
A Benchmark and a Baseline for Robust Multi-view Depth Estimation
– Appendix –

A1. Test sets

As specified in the main paper in Sec. 3.1, Test sets, we
provide more details on the construction of the test sets for
the Robust MVD Benchmark in the following.
KITTI [17] The KITTI test set is based on the commonly
used Eigen test split [3], which contains 697 samples. More
specifically, evaluation is done only on samples of the Eigen
split where dense ground truth depth from Uhrig et al. [17]
is available (652 samples), and where ground truth poses
from the KITTI odometry benchmark are available (95 sam-
ples). For each sample, sequences with 10 source views be-
fore and 10 source views after the keyview are used. This
additional restriction leads to the final KITTI test set with
93 samples.
ETH3D [14] On ETH3D, the test set is based on
the original training split of the high-resolution multi-
view benchmark with a total of 13 sequences and 454
views. For the test set, 8 views of each sequence
are used as keyviews, resulting in a total of 104 sam-
ples. Each sample contains 10 source views, using the
view selection provided by https://github.com/
FangjinhuaWang/PatchmatchNet [19].
ScanNet [2] The ScanNet test set is based on the split from
Teed and Deng [16], which in turn extends the split by Tang
and Tan [15]. The split consists of 2000 samples taken from
90 of the 1513 totally available sequences. Each sample
comprises a keyview and 7 source views, with 3 views be-
fore and 4 views after the keyview. For the benchmark test
set, every 10th sample of the original split is used, resulting
in a total of 200 samples. Images are resized to a resolution
of 640x480px to match ground truth depth maps.
DTU [7, 1] On DTU, the test set is based on the evaluation
split used in MVSNet [23]. The split comprises 22 scans,
where each scan has 49 frames. For the benchmark test
set, 5 views of each scan are used as keyviews, resulting
in a total of 110 samples. Each sample contains 10 source
views, using the view selection and depth maps provided by
https://github.com/YoYo000/MVSNet [23].
Tanks and Temples (T&T) [8] The Tanks and Temples
test is based on the scenes ”Barn”, ”Courthouse”, ”Church”,
and ”Ignatius” from the original training split. Other scenes
from the training split were not used, as they were not avail-

able for download at the time of writing. To construct the
test set, we start with the provided image sets of the respec-
tive scenes. We reconstruct camera poses and intrinsics by
running COLMAP [13, 12] on the images. The reconstructed
camera poses are aligned with the ground truth using the
evaluation script from Tanks and Temples (https:
//github.com/isl-org/TanksAndTemples/
tree/master/python_toolbox/evaluation).
To obtain ground truth depth maps for each image, we use
the provided ground truth pointclouds for each scene and
project the points into images. After outlier filtering, we
obtain ground truth depth maps, as shown in Fig. A1. To
speed up evaluation, only few images per scene are used as
keyviews for the test set (Barn: 18; Church: 25; Couthouse:
13; Ignatius: 13), resulting in a total of 69 samples. For
each keyview, 10 source views are used, which are selected
with the view selection script from https://github.
com/FangjinhuaWang/PatchmatchNet/blob/
main/colmap_input.py [19].

(a) (b) (c) (d)

Figure A1. Tanks and Temples ground truth depth: the first row
shows keyview images, the second ground truth depth maps that
were reconstructed from the provided pointclouds. (a) Barn scene.
(b) Church scene. (c) Courthouse scene. (d) Ignatius scene.

A2. Uncertainty estimation metrics
As specified in the main paper in Sec. 3.1, Uncertainty

estimation metrics, we provide further details on the un-
certainty estimation metrics and evaluation results in the
following. In the main paper, we show Sparsification Er-
ror Curves for all evaluated models. Additionally, here, we
explain and provide Sparsification Curves for all evaluated
models, which should help in interpreting the Sparsification
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Error Curves.
Sparsification Curves Sparsification Curves indicate the
error reduction on a metric (here: the Absolute Relative Er-
ror) when excluding a certain fraction of pixels from the
metric computation based on some ranking. This ranking
can be based on estimated uncertainties or on actual errors
relative to the ground truth. When using estimated uncer-
tainties for the ranking, a monotonically decreasing Sparsi-
fication Curve indicates that uncertainties are aligned with
actual errors. The ranking based on actual errors to the
ground truth is referred to as Oracle Sparsification Curve
and serves as a lower bound, as it represents a hypothetical
optimal alignment of uncertainties and actual errors. Hence,
smaller differences between both Sparsification Curves in-
dicate better uncertainty estimates. The Sparsification Er-
ror Curves from the main paper are the curves that one ob-
tains when taking the difference between both Sparsifica-
tion Curves.

Both Sparsification Curves (Oracle and uncertainty-
based) for different models are shown in Fig. A2 and A3.
The difference between both curves are exactly the Sparsifi-
cation Error Curves of the respective models that are shown
in Fig. 3 of the main paper.

Finally, as a side-note, Sparsification can be measured
on each sample individually, or on the whole test set. In this
work, we compute Sparsification Curves on each sample of
a test set individually and then compute the average across
all samples in the test set. Following this, we compute the
average across all test sets. In Fig. A2 and A3, we plot the
average across all test sets in a bold color and indicate the
Sparsification Curves on individual test sets in light colors.
Additionally, we indicate the standard deviation across test
sets as shaded areas in the plots.
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Figure A2. Sparsification Curves for the Robust MVD Baseline
model, MVSNet, Vis-MVSNet and PatchmatchNet. The differ-
ence between both curves is exactly the Sparsification Error Curve
from Fig. 3 in the main paper.
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Figure A3. Sparsification Curves for Fast-MVSNet, CVP-
MVSNet and MVS2D. The difference between both curves is ex-
actly the Sparsification Error Curve from Fig. 3 in the main paper.

A3. Model runtimes
As specified in Sec. 3.2, Performances depending on

source views of the main paper, we plot model runtimes for
different numbers of source views in Fig. A4 and A5.
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Figure A4. Model runtimes for different numbers of source
views for DeepTAM, DeepV2D, MVSNet and Vis-MVSNet on
all test sets. Different runtimes on the test sets are due to different
input resolutions.



Figure A5. Model runtimes for different numbers of source
viewsfor PatchmatchNet, Fast-MVSNet, MVS2D and the Robust
MVD Baseline model on all test sets. Different runtimes on the
test sets are due to different input resolutions.

Operation Kernel Stride Ch I/O InpRes OutRes Input Output
(1) Siamese encoder
for each viewi = 0 ; ::; k:

convolution 7� 7 2 3=64 768� 384 384� 192 ImageI i conv1i

convolution 5� 5 2 64=128 384� 192 192� 96 conv1i conv2i

convolution 3� 3 2 128=256 192� 96 96� 48 conv2i conv3ai
(2) Plane sweep correlation
for each source viewi = 1 ; ::; k:

correlate view0 andi - - 256=n = 256 96� 48 96� 48 conv3a0; conv3ai costvolumeCi

(3) Context encoder
convolution 1� 1 1 256=32 96� 48 96� 48 conv3a0 ctx
(4) Costvolume fusion
4.1 for each source viewi = 1 ; ::; k:

convolution 3� 3 1 256=128 96� 48 96� 48 Ci convf1i

convolution 3� 3 1 128=1 96� 48 96� 48 convf1i weightwi

4.2 fuse to costvolumeC: - - 256=256 96� 48 96� 48 Ci , wi C
C = (

P
exp(wi ) � Ci )=(

P
exp(wi ))

(5) Costvolume Decoder
convolution 3� 3 1 288=256 96� 48 96� 48 C+ctx conv3b
convolution 3� 3 2 256=512 96� 48 48� 24 conv3b conv4a
convolution 3� 3 1 512=512 48� 24 48� 24 conv4a conv4b
convolution 3� 3 2 512=512 48� 24 24� 12 conv4b conv5a
convolution 3� 3 1 512=512 24� 12 24� 12 conv5a conv5b
convolution 3� 3 2 512=1024 24� 12 12� 6 conv5b conv6a
convolution 3� 3 1 1024=1024 12� 6 12� 6 conv6a conv6b
convolution 3� 3 1 1024=2 12� 6 12� 6 conv6b pred6
transposed convolution 4� 4 2 1024=512 12� 6 24� 12 conv6b upconv5
convolution 3� 3 1 1025=512 24� 12 24� 12 upconv5+pr6+conv5b iconv5
convolution 3� 3 1 512=2 24� 12 24� 12 iconv5 pred5
transposed convolution 4� 4 2 512=256 24� 12 48� 24 iconv5 upconv4
convolution 3� 3 1 769=256 48� 24 48� 24 upconv4+pr5+conv4b iconv4
convolution 3� 3 1 256=2 48� 24 48� 24 iconv4 pred4
transposed convolution 4� 4 2 256=128 48� 24 96� 48 iconv4 upconv3
convolution 3� 3 1 385=128 96� 48 96� 48 upconv3+pr4+conv3b iconv3
convolution 3� 3 1 128=2 96� 48 96� 48 iconv3 pred3
transposed convolution 4� 4 2 128=64 96� 48 192� 96 iconv3 upconv2
convolution 3� 3 1 193=64 192� 96 192� 96 upconv2+pr3+conv20 iconv2
convolution 3� 3 1 64=2 192� 96 192� 96 iconv2 pred2
transposed convolution 4� 4 2 64=32 192� 96 384� 192 iconv2 upconv1
convolution 3� 3 1 97=32 384� 192 384� 192 upconv1+pr2+conv10 iconv1
convolution 3� 3 1 32=2 384� 192 384� 192 iconv1 pred1

Table A1. Architecture of the Robust MVD Baseline model.
The model is based on a DispNet architecture. The notation is
the same as in the main paper,i.e. the model takes viewsV =
(V0 ; � � � ; Vk ) as input whereV0 is the keyview with an imageI 0

andV1;::;k are source views with imagesI i;::;k . n is the number of
candidate inverse depth values in the plane sweep correlation layer
(here: 256). The resolutions are indicated for training settings and
differ for test inputs. The table is adapted from [10].

A4. Model architecture

As speci�ed in Sec. 4.1,. Model architecture of the main
paper, we provide further details on the model architecture
in the following.

The architecture is based on a standard DispNetC archi-
tecture [10] with the following adaptations: (1) the corre-
lation layer is replaced by a plane sweep correlation layer,
(2) costvolumes from multiple views are fused via weighted
averaging with learned weights, and (3) all outputs have two
channels instead of one, with the additional channel being
the scale parameter of the predicted Laplace distribution. A
summary of the architecture is provided in Tab. A1.

Instead of the original DispNet correlation layer, the
model correlates in a plane sweep stereo fashion, which has
been shown to work well in other multi-view depth architec-
tures [16, 27, 23, 9, 5]. For each featuref0 at a location0x
in the keyviewV0, pointsi x in a source viewVi are sampled
by reprojecting0x to the viewVi image plane for different
candidate inverse depth valuesd as follows [4]:

i ~x (d) = K i � i
0R � K � 1

0 � 0~x + K i � i
0t � d; (1)

with 0~x andi ~x denoting0x andi x in homogeneous coordi-
nates. We usen = 256 candidate inverse depth valuesd that
are spaced equidistantly in the rangedmin = 0 :001 m� 1 to
dmax = 2 :5 m� 1. Given these sampling points, features



Approach GT GT Align StaticThings3D BlendedMVS
Poses Range rel # � " AUSE # time [s] rel # � " AUSE # time [s]

a) Classical:
COLMAP [13, 12] 3 7 7 5.8 79.5 - � 2 min 1.4 97.2 - � 2 min
COLMAP Dense [13, 12] 3 7 7 16.6 65.7 - � 2 min 4.2 92.3 - � 2 min

b)
DeMoN [18] 7 7 kt k 36.4 6.3 - 0.07 34.4 14.5 - 0.08
DeepV2D ScanNet[16] 7 7 med 23.1 15.4 - 2.73 - - - -
DeepV2D KITTI[16] 7 7 med - - - - - - - -

c)
MVSNet [23] 3 3 7 38.9 39.0 0.45 0.06 5.0 80.7 0.30 0.03
MVSNet Inv. Depth [23] 3 3 7 26.5 43.3 0.59 0.12 46.1 14.8 0.38 0.07
Vis-MVSNet [26] 3 3 7 10.4 59.3 0.42 0.47 2.5 92.6 0.20 0.47
CVP-MVSNet [21] 3 3 7 - - - - - - - -
PatchmatchNet [19] 3 3 7 7.6 58.1 0.58 0.07 22.1 27.9 0.43 0.05
Fast-MVSNet [25] 3 3 7 24.9 42.7 0.52 0.26 13.0 59.2 0.45 0.11
MVS2D DTU [22] 3 3 7 88.3 2.6 0.52 0.04 38.9 7.3 0.54 0.04
MVS2D ScanNet[22] 3 3 7 39.9 2.7 - 0.04 64.3 1.6 - 0.04

d) Absolute scale:
DeMoN [18] 3 7 7 36.3 6.2 - 0.08 44.2 7.6 - 0.08
DeepTAM [27] 3 7 7 - - - - - - - -
DeepV2D KITTI [16] 3 7 7 - - - - - - - -
DeepV2D ScanNet[16] 3 7 7 86.2 1.8 - 1.92 - - - -
MVSNet [23] 3 7 7 26.1 42.2 0.48 0.12 - - - -
MVSNet Inv. Depth[23] 3 7 7 53.4 4.7 - 0.14 29.1 48.7 - 0.07
CVP-MVSNet [21] 3 7 7 - - - - - - - -
Vis-MVSNet [26] 3 7 7 9.6 59.2 0.39 0.47 - - - -
PatchmatchNet [19] 3 7 7 42.5 2.6 0.36 0.04 44.7 8.4 0.38 0.06
Fast-MVSNet [25] 3 7 7 26.1 35.9 - 0.21 174.5 15.8 - 0.19
MVS2D ScanNet[22] 3 7 7 92.4 0.0 - 0.04 29.9 52.3 - 0.05
MVS2D DTU [22] 3 7 7 97.2 0.0 0.02 0.04 45.6 21.1 0.19 0.04
Robust MVD Baseline 3 7 7 6.3 54.7 0.19 0.04 3.4 81.4 0.20 0.04

Table A2.Quantitative results on StaticThings3D and BlendedMVS test sets.Results are reported for the Absolute Relative Error (rel),
the Inlier Ratio (� ) with a threshold of1:25, the Area Under Sparsi�cation Error Curve (AUSE) and the model runtime in seconds. Results
are for the quasi-optimal selection of source views. COLMAP results are not directly comparable due to a lower prediction density.

f i = F i ( i x) are sampled from the viewVi feature mapF i

with bilinear interpolation. The sampled features are com-
pared to the keyview feature with a dot productf0 � f i , re-
sulting in correlation scores for all candidate inverse depth
values. This is done for all keyview features, resulting in a
costvolumeCi with pixel-wise correlation scores.

The costvolumes from multiple source views are fused
via weighted averaging and mapped to the predicted inverse
depth map and uncertainty map by the costvolume decoder
network.

A5. Training details
Training is done with four source views. On Stat-

icThings3D, we randomly sample source views within a
range of� 3 frames around the keyview. On BlendedMVS,
we randomly sample from the ten best source views as
in [19]. Other than this, we use similar hyperparameters as
in the original DispNet,e.g. train for 600k iterations (ca. 60
hours on a single 3090 RTX GPU), use the Adam optimizer,
start with a learning rate of 1e-4 and decay it by a factor of
0.5 after 300k, 400k and 500k iterations. The network out-
puts predicted inverse depth maps at different resolutions

and is trained with a negative log-likelihood loss for every
resolution (see [6]).

A6. StaticThings3D and BlendedMVS Results
The proposed Robust MVD Baseline model is trained on

StaticThings3D and BlendedMVS. In the main paper, we
did not evaluate on these datasets, as these datasets are not
commonly used for evaluation and as StaticThings3D has
little overlap with real-world data. We provide results on
test sets from these two datasets in the following.
StaticThings3D (ST3D) test setThe StaticThings3D test
split contains 600 sequences with 10 views each. We de�ne
one sample per sequence, using the �fth view as keyview
plus 4 source views before and 5 after the keyview, resulting
in 600 samples. To speed up evaluation, we use every 10th
sample for the test set, resulting in a total of 60 samples.
BlendedMVS (BMVS) [24] test setThe BlendedMVS test
set is based on the original validation split, which contains
7 scenes with a total of 915 frames. For each frame, a selec-
tion of 10 source views is provided by the authors. For our
test set, we use 10 frames per scene as keyviews, resulting
in a total of 70 samples.
Results Results are provided in Tab. A2.




