions of these
datasets, their applicability on redundant datasets is open
and highly relevant.
2. What happens when the initial unlabeled pool is also
used for training along with annotated samples using
semi-supervised learning (SSL)? For image classification,
many works [26, 13, 18, 28] have shown that integration of
SSL into AL is advantageous. For semantic segmentation,
this combination is not well studied.
3. What happens when the annotation budget is low?
Which methods scale best in such low-budget settings?

Semantic segmentation annotations can be expensive for
specific applications, especially in the medical domain.
Therefore, it is critical to understand the behavior of the
various active learning methods in low-budget settings.

In this work, we report the results of an empirical study
designed to find answers to the above-raised questions. We
study 5 existing active learning methods across the three
dimensions as mentioned above - subject to different data
distributions w.r.t. redundancy in the dataset, including the
integration of semi-supervised learning, and under low as
well as large annotation budget settings, as shown in Ta-
ble 1. The outcome of this study yields new insights and
provides, as the major contribution of this work, a guideline
for the best selection of available techniques under the var-
ious tested conditions. Figure 1 illustrates some of the re-
sults, particularly, that the performance of acquisition func-
tions can change depending on whether the dataset is redun-
dant or diverse and that SSL integration plays an additional
role in this. Additionally, we show that active learning in
a low annotation budget setting can be particularly volatile,
even nullifying the complete need for it in some cases. This
further emphasizes the importance of knowing the underly-
ing data distribution.

We also suggest a new evaluation task (A2D2-3K) for
driving scenarios based on the highly redundant A2D2
dataset, which is closer to the raw data collection scheme in
a driving case. The experiment outcome on this task aligns
with the findings of our study for redundant dataset type
with a high annotation budget setting and shows that there
is a strong case for using active learning in this context.

2. Deep Active Learning
In this section, we briefly review the state of the art in

deep active learning as relevant for our study. In particu-
lar, we review the available acquisition methods, the spe-
cial considerations for segmentation, and the integration of
semi-supervised learning.

The acquisition methods can be categorized into single-
sample-based and batch-based approaches. They assess the
value of new samples for selecting individually and collec-
tively as a batch, respectively.

Single sample acquisition takes the top b samples ac-
cording to the score of the acquisition function to select
a batch of size b. Several methods follow this selection
scheme based on either epistemic uncertainty or represen-
tation score. For example, uncertainty-based methods try
to select the most uncertain samples to acquire a batch.
Many methods, such as EqualAL [15], Ensemble+AT [24],
and CEAL [36], estimate uncertainty based on the out-
put probabilities. Epistemic uncertainty, estimated using
Entropy [32], is often used a as strong baseline in sev-
eral active learning works [15, 33, 29]. Some methods,
namely BALD [17] and DBAL [12] employed a Bayesian



approach using Monte Carlo Dropout [11] to measure the
epistemic uncertainty. Representation-based methods aim
to select the most representative samples of the dataset that
are not yet covered by the labeled samples. Numerous ad-
versarial learning-based methods utilize an auxiliary net-
work to score samples based on this measure, including
DAAL [37], VAAL [35], and WAAL [34]. For our study, we
employ Entropy, EqualAL, and BALD to represent single-
sample acquisition methods due to their direct applicability
to segmentation tasks. We did not include deep ensemble-
based methods due to their limited scalability and adver-
sarial methods due to their hyperparameter sensitivity. In
general, single-sample acquisition approaches select indi-
vidually very informative samples but do not optimize the
joint improvement obtained with the whole batch.

Batch-based acquisition methods acquire the whole
batch of size b to maximize cumulative information gain.
Sener et al. [31] formulated the acquisition function as a
core-set selection approach based on the feature representa-
tions. It is a representation-based approach that selects the
batch of samples jointly to represent the whole data distri-
bution. BatchBALD [23] is a greedy algorithm that selects
a batch of points by estimating the joint mutual informa-
tion between the whole batch and the model parameters.
This method was also proposed to remedy the mode col-
lapse issue, where the acquisition function collapses into
selecting only similar samples (see Section 4.1 for details).
However, it is limited to simple image classification datasets
like MNIST [8] since its computation complexity grows ex-
ponentially with the batch size. Some more recent batch-
based methods include k-MEANS++ [40], GLISTER [21],
ADS [19], but these methods only evaluate on image clas-
sification tasks. For the study, we selected the Coreset
method [31] to represent batch-based methods due to its ef-
fectiveness, simplicity, and easy scalability to the segmen-
tation task.

2.1. Active Learning for Semantic Segmentation

When applied to semantic segmentation, active learning
methods must choose which area of the image is to be con-
sidered for the acquisition: the full image [35], superpix-
els [2], polygons [27, 15], or each pixel [33]. There is no
common understanding so far of which approach is cheaper
and more effective. Thus, our study uses the straightforward
image-wise selection and annotation procedure.

Most existing methods for segmentation are based on the
model’s uncertainty for the input image, where the average
score over all pixels in the image is used to select top-k im-
ages. Entropy [32] (estimated uncertainty) is a widely used
active learning baseline for selection. This function com-
putes per-pixel entropy for the predicted output and uses the
averaged entropy as the final score. EqualAL [15] deter-
mines the uncertainty based on the consistency of the pre-

diction on the original image and its horizontally flipped
version. The average value over all the pixels is used as
the final score. BALD [17] is often used as baseline in ex-
isting works. It is employed for segmentation by adding
dropout layers in the decoder module of the segmentation
model and then computing the pixel-wise mutual informa-
tion using multiple forward passes. Coreset [31] is a batch-
based approach that was initially proposed for image clas-
sification, but it can be easily modified for segmentation.
For e.g., the pooled output of the ASPP [4] module in the
DeepLabv3+ [5] model can be used as the feature represen-
tation for computing distance between the samples. Some
other methods [35, 22, 34] use a GAN model to learn a
combined feature space for labeled and unlabeled images
and utilize the discriminator output to select the least rep-
resented images. Our study includes Entropy, EqualAL,
BALD, and Coreset approaches for the analysis, along with
the random sampling baseline. In this work, these meth-
ods are also studied with the integration of semi-supervised
learning.

2.2. Semi-supervised Active Learning

Active learning uses a pool of unlabeled samples only
for selecting new samples for annotation. However, this
pool can also be used for semi-supervised learning (SSL),
where the objective is to learn jointly from labeled and un-
labeled samples. The combination of SSL and AL has been
used successfully in many contexts, such as speech under-
standing [20, 9], image classification [31, 13, 27, 28], and
pedestrian detection [30]. Some recent works have also
studied active learning methods with the integration of SSL
for segmentation, but their scope is limited only to special
cases like subsampled driving datasets [29] or low labeling
budget [27], both cases with only single-sample acquisition
methods. Our work provides a broader overview of the in-
tegration of SSL and active learning for the segmentation
task. We study this integration over datasets with differ-
ent redundancy levels, under different labeling budgets, and
with single-sample and batch-based methods. Our findings
explain when this integration is effective and boosts the ac-
tive learning method.

Integration of SSL and AL. A successful integration
can also be conceptually explained based on the underly-
ing assumption of semi-supervised learning and the selec-
tion principle of the active learning approach. According
to the clustering assumption of SSL, if two points belong
to the same cluster, then their outputs are likely to be close
and can be connected by a short curve [3]. In this regard,
when labeled samples align with the clusters of unlabeled
samples, the cluster assumption of SSL is satisfied, result-
ing in a good performance. Consequently, to maximize
semi-supervised learning performance, newly selected sam-
ples must cover the unlabeled clusters that are not already



covered by labeled samples. Only acquisition functions
that foster this coverage requirement have the potential to
leverage the additional benefits that arise from the integra-
tion of semi-supervised learning. A batch-based method,
e.g., Coreset, selects samples for annotations to minimize
the distance to the farthest neighbor. By transitivity, such
labeled samples would have a higher tendency to propa-
gate the knowledge to neighboring unlabeled samples in the
cluster and utilize the knowledge of unlabeled samples us-
ing a semi-supervised learning objective and help boost the
model performance. Similar behavior can also be attained
using other clustering approaches that optimize for cover-
age.

3. Experimental Setup
3.1. Tested Approaches

In our study, we test five active learning acquisition func-
tions as discussed in Section 2, including Random, Entropy,
EqualAL, BALD, and Coreset. Here Entropy, EqualAL,
and BALD approach represent single-sample, and Core-
set represents the batch-based approach. All methods se-
lect the whole image for annotation. To leverage the unla-
beled samples, we use the semi-supervised learning s4GAN
method [26]. We pair all the used active learning ap-
proaches with SSL using this approach. This is marked by
the suffix ‘-SSL’ in the experiments. In particular, we train
the model using an SSL objective, which impacts the result-
ing model and hence the acquisition function.

3.2. Datasets

Active learning methods are often evaluated on
PASCAL-VOC and Cityscapes datasets, where PASCAL-
VOC is naturally diverse while Cityscapes is diversified by
subsampling from videos. In this work, we test on an ad-
ditional driving dataset, A2D2, which is highly redundant.
We evaluate the methods on these three datasets. To under-
stand the nature of active learning methods over varying lev-
els of redundancy in the dataset, we curate 5 smaller dataset
pools from the large, original A2D2 dataset, described fur-
ther below as A2D2-Pools.

Cityscapes [6] is a driving dataset used to benchmark
semantic segmentation tasks. The dataset was originally
collected as videos from 27 cities, where a diverse set of
images were selected for annotation. Due to the selection,
Cityscapes cannot cover the redundant data scenario in our
evaluation, although it was derived from videos. As we will
see in the results, the nature of the active learning method
changes when considering the raw form of data in a driving
scenario, and pre-filtering, as done in Cityscapes, is sub-
optimal compared to directly applying active learning on
the raw data (see Section 4.4).

PASCAL-VOC [10] is another widely used segmenta-

Figure 2: A2D2 Pool-Aug. Left: the original image. Right:
the duplication through color augmentation and random
cropping of the original image

tion dataset. We use the extended dataset [16], which con-
sists of 10582 training and 1449 validation images. It con-
tains a wide spectrum of natural images with mixed cate-
gories like vehicles, animals, furniture, etc. It is the most
diverse dataset in this study.

A2D2 [14] is a large-scale driving dataset consisting of
41277 annotated images with a resolution of 1920 × 1208
from 23 sequences. It covers an urban setting from high-
ways, country roads, and three cities. It contains labels for
38 categories. We map them to the 19 classes of Cityscapes
for our experiments. A2D2 provides annotations for ev-
ery ∼ 10th frame in the sequence and contains a lot of
overlapping information between frames. Some consecu-
tive frames are shown in the Appendix. We utilize 40135
frames from 22 sequences for creating our training sets and
one sequence consisting of 1142 images for validation. The
validation sequence ‘20180925 112730’ is selected based
on the maximum class balance. A2D2 represents the most
diverse raw dataset in our study.

A2D2 Pools. To obtain a more continuous spectrum
between diverse and redundant datasets, we created five
smaller dataset pools by subsampling the large A2D2
datasets. Each pool comprises 2640 images, which is
comparable in size to the Cityscapes training set. Four
pools are curated by subsampling the original dataset,
while the fifth pool is created by augmentation. The first
four pools, denoted by Pool-Xf (where X is 0, 5, 11, and
21), were created by randomly selecting samples and X
consecutive frames for each randomly selected sample from
the original A2D2 dataset. Pool-0f contains only randomly
selected images. We assume that the consecutive frames
contain highly redundant information. Therefore, the
pool with more consecutive frames has higher redundancy
and lower diversity. The fifth pool, Pool-Aug, contains
augmented duplicates in place of the consecutive frames.
We create five duplicates of each randomly selected frame
by randomly cropping 85% of the image area and adding
color augmentation (see figure 2).
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Figure 3: Results on diverse driving datasets. Active learning performance curves on Cityscapes and A2D2:Pool-0f. X-axis
shows the percentage of the labeled dataset. The methods which utilize MC-dropout in their network architecture are marked
with ∗, and are only comparable to other methods with MC-dropout.

A AL Method SSL Cityscapes A2D2 Pool-0f
Metric→ mIoU AUC mIoU AUC

S Random 7 58.90 23.29 48.48 19.20
S Entropy 7 61.83 24.25 52.40 20.37
S EqualAL 7 62.41 24.32 52.50 20.35
B Coreset 7 60.89 23.89 51.14 19.88
S Random-SSL 3 60.72 23.85 49.69 19.60
S Entropy-SSL 3 60.61 23.93 50.80 19.90
S EqualAL-SSL 3 60.26 23.96 51.08 20.02
B Coreset-SSL 3 63.14 24.47 51.49 20.02
- 100% 7 68.42 27.37 56.87 22.75
With MC-Dropout decoder
S BALD 7 61.87 24.28 52.82 20.32
S BALD-SSL 3 61.13 23.89 52.29 20.14
- 100%-MCD 7 67.07 26.83 56.47 22.59

Table 2: Active Learning results on Cityscapes and A2D2
Pool-0f. AUC@50 and mIoU@30 metrics are reported.
A denotes Acquisition method type. S and B denotes the
single-sample and batch-based acquisition, respectively.

3.3. Experiment Details

Implementation details. We used the DeepLabv3+ [5]
architecture with the Wide-ResNet38 (WRN-38) [38] back-
bone for all experiments. The backbone WRN-38 is pre-
trained using ImageNet [7]. We run all methods on 3 ran-
dom seeds and report the mean performance. All other
training details and hyperparameter information is included
in the Appendix. Since the BALD method requires the in-
troduction of Dropout layers into the architecture, we seg-
regate the methods into two categories: with Monte Carlo
Dropout (MCD) and without Monte Carlo Dropout layers.
Random, Entropy, EqualAL, and Coreset are without MCD.

A AL Method SSL VOC 5-5 VOC 10-10
Metric→ mIoU AUC mIoU AUC

S Random 7 70.70 13.92 72.13 28.85
S Entropy 7 70.38 13.94 73.72 29.17
S EqualAL 7 69.14 13.82 73.40 29.03
B Coreset 7 70.85 13.96 73.63 29.06
S Random-SSL 3 72.57 14.36 75.33 29.87
S Entropy-SSL 3 73.36 14.51 76.08 30.01
S EqualAL-SSL 3 73.39 14.55 75.89 30.06
B Coreset-SSL 3 72.88 14.46 75.91 30.03
- 100% 7 77.00 15.40 77.00 30.80

Table 3: Active Learning results on PASCAL-VOC dataset
in 5-5 and 10-10 settings. AUC@50 and mIoU@30 metric
are reported. A, S and B denotes acquisition method type,
single-sample and batch-based acquisition, respectively.

BALD is based on a MCD network. Since the models used
in the two categories are not exactly comparable due to dif-
ferent architectures, we also show the fully-supervised per-
formance for both with MCD (100% MCD) and without
MCD (100%) architectures.
Evaluation scheme. We evaluate the methods across dif-
ferent data budget settings, denoted by I − S , where I is
the initial label budget, S is the sampling-label budget, and
I, S indicates the percentage of the dataset size. Images are
sampled randomly to fulfill the initial label budget. For the
subsequent steps, images are sampled using the AL acquisi-
tion function up to the allowed sampling-label budget. We
test datasets with 10-10, 5-5, and 2-2 budget settings.
Evaluation metrics. We use mean Intersection over Union
(mIoU) to evaluate the performance of the model at each
AL cycle step. For the evaluation of the active learning
method, we use two metrics: Area Under the Budget Curve



A AL Method SSL Pool-5f Pool-11f Pool-21f Pool-Aug
Metric→ mIoU AUC mIoU AUC mIoU AUC mIoU AUC

S Random 7 47.58 18.69 44.61 17.76 44.52 17.67 43.80 17.15
S Entropy 7 49.96 19.48 47.43 18.52 46.08 18.21 44.51 17.33
S EqualAL 7 49.50 19.29 47.14 18.44 46.32 18.18 44.24 17.29
B Coreset 7 50.08 19.44 47.72 18.69 46.68 18.38 44.70 17.54
S Random-SSL 3 47.92 19.03 45.25 18.02 46.27 18.19 44.17 17.29
S Entropy-SSL 3 48.78 19.31 47.53 18.56 46.93 18.43 44.50 17.47
S EqualAL-SSL 3 48.80 19.28 46.50 18.39 47.11 18.54 44.81 17.56
B Coreset-SSL 3 50.44 19.69 48.99 19.01 47.62 18.69 45.81 17.74
- 100% 7 53.25 21.30 48.85 19.54 49.23 19.69 46.03 18.41
With MC-Dropout decoder
S BALD 7 50.40 19.29 47.85 18.74 46.78 18.57 45.53 17.80
S BALD-SSL 3 50.33 19.62 47.34 18.61 47.06 18.57 45.16 17.72
- 100%-MCD 7 53.82 21.53 50.86 20.34 50.43 20.17 46.62 18.65

Table 4: Active Learning results on A2D2-Pool5f, A2D2-Pool11f, A2D2-Pool-21f, and A2D2-PoolAug. AUC@50 and
mIoU@30 metrics are reported. S and B denotes the single-sample and batch-based acquisition, respectively.

(AUC@B) and mean Intersection over Union at a budget
B (mIoU@B). AUC@B is the area under the performance
curves, shown in Figure 3 and 4. It captures a cumulative
score of the AL performance curve up to a budget B, where
B is the percentage of the labeled dataset size. For the ex-
periments on A2D2 pools, we use B=50 in the 10-10 setting.
For PASCAL-VOC, we run three experiments with B=10,
25, and 50 in 2-2, 5-5, and 10-10 settings, respectively. For
Cityscapes, we experiment with B=50 in the 10-10 setting.
mIoU@B reports the performance of the model after using
a certain labeling budget B. We report performance at an in-
termediate labeling budget to clearly see the ranking of the
AL methods.

4. Results
Here, we answer the three questions raised in Section 1

concerning the behavior of active learning methods w.r.t
data distribution in terms of redundancy, integration of
semi-supervised learning, and different labeling budgets.
For each experiment, we compare random sampling, single-
sample, or batch-based acquisition approaches.

4.1. Impact of Dataset Redundancy

Table 2 and Figure 3 show the results on Cityscapes
and A2D2 Pool-0f. For both datasets, the single-sample
(S) method, EqualAL, performs the best in the supervised-
only setting. Table 3 shows the results obtained on the
PASCAL-VOC dataset in 5-5 and 10-10 settings. Single-
sample-based methods perform the best in the 10-10 set-
ting, whereas Coreset performs the best in the 5-5 AL set-
ting by a marginal gap w.r.t. random baseline. Table 4 and
Figure 4 show the results for the redundant datasets. The

batch-based Coreset method consistently performs the best
in all four datasets in the supervised-only setting.

Diverse datasets need a single-sample method and re-
dundant datasets need a batch-based method. We ob-
serve that the order of best-performing models changes
based on the level of redundancy in the dataset. Single-
sample-based acquisition functions perform best on diverse
datasets, whereas batch-based acquisition functions per-
form best on redundant datasets. We attribute this reversed
effect to the mode collapse problem, where, for redun-
dant datasets, single-sample acquisition methods select lo-
cal clusters of similar samples. Diverse datasets are devoid
of this issue as they do not possess local clusters due to high
diversity across samples. Therefore, the diversity-driven ac-
quisition is not critical for diverse datasets.

This observation is consistent for PASCAL-VOC, where
single-sample-based uncertainty-type methods perform bet-
ter than batch-based and random methods in the high-
budget setting. The difference between the methods is only
marginal here since most acquired samples add ample new
information due to the highly diverse nature of the dataset.
This difference further diminishes w.r.t. random baseline
with a lower labeling budget (e.g. 5-5) since any learned
useful bias also becomes weaker. The observations for the
5-5 setting tend towards a very low-budget setting which is
further analysed in Section 4.3.

Mode collapse analysis. Here, we analyse and visualize
the above mentioned model collapse issue. Mode collapse
in active learning refers to the circumstance that acquisition
functions tend to select a set of similar (redundant) samples
when acquiring batches of data [23]. This can occur when
a single-sample acquisition function gives a high score to
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Figure 4: Results on redundant datasets. Active Learning performance curves on A2D2 dataset: Pool-5f, Pool-11f, Pool-21f,
and Pool-Aug. The X-axis shows the percentage of labeled datasets. The methods which utilize MC-Dropout in their network
architecture are marked with ∗.

at least one of the similar samples in the set. Since similar
samples have highly overlapping information, all samples
in the set receive a high score. Thus, all similar samples
tend to be selected, causing this collapse. Since the selected
samples are all very similar, their annotation does not add
much more value to the model than if a single sample was
added.

We provide a qualitative analysis of the mode collapse
issue on the redundant A2D2 Pool-21f. We plot the fea-
ture representations using t-SNE to show the selection pro-
cess for a single-sample-based Entropy function and batch-
based Coreset function, shown in Figure 5. It shows that
Entropy acquisition selects many samples within local clus-
ters, which are similar samples with overlapping informa-
tion. This yields a suboptimal use of the annotation budget.
In contrast, Coreset acquisition has a good selection cover-
age and avoids this mode collapse.

In this work, we argue that mode collapse is a common
issue in many real-world datasets, containing similar sam-
ples. A good acquisition function for such datasets must be
aware of the batch’s diversity to address the mode collapse
issue. It is largely ignored due to the narrow scope of ex-
isting AL benchmarks like PASCAL-VOC and Cityscapes,
which only cover diverse datasets.

4.2. Systematic Integration of SSL

For all redundant datasets, the Coreset-SSL approach
consistently performs the best; see results in Table 4 and
Figure 4. For diverse datasets, SSL integration is also
helpful, but there is no consistent best approach. For the
PASCAL-VOC dataset, single-sample based methods with
SSL show the best performance, shown in Table 3. For
Cityscapes, Coreset-SSL outperforms all other approaches;
see Table 2 and Figure 3. For A2D2-Pool0f, Coreset-SSL
improves over Coreset, but the single-sample acquisition
method BALD approach shows the best performance.

Redundant datasets favour the integration of batch-
based active learning and semi-supervised learning. The
batch-based acquisition function Coreset always profits
from the integration of SSL. Coreset aligns well with the
SSL objective since Coreset selects samples from each lo-
cal cluster, thus covering the whole data distribution. This
assists SSL in obtaining maximum information from the un-
labeled samples, as discussed in Section 2.2. This effect
is especially strong in the redundant A2D2 pools, where
Coreset-SSL always improves over Coreset and also shows
the best performance. In contrast, SSL integration for
single-sample methods is either harmful or ineffective, ex-
cept for the PASCAL-VOC dataset. Interestingly, in Pool-



(a) Coreset (Batch-based AL) (b) Entropy (Single-sample AL) (c) Mode collapse (Single-sample AL)

Figure 5: TSNE plots of (a) Coreset and (b) Entropy functions for A2D2 Pool-21f. The yellow points are feature representa-
tion from the unlabeled set, the violet point are the acquired points. The batch-based approach has good selection coverage,
whereas the single-sample acquisition approach selects similar samples from clusters. Figure (c) shows acquired redundant
samples from the violet clusters in (b).

11f, some Coreset-SSL methods even outperform the 100%
baseline with less than 30% labeled data. This indicates
that some labeled redundant samples can even harm the
model (see Figure 4), possibly due to data imbalance. For
Cityscapes, SSL with Coreset yields significant improve-
ment, and SSL even changes the ranking of the methods.
We see that EqualAL performs the best in the supervised-
only setting, whereas Coreset-SSL surpasses all methods.
This slight anomaly in the case of Cityscapes happens be-
cause the advantage due to the combination of SSL and
batch-based method is greater than the advantage of using
single-sample methods in non-redundant datasets. For di-
verse PASCAL-VOC, all methods align well with SSL. All
methods perform well with no clear winner method since all
selection criteria select samples that provide good coverage
of the data distribution.

4.3. Low Annotation Budget

Active learning is volatile with a low budget. Experiment-
ing with PASCAL-VOC in the 2-2 budget setting, Random-
SSL performs the best, i.e., semi-supervised learning with-
out active learning component. We believe that active learn-
ing fails in this setting because it fails to capture any help-
ful bias for selection in such a low-data regime with diverse
samples. Our observations in this low-budget setting con-
firm and provide a stronger empirical support for similar be-
havior observed in [27]. For A2D2 Pool-0f and Cityscapes
in the 2-2 setting, the single-sample acquisition performs
the best, while its SSL integration is detrimental. These
methods possibly learn some useful bias due to the special-
ized driving domain. For redundant datasets in low budget
settings, batch-based acquisition is still the most effective
way. However, SSL does not contribute any additional im-
provements due to insufficient labeled samples to support
learning from unlabeled samples. Overall, we observe a
highly volatile nature of active learning in conjunction with

A AL Method SSL mIoU AUC
B Uniform 7 57.75 —
S Random 7 56.14 5.35
S Entropy 7 60.16 5.53
B Coreset 7 60.30 5.55
S Uniform (@5) + Entropy 7 60.40 5.66
B Uniform-SSL 3 58.93 —
S Random-SSL 3 57.57 5.53
S Entropy-SSL 3 59.91 5.61
B Coreset-SSL 3 61.13 5.72
S Uniform (@5) + Ent-SSL 3 59.63 5.59
- 100% 7 66.65 6.64

Table 5: AL results on the proposed A2D2-3k task.
mIoU@7.5 and AUC@7.5 is reported. S and B denotes
the single-sample and batch-based acquisition, respectively.
Uniform refers to temporal subsampling selection process
and (@5) means every 5th frame.

a low budget. The ideal policy transitions from random se-
lection towards the batch-based acquisition, as the dataset
redundancy goes from low to high. The result tables corre-
sponding to this section are included in the Appendix.

4.4. An exemplar case study: A2D2-3K task

Previous active learning works on semantic segmenta-
tion cover only the combination of a diverse dataset and a
high annotation budget. In contrast, the collected raw data
can be quite redundant, like in video datasets. To study this
missing redundant setting, we propose a new active learning
task A2D2-3K for segmentation based on the A2D2 dataset.
The aim of the new task is to select 3K images (similar size
to Cityscapes) from the original A2D2 dataset (∼40K im-
ages) to achieve the best performance. We select 3K images
using active learning in 3 cycles with 1K images each. We



Dataset ↓ Annotation Budget
Low High

Sup. → AL SSL-AL AL SSL-AL
Diverse Random Random-SSL Single Single-SSL
Redundant Batch Batch Batch Batch-SSL

Table 6: Overview showing the best performing AL method
for each scenario. Single and Batch refer to single-sample
and batch-based method, and Random refers to random se-
lection. Suffix -SSL refers to the usage of semi-supervised
learning.

compare 5 acquisition functions, including Random, En-
tropy, and Coreset, along with SSL integration. Such video
datasets are often manually subsampled based on some
prior information like time or location, and then used for
active learning. Therefore, we also include two such base-
lines - (a) where 3K samples are uniformly selected based
on time information, denoted as Uniform, and (b) where ev-
ery fifth sample is first selected uniformly to select ∼ 8K
samples and then applied with Entropy acquisition function,
denoted as Uniform(@5)+Entropy. The second approach
is closer to previously used active learning benchmarks in
the driving context. Results are shown in Table 5. We find
that the batch-based Coreset-SSL method performs the best,
discussed in Section 4.2, while the subsampling-based ap-
proaches are sub-optimal. This makes an excellent case for
active learning in datasets with high redundancy, as active
learning filters the data better than time-based subsampling
methods.

5. Conclusion

This work shows that active learning is indeed a useful
tool for semantic segmentation. However, it is vital to un-
derstand the behavior of different active learning methods in
various application scenarios. Table 6 provides an overview
of the best performing methods for each scenario. Our find-
ings indicate that single-sample-based uncertainty is a suit-
able measure for sample selection in diverse datasets. In
contrast, batch-based diversity-driven measures are better
suited for datasets with high levels of redundancy. SSL
is successfully integrated with batch-based diversity-driven
methods. However, it can have a detrimental impact when
combined with single-sample-based uncertainty acquisition
functions. Active learning with low annotation budgets is
highly sensitive to the level of redundancy in the dataset.
These findings have been missing in method development,
which are optimized only for a few scenarios. The results
of this study facilitate a broader view on the task with pre-
sumably positive effects in many applications.
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A. Datasets Visualization

Figure 6 shows examples of the A2D2 and the
Cityscapes dataset. Each row shows three temporally con-
secutive frames in both labeled datasets. We clearly observe
that the images in the A2D2 dataset have high-overlapping
information, whereas images in the Cityscapes dataset are
quite diverse. Therefore, to create our redundancy experi-
ments, we chose the A2D2 dataset as the base dataset.

B. Training details

We used the DeepLabv3+ [5] architecture with Wide-
ResNet38 (WRN-38) [38] backbone for all our experi-
ments. The backbone WRN-38 is pre-trained using Ima-
geNet [7]. For the supervised learning setting, the model is
trained using the SGD optimizer with a base-learning rate
of 1e− 3, momentum of 0.9, and a weight decay of 5e− 4.
We utilize a polynomial learning rate scheduler with a batch
size of 8 and train a model in each AL cycle for 100 epochs.
The model is trained with data augmentations, including
random cropping and random horizontal flipping. Input im-
age size is 256×512 for Cityscapes and A2D2 datasets and
321 × 321 for the PASCAL-VOC dataset. We utilize the
s4GAN [26] method for semi-supervised learning (SSL).
We use the same training setting for the segmentation model
as in the supervised setting. We use the same hyperparame-
ters as mentioned in [26], except for the learning rate of the
discriminator which is set to 2.5e − 5 for Cityscapes and
A2D2 experiments. We add 3 dropout layers with a dropout
rate of 0.1 in the decoder of the segmentation model for all
the MCD-based AL methods.

C. Evaluation Metric: AUC@B

We use the following formula to compute the Area Under
the Budget Curve(AUC@B) at a total budget B, where B is
the percentage of the labeled dataset:

AUC@B =

i=N∑
i=1

(bi+1 − bi)(pi + pi+1)

2
(1)

,where N is the number of AL acquisition steps, bi is the
percentage of labeled dataset at step i, and pi is the perfor-
mance of the model in mIoU(%) at step i.

D. Results: AL under Different Budgets

Here, we show the performance curves and tables for dif-
ferent active learning methods in a low annotation budget
setting. This section also contains the remaining curves and
tables in a high annotation budget setting, discussed in the
main paper.
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Figure 6: Consecutive images from the Cityscapes and
A2D2 datasets. This shows even the consecutive images
in the Cityscapes dataset are different and diverse, whereas
consecutive frames in the A2D2 dataset are very similar,
containing redundant information.

A AL Method SSL PASCAL: 2-2
Metric→ mIoU@6 AUC@10

S Random 7 66.41 5.22
S Entropy 7 66.33 5.11
S EqualAL 7 65.04 5.13
B Coreset 7 66.24 5.19
S Random-SSL 3 68.60 5.37
S Entropy-SSL 3 67.26 5.31
S EqualAL-SSL 3 67.44 5.31
B Coreset-SSL 3 68.03 5.35
- 100% 7 77.00 6.16

Table 7: Active Learning results on PASCAL-VOC dataset
in low-budget 2-2 setting. AUC@10 and mIoU@6 metric
are reported. A denotes Acquisition method type. S and
B denotes the single-sample and batch-based acquisition,
respectively.

D.1. Low Budget

For diverse datasets, we evaluate active learning ac-
quisition methods on PASCAL-VOC, A2D2-Pool-0f, and
Cityscapes datasets. For redundant datasets, we show re-
sults on the A2D2-Pool-11f dataset only.
PASCAL-VOC: We show results for the AL methods in
a low-budget setting on the PASCAL-VOC dataset. We
consider the 2-2 setting as the low-budget setting, where
the maximum annotation budget is 10% of the dataset size.
We find that the random-SSL method performs the best. It
shows that none of the AL bias is correctly learned or help-
ful in such a low-budget setting for such a diverse dataset.



10 20 30 40 50
66

68

70

72

74

76

78

% of Labeled Dataset

m
Io
U
(%

)

Random
Entropy
EqualAL
Coreset

Random-SSL
Entropy-SSL
EqualAL-SSL
Coreset-SSL

Full

(a) PASCAL-VOC: 10-10

5 10 15 20 25
62

64

66

68

70

72

74

76

78

% of Labeled Dataset

m
Io
U
(%

)

Random
Entropy
EqualAL
Coreset

Random-SSL
Entropy-SSL
EqualAL-SSL
Coreset-SSL

Full

(b) PASCAL-VOC: 5-5
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(c) PASCAL-VOC: 2-2
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Figure 7: Active learning performance curves on PASCAL-VOC and A2D2:Pool-0f. X-axis shows the percentage of labeled
dataset. The methods which utilize MC-Dropout in their network architecture are marked with ∗, and are only comparable to
other methods with MC-Dropout.

A AL Method SSL A2D2 Pool-0f 2-2 A2D2 Pool-11f 2-2
Metric→ mIoU@6 AUC@10 mIoU@6 AUC@10

S Random 7 36.82 2.92 37.74 2.93
S Entropy 7 41.40 3.18 36.37 2.92
S EqualAL 7 41.13 3.22 37.28 2.97
B Coreset 7 40.18 3.12 39.63 3.10
S Random-SSL 3 37.80 2.99 36.46 2.90
S Entropy-SSL 3 38.32 3.03 36.70 2.93
S EqualAL-SSL 3 39.43 3.07 36.31 3.06
B Coreset-SSL 3 39.28 3.08 39.20 3.06
- 100% 7 56.87 4.55 48.85 3.91

Table 8: Active Learning results on A2D2 Pool-0f in 2-2 setting. AUC@10 and mIoU@6 metrics are reported. A denotes
Acquisition method type. S and B denotes the single-sample and batch-based acquisition, respectively.

The integration of semi-supervised learning with random
selection improves the performance over the supervised ran-
dom sampling baseline. Results are shown in Table 7 and
Figure 7c.
Cityscapes: Table 9 show results on the Cityscapes dataset
in a low annotation budget, 2-2 setting. We find that the
single-sample-based method performs the best. SSL inte-
gration with active learning is only useful for the batch-
based Coreset approach, whereas it is detrimental for other
acquisition functions.

A2D2 Pool-0f: We show results in the low-budget, 2-2 set-
ting for the A2D2 Pool-0f. We find that single-sample-
based methods outperform all the methods. This shows
that active learning is again successful in a low-budget set-
ting when the dataset only covers a specific domain, like
the driving scenario in this case. However, semi-supervised
learning does not help in this case. Results are shown in
Table 8 and Figure 7d.
A2D2 Pool-11f: Table 8 show results on redundant datasets
A2D2-pool-11f in low annotation budget, 2-2 setting. We



A AL Method SSL Cityscapes: 2-2
Metric→ mIoU@6 AUC@10

S Random 7 46.05 3.65
S Entropy 7 51.24 4.00
B Coreset 7 47.26 3.74
S Random-SSL 3 47.46 3.72
S Entropy-SSL 3 49.99 3.93
B Coreset-SSL 3 48.51 3.82
- 100% 7 68.42 5.47

Table 9: Active Learning results on Cityscapes dataset in
low-budget 2-2 setting. AUC@10 and mIoU@6 metric are
reported. A denotes Acquisition method type. S and B
denotes the single-sample and batch-based acquisition, re-
spectively.

find that batch-based methods outperform all the methods.
Redundant datasets still favor the batch-based acquisition
method in the low-budget setting. However, SSL does not
contribute any additional improvements due to insufficient
labeled samples to support learning from unlabeled sam-
ples.

As discussed in the main paper, active learning methods
are highly sensitive to distribution change w.r.t. levels of re-
dundancy in the low-budget setting. The ideal policy tran-
sitions from random selection to single-sample acquisition
and then to batch-based acquisition as the level of redun-
dancy in the dataset goes from low to high.

D.2. High-budget

PASCAL-VOC: Figure 7a and Figure 7b show the AL per-
formance curves for 10-10 and 5-5 settings on the PASCAL-
VOC dataset, respectively. We observe that the single-
sample-based methods with semi-supervised learning per-
form the best. Performance tables for these settings are in-
cluded in the main paper.


