

COMPUTER VISION University of Freiburg

A white and a spotted hors on a field of grass.

Red traffic signal in the middle of a **wide** street.

Motivation

Open-vocabulary (OV) Recognition refers to the task of recognizing and understanding any visual concept in an image.

Current OV methods:

- \checkmark Recognize objects beyond a closed-set of categories.
- \checkmark Use available image-text pairs for supervision.
- Extend to new concepts using natural language.
- \times Primarily focus on noun concepts.

 \rightarrow Attributes are important for an object's identity. They help distinguish different instances of the same class and enable better interpretation of scenes and decision-making.

OVAD: Open-vocabulary Attribute Detection Task

,				
		Object class: bear	Object class: car	Obj
	Bear	Attributes	Attributes	Att
		color quantity: two	color quantity: one	fac
		color: black and brown	color: <mark>red</mark>	gro
	Car Car	group: single	group: single	hai
		material: wood	material: wood	hai
		maturity: adult	optical prop: opaque	hai
		position: upright	patterns: lettered	hai
		size: <mark>big</mark>	state: piece / cut	mat
	WARNING	state: dry	texture: smooth	pos
	This could happen to our vehicle!	texture: smooth	tone: dark	clo
		tone: <mark>dark</mark>		
	Person Network			

Objective: To evaluate the ability of visual-language models to recognize object attributes. The OVAD task consists of two stages:

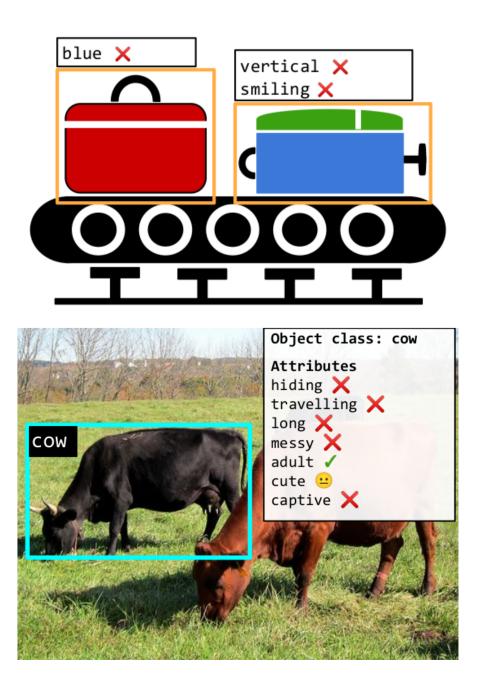
- **Open-vocabulary object detection**: To detect an open-set of object classes.
- . **Open-vocabulary attribute recognition**: To identify an open-set of attributes for each detected object.

Attribute Benchmarks' Annotations

Test Dataset Requirements: Object and attribute annotations that are correct, dense, unambiguous, and visually consistent.

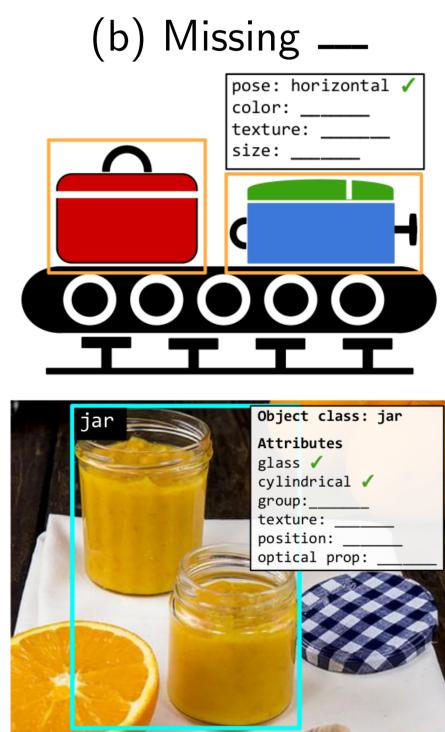
Four major types of errors in previous datasets.

(c) Ambiguous ?

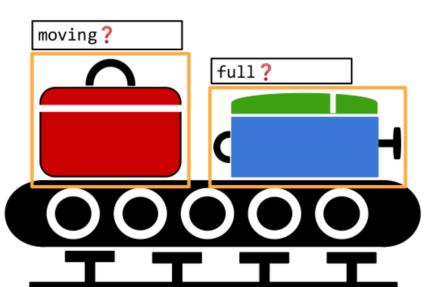


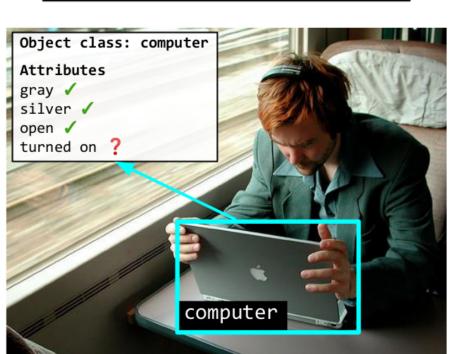
(a) Incorrect X

Objects with possible but incorrect attribute annotations.



Objects with missing attribute annotations.





Attributes which cannot be marked using the image due to incomplete information.

Open-vocabulary Attribute Detection

María A. Bravo

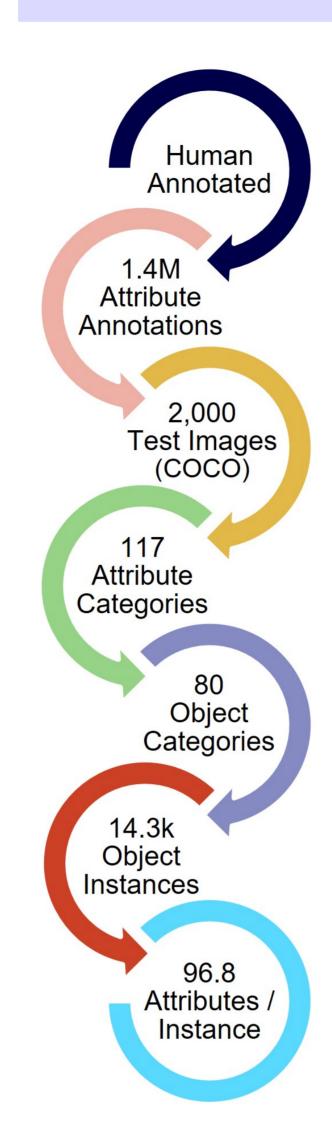
Sudhanshu Mittal Simon Ging

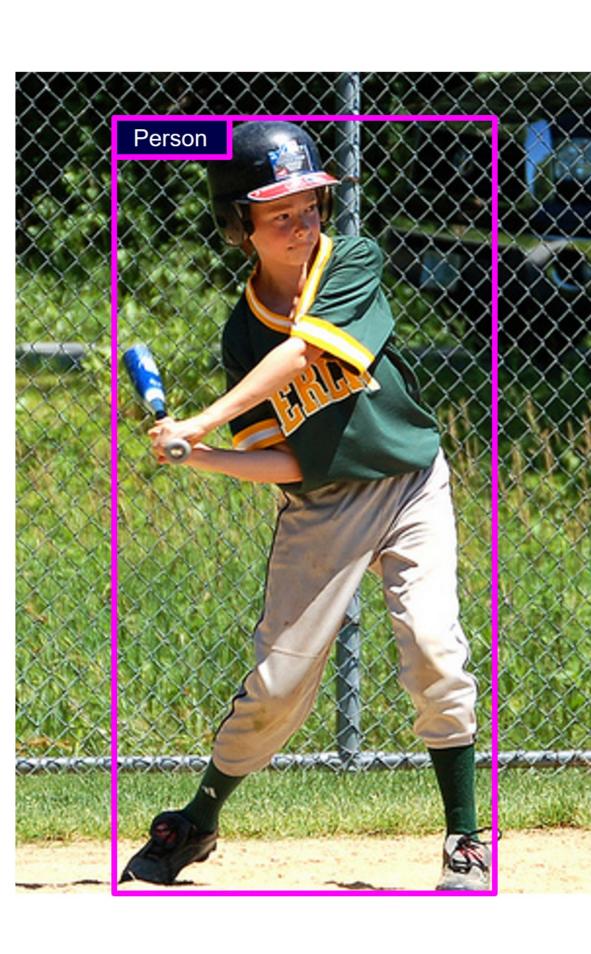
bject class: person ttributes ace exp: surprise roup: single air color: <mark>black</mark> air length: short ir tone: dark air type: straight aturity: adult osition: upright lothes color: white

heavy 😐 stinky 😐 00000**T T T** Object class: person Attributes hiding X elebrating 🤅 hirsty 😐

(d) Non-visual 😐

Attributes that cannot be marked using the visual information.





clothes color: green, white

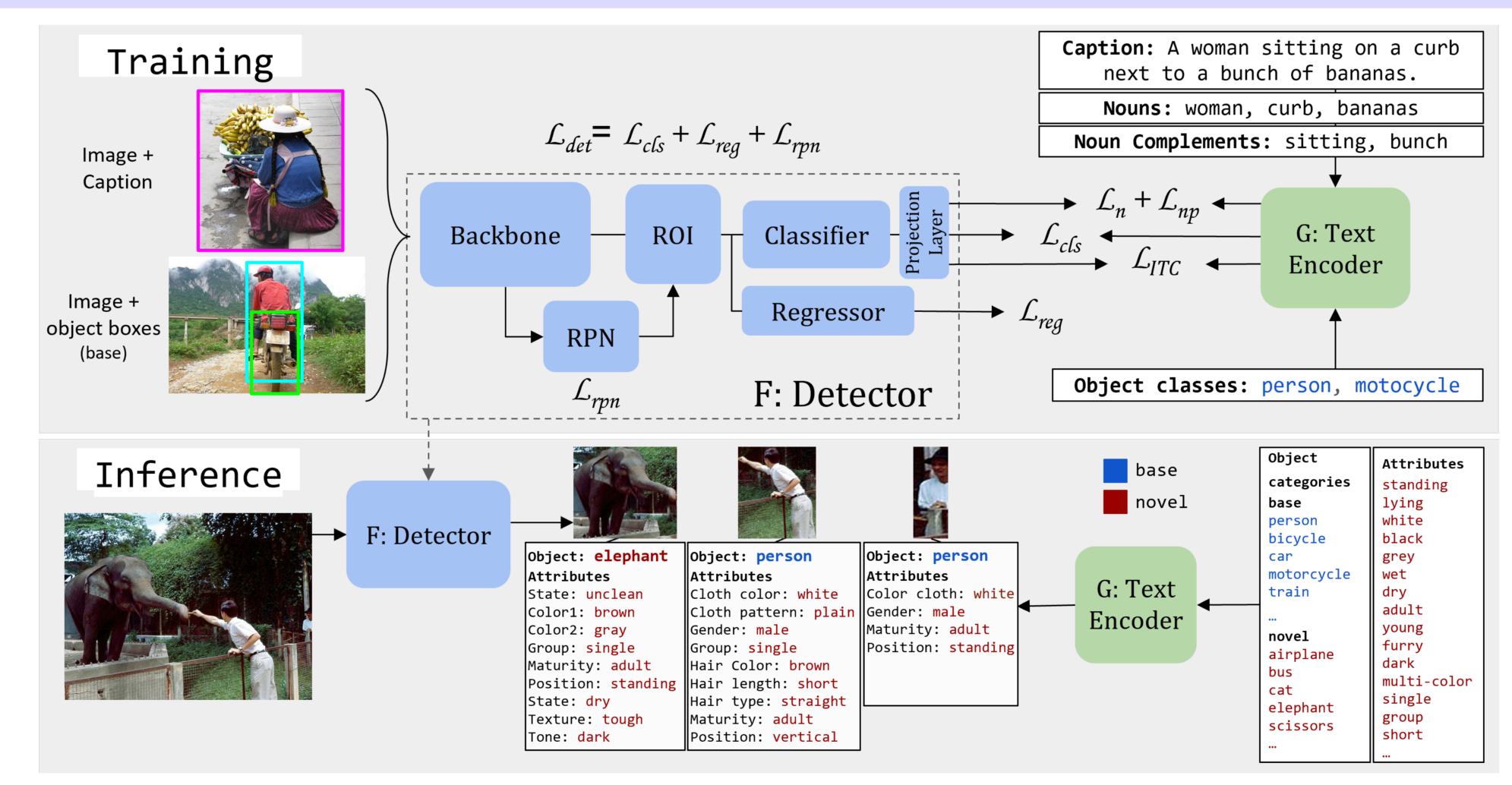
lothes pattern: lettered face expression: neutral maturity: young osition: standing

messy / ordered lying / sitting

female / male hair color: black / blue / brown / hair tone: dark / light hair type: curly / straight

Attributes are positive, negative or unknown.

OVAD Baseline



Training: A two-stage detector that matches image regions with text embeddings.

- 1. Use image-caption pairs and object detection annotations from base object classes.
- 2. Extract parts-of-captions: nouns and noun complements, as signals for learning visual-text alignment.

Inference:

- 1. Generates visual embeddings for objects.
- 2. Detects objects and attributes via cosine similarity with the class text embeddings.

Thomas Brox

Evaluation Modes:

Detect objects and their attributes

Detect attributes given the object box

Attributes

color: brown
group: single
maturity: adult
pattern: plain

position: upright

state: dry
texture: soft

color quantity: single

1. Full evaluation: (Steps 1+2)

Step 1

dog

Step 2

Attributes

color quantity:

pattern: plain

position: vertical texture: smooth

material: polymers

optical property: o

group: single

2. Box-oracle: (Step 2)

{bravoma, mittal, gings, brox}@cs.uni-freiburg.de

OVAD Dataset

- dotted / floral / plaid
- angry / happy / sleepy /
- ′ ceramic / glass / : opaque / transparent ,
- empty / closed / dry / full /...
- : bald / long / short

Parts-of-caption Ablation

$\begin{array}{c} box+cls \\ \mathcal{O}^B \end{array}$	captions	nouns	noun phrases	noun comp.	OVAD mAP	AP ₅₀ - OVD-80 Novel (32)
\checkmark			•	•	11.7	0.3
\checkmark	\checkmark				15.0	19.2
\checkmark	\checkmark	\checkmark			16.2	23.2
\checkmark	\checkmark	\checkmark	\checkmark		15.9	23.7
\checkmark	\checkmark	\checkmark		\checkmark	18.8	24.7

- The parts-of-caption help the model segregate the information in the caption, improving the object and attribute performance.
- Noun complements makes the attribute supervision more explicit and improves the performance.

Method		0	VAD		Generalized OVD-80				
INIELIIUU	All	Head	Medium	Tail	Novel (32)	Base (48	3) All (80)		
Chance	8.6	36.0	7.3	0.6	-	-	-		
OV-Faster-RCNN	11.7	34.4	13.1	1.9	0.3	53.3	32.1		
VL-PLM [1]	13.2	32.6	16.3	2.6	19.7	58.8	43.2		
Detic [2]	13.3	44.4	13.4	2.3	20.0	49.2	37.5		
Rasheed et al. [3]	14.6	33.5	18.7	2.8	32.5	56.6	46.9		
LocOv [4]	14.9	42.8	17.2	2.2	22.5	52.5	40.5		
OVR [5]	15.1	46.3	16.7	2.1	17.9	51.8	38.2		
OVAD Baseline	18.8	47.7	22.0	4.6	24.7	49.1	39.3		

			OVAD	Boy] [(;	#) Dataset	#Images	#Captions	#Objects	#Regions
Method	Training Data	All	Head I		n Tail		a) COCO Captions	0.12M	0.57M	-	-
Chance	_	8.6	36.0	7.3	0.6		b) COCO Objects 2) RefCOCO+	0.12M 0.019M	-	0.86M	- 0.14M
CLIP RN50 [6]	400M (9)	15.8	42.5	17.5	4.2		(3) VG	0.019M	-	- 2.5M	5.4M
CLIP VIT-B16 [6]	400M (9)	16.6	43.9	18.6	4.4		4) SBU Captions	1M	1M	_	-
Open CLIP RN50 [7]	12M (7b)	11.8	41.0	11.7	1.4		5) OpenImages	1.7M	0.67M	4.4M	3.3M
Open CLIP ViT-B16 [7]	400M (8b)	16.0	45.4	17.4	3.8	1 I Y	(6) Objects365 (a) CC-3M	1.8M 2.95M		29M	-
Open CLIP ViT-B32 [7]	2B (8c)	17.0	44.3	18.4	5.5		'b) CC-12M	11.1M	2.95M 11.1M	_	-
	4M (1a,3,4,7a)	15.6	43.1	17.3	3.7		Ba) LAION	115M	115M	_	-
ALBEF [8]	14M (1a,3,4,7)	15.3	43.7	17.1	3.0		b) LAION	400M	400M	-	-
ALBEF [8]	14M $(1a, 3, 4, 7) + ft(2)$	21.0	44.2	23.9	9.4		Bc) LAION	2B	2B	-	-
BLIP [9]	14M (1a,3,4,7)	17.0	46.6	18.3	5.0	1 [(9) CLIP 400M	400M	400M	_	-
BLIP [9]	129M (1a,3,4,7,8a)	18.2	44.4	20.7	5.7		M = 100	facus an	abiact a		nd ctrue
BLIP [9]	129M $(1a,3,4,7,8a) + ft(1a)$	24.3	51.0	28.5	9.7	 VLMs tend to focus on object classes and strugg with fine-grained aspects like attributes. 					
$BLIP-2_{\mathrm{Large}}$ [10]	129M (1a,3,4,7,8a)	20.1	49.3	23.2	5.9						
BLIP-2 [10]	129M (1a,3,4,7,8a)	21.6	44.7	24.0	10.3		The quality of	the trai	ning data	a has a	greater
BLIP-2 [10]	129M (1a,3,4,7,8a) + ft(1a)	25.5	49.8	30.5	10.9				-		Bicatei
X-VLM [11]	4M (1*,3*,4,7a)	25.9	50.3	32.0	9.8		pact than its q	luantity	or mode	I SIZE.	
X-VLM [11]	$ 16M(1^*, 3^*, 4, 5^*, 6^*, 7) + ft(2) $	26.2	48.7	31.2	12.1	• Fine-grained alignment between image regions					regions a
X-VLM [11]	16M (1*,4*,4,5*,6*,7)	28.1	49.7	34.2	12.9		text (X-VLM)	U		Ŭ	U
OVAD Baseline-Box	0.11M (1a,1b* ^{base})	21.4	48.0	26.9	5.2		standing of vis	•	-	P10105	

* use of localization information from the annotations.

- + ft: final fine-tuning using the captions of this dataset.

[1]	S. Zhao et al., "Exploiting unlabeled da
[2]	X. Zhou et al., "Detecting twenty-thous
[3]	H. A. Rasheed et al., "Bridging the gap
[4]	M. Bravo et al., "Localized vision-langu
[5]	A. Zareian et al., "Open-vocabulary obj
[6]	A. Radford et al., "Learning transferable
[7]	G. Ilharco et al., "Openclip," 2021. [Onl
[8]	J. Li et al., "Align before fuse: Vision a
[9]	——, "Blip: Bootstrapping language-im
10]	—, "Blip-2: Bootstrapping language-
11]	Y. Zeng et al., "Multi-grained vision lan

This work was supported by the German Academic Exchange Service (DAAD) - 57440921 Research Grants - Doctoral Programmes in Germany, 2019/20. This work was partially funded by the German Research Foundation (DFG) - 401269959 and 417962828.

Results

OVD Models on **OVAD**, Full Evaluation Setting

- OVAD Baseline outperforms the latest OVD models on the OVAD task.
- OVD methods achieve results above the chance level on attribute detection even when trained only for object detection.
- Methods that incorporate image region with text-parts alignment (LocOv, OVR, OVAD Baseline) achieve better performance.

Large Vision-Language Models on OVAD, Box-oracle Setting

- m–
- าป erstanding of visual attributes

Conclusions / Contributions

• We propose the open-vocabulary attribute detection (OVAD) task to study vision-language models' ability to recognize attributes. • We introduce the OVAD benchmark, a clean and densely annotated object-level attribute dataset for evaluating the OVAD task. • We provided a baseline method that exploits fine-grained information contained in captions.

• We found that the performance of foundation models on attributes stays clearly behind their performance on objects.

References

- lata with vision and language models for object detection," in ECCV, 2022.
- usand classes using image-level supervision," in ECCV, 2022.

b between object and image-level representations for open-vocabulary detection," in NeurIPS, 2022. uage matching for open-vocabulary object detection," in GCPR, 2022.

- ject detection using captions," in CVPR, 2021.
- le visual models from natural language supervision," in ICML, 2021.
- nline]. Available: https://doi.org/10.5281/zenodo.5143773
- and language representation learning with momentum distillation," in NeurIPS, 2021.
- mage pre-training for unified vision-language understanding and generation," in ICML, 2022.
- -image pre-training with frozen image encoders and large language models," in ICML, 2023. nguage pre-training: Aligning texts with visual concepts," in ICML, 2022.

Acknowledgements

