

# Far Away in the Deep Space: Dense Nearest-Neighbor-Based Out-of-Distribution Detection Silvio Galesso Max Argus Thomas Brox



galessos, argusm, brox@cs.uni-freiburg.de

### Dense Out-of-Distribution Detection

**Goal**: detect out-of-distribution objects in semantic segmentation data. Challenges:

- Complex in-distribution data, few classes but diverse appearance.
- Data is not object-centric, entities interact in the scene.
- Need for fast and accurate dense predictions.

Dense OoD Detection with Deep Nearest Neighbors

| SOTA Comparison |              |               |                    |                          |                                    |              |              |               |                                |  |  |
|-----------------|--------------|---------------|--------------------|--------------------------|------------------------------------|--------------|--------------|---------------|--------------------------------|--|--|
| Method          | OE           | Road<br>  AP  | Anomaly $FPR_{95}$ | Stree <sup>.</sup><br>AP | ${\sf tHazards} \\ {\sf FPR}_{95}$ | Method       | OE           | SMIYC<br>  AP | C-Anomaly<br>FPR <sub>95</sub> |  |  |
| DML             |              | 37.0          | 37.0               | 14.7                     | 17.3                               | Resynth.     |              | 52.3          | 25.9                           |  |  |
| MOoSe           |              | 43.6          | 32.1               | 15.2                     | 17.6                               | PEBAL        | $\checkmark$ | 49.1          | 40.8                           |  |  |
| PEBAL           | $\checkmark$ | 62.4          | 28.3               | -                        | -                                  | NFlowJS      |              | 56.9          | 34.7                           |  |  |
| DenseHybrid     | $\checkmark$ | _             | -                  | 30.2                     | 13.0                               | ObsNet       |              | 75.4          | 26.7                           |  |  |
| M2F-EAM         |              | 66.7          | 13.4               | -                        | -                                  | M2F-EAM      |              | 76.3          | 93.9                           |  |  |
| RbA             |              | 78.5          | 11.8               | -                        | -                                  | DenseHybrid  | $\checkmark$ | 78.0          | 9.8                            |  |  |
| Ours Sog V/iT R | <u> </u>     | <u> </u> 85 6 | 0.8                | 16.2                     | 1/ 0                               | RbA          |              | 86.1          | 15.9                           |  |  |
| Ours-Seg. VIT-D |              | 85.9          | <b>9.0</b><br>13.8 | 40.2                     | -                                  | Ours-Seg.ViT | -В           | 88.9          | 11.4                           |  |  |

• On RoadAnomaly, StreetHazards, and SMIYC-Anomaly, kNNs reports



- 1. Select a trained semantic segmentation model.
- 2. Use the model to collect a set of N local reference features  $\mathbf{R} \in \mathbb{R}^{N \times C}$  from in-distribution samples (training dataset). Each feature vector encodes an image patch.
- 3. At inference time, collect features for the test sample:  $\mathbf{T} \in \mathbb{R}^{H \times W \times C}$ .

4. For each test feature, compute the expected  $L_2$  distance to its nearest

- best Average Precision (AP), and False Positive Rate at 95% True Positive Rate (FPR<sub>95</sub>).
- Our approach outperforms methods that make use of out-of-distribution data during training (Outlier Exposure OE).

| Method         | OE | FS-Los<br>AP | st&Found<br>FPR <sub>95</sub> |
|----------------|----|--------------|-------------------------------|
| M2F-EAM        |    | 9.4          | 41.5                          |
| NFlowJS        |    | 39.4         | 9.0                           |
| DenseHybrid    |    | 43.9         | 6.2                           |
| PEBAL          |    | 44.2         | 7.6                           |
| FlowEneDet     |    | 50.2         | <b>5.2</b>                    |
| GMMSeg         |    | 55.6         | 6.6                           |
| Ours-Seg.ViT-B | ✓  | <b>62.2</b>  | 8.9                           |
| Ours-Seg.ViT-B |    | 69.8         | 7.5                           |

- On Fishyscapes Lost & Found, the approach shows better AP.
- FPR<sub>95</sub> is high due to the **small anomalous objects** in the data (kNNs work at lower resolution).
- kNNs benefit from outlier exposure.

### Qualitative examples:



neighbors. The resulting distance map will serve as the **anomaly scores**.

As **baseline** we use model uncertainty, computed as LogSumExp(logits).

### Selecting Good Features

We compare representations from **convolutional** (ResNet, ConvNeXt) and **attention-based** (MiT, ViT) models.

- All networks are trained for supervised semantic segmentation.
- No out-of-distribution data is used.



#### Key findings:

- kNN distances are overall better than model uncertainty.
- Transformer features greatly outperform CNN ones.

State-of-the-Art comparison:

- **RbA** [1] uses the model uncertainty of **MaskFormer**.
- Separate mask prediction gives smoother anomaly scores (row 1).
- It also worsens false positives/negatives (rows 2-4).



## Analysis

What makes attention features well suited for OoD detection with kNNs? Hypotheses:

- Self-attention is an implicit RBF kernel machine, similar to SVMs [2, 3].
- The multi-head architecture reduces the effective feature dimensionality.

Limitations of our approach:

• kNNs resolution is typically lower than model uncertainty and depends

- Attention features (e.g. keys) perform best.
- kNN anomaly scores can be combined with parametric model uncertainty.

# Runtime

- Overall and added runtime depends on the architecture (feature size and resolution).
- Search time for kNNs with 100k reference features (as for other results) is a small fraction.



on the architecture. This harms performance on very small objects.

- Performance is tied to a specific class of models (transformers).
- Additional time and memory requirements, model dependent.

### References

- [1] Nayal et al. Rba: Segmenting unknown regions rejected by all. In ICCV, 2023.
- [2] Song et al. Implicit kernel attention. AAAI, 2021.
- [3] Tarzanagh et al. Transformers as support vector machines, 2023.

**Acknowledgment:** Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) - 417962828