Dense Out-of-Distribution Detection

Goal: detect out-of-distribution objects in semantic segmentation data.

Challenges:
- Complex in-distribution data, few classes but diverse appearance.
- Data is not object-centric, entities interact in the scene.
- Need for fast and accurate dense predictions.

Dense OoD Detection with Deep Nearest Neighbors

1. Select a trained semantic segmentation model.
2. Use the model to collect a set of N local reference features $R \in \mathbb{R}^{N \times C}$ from in-distribution samples (training dataset). Each feature vector encodes an image patch.
3. At inference time, collect features for the test sample: $T \in \mathbb{R}^{H \times W \times C}$.
4. For each test feature, compute the expected L_2 distance to its nearest neighbors. The resulting distance map will serve as the anomaly scores.

As baseline we use model uncertainty, computed as LogSumExp(logits).

Selecting Good Features

We compare representations from convolutional (ResNet, ConvNeXt) and attention-based (ViT, M2F-EAM) models.

- All networks are trained for supervised semantic segmentation.
- No out-of-distribution data is used.

Key findings:
- kNN distances are overall better than model uncertainty.
- Transformer features greatly outperform CNN ones.
- Attention features (e.g., keys) perform best.
- kNN anomaly scores can be combined with parametric model uncertainty.

Runtime

- Overall and added runtime depends on the architecture (feature size and resolution).
- Search time for kNNs with 100k reference features (as for other results) is a small fraction.

Analysis

What makes attention features well suited for OoD detection with kNNs?

Hypotheses:
- Self-attention is an implicit RBF kernel machine, similar to SVMs [2, 3].
- The multi-head architecture reduces the effective feature dimensionality.

Limitations of our approach:
- kNNs resolution is typically lower than model uncertainty and depends on the architecture. This harms performance on very small objects.
- Performance is tied to a specific class of models (transformers).
- Additional time and memory requirements, model dependent.

Qualitative examples

State-of-the-Art comparison:
- Separate mask prediction gives smoother anomaly scores (row 1).
- It also worsens false positives/negatives (rows 2-4).

References

Acknowledgment: Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) - 417962828