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Abstract

Recent deep learning approaches for multi-view depth
estimation are employed either in a depth-from-video or a
multi-view stereo setting. Despite different settings, these
approaches are technically similar: they correlate multiple
source views with a keyview to estimate a depth map for the
keyview. In this work, we introduce the Robust Multi-view
Depth Benchmark that is built upon a set of public datasets
and allows evaluation in both settings on data from differ-
ent domains. We evaluate recent approaches and find im-
balanced performances across domains. Further, we con-
sider a third setting where camera poses are available and
the objective is to estimate the corresponding depth maps
with their correct scale. We show that recent approaches
do not generalize across datasets in this setting. This is be-
cause their cost volume output runs out of distribution. To
resolve this, we present the Robust MVD Baseline model
for multi-view depth estimation, which is built upon exist-
ing components but employs a novel scale augmentation
procedure. It can be applied for robust multi-view depth
estimation, independent of the target data. We provide
code for the proposed benchmark and baseline model at
https://github.com/lmb-freiburg/robustmvd.

1. Introduction

Since the early days of computer vision, depth is re-
constructed using the motion parallax between multiple
views [13, 11, 15, 16]. The principle of motion parallax is
generic. It works the same in all domains, just like physics
is the same everywhere in the world. Consequently, classi-
cal geometry-based approaches are not bound to a training
distribution, but are agnostic to data from different domains.

In recent years, approaches based on deep learning have
emerged for multi-view depth estimation. They are em-
ployed either in a depth-from-video setting with images
from a video with small and incremental but unknown cam-
era motion [22, 31, 19], or a multi-view stereo setting with
unstructured but calibrated image collections [6, 27, 12].
Usually, at the core of these approaches are deep networks
that correlate learned features from multiple images and
learn to decode the obtained cost volume to an estimated
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Figure 1. We introduce the Robust Multi-View Depth (MVD)
Benchmark to evaluate multi-view depth estimation models re-
garding robust application on arbitrary real-world data. The
benchmark comprises evaluation of depth and uncertainty esti-
mates on multiple existing datasets from different domains and
includes a setting with given camera poses and evaluation against
absolute depth maps at real-world scale. We provide a baseline
model that is built on existing components and generalizes well
across domains and can be applied and extended for robust multi-
view depth estimation. Predictions shown above are from the base-
line model on benchmark data. Purple colors indicate small values,
red colors large values, and the ranges are given in meters.

depth map. This design, in principle, allows the network
to base its estimates on the motion parallax, which should
enable good generalization across domains and consistent



predictions for different scene scales. However, approaches
are often evaluated only on data similar to their training do-
main. Furthermore, evaluation is predominantly done only
up to a relative scene scale: in depth-from-video, predic-
tions are aligned to ground truth depths based on the me-
dian values; in multi-view stereo, models are supplied with
minimum and maximum depth values and predict relative
values within this range.

In this work, we introduce a benchmark based on exist-
ing datasets to evaluate multi-view depth models regarding
generalization across domains. Moreover, as specific cases
like small camera motion, occlusions, or texture-less re-
gions are potentially problematic, it is beneficial if a model
comes with a measure of its uncertainty, which should be
aligned with the depth prediction error. In particular, the
Robust Multi-view Depth Benchmark (1) evaluates esti-
mated depth maps on data from different domains in a ze-
ro-shot fashion and (2) evaluates uncertainties with the Area
Under Sparsification Error Curve metric. Further, it (3) in-
cludes evaluation in an absolute setting where ground truth
camera poses are given to the model and evaluation is done
against ground truth depths at their correct scale. As the
scale is provided through the poses, evaluation is done with-
out a given depth range and without alignment. This setting
is relevant in practice, e.g. in robotics or multi-camera se-
tups where camera poses are known.

We evaluate the depth and uncertainty estimates of re-
cent models in their original relative depth-from-video or
multi-view-stereo settings, as well as in the absolute depth
estimation setting described above. We find that (1) almost
all models have imbalanced performances across domains,
(2) uncertainties show only limited alignment with the pre-
diction error, and (3) models mostly perform well on a rela-
tive scale, but cannot be directly applied to estimate depths
with their correct scale across datasets. We attribute the
problems at an absolute scale to out-of-distribution statis-
tics in the correlation cost volume: depth-from-video mod-
els learn to use only the cost volume scores corresponding
to absolute depth values seen during training; multi-view
stereo models overfit to the cost volume distributions within
the given minimum and maximum depth values and hence
require a sufficiently accurate depth range to be known.

The problems in depth estimation at absolute real-world
scale limit practical application. To resolve this, we build
a simple baseline model for robust cross-domain, scale-
agnostic multi-view depth estimation. The model is mostly
based on existing components, such as the DispNet archi-
tecture [14] and trained on the BlendedMVS dataset [28]
and a static version of the FlyingThings3D dataset [14]. We
only add scale augmentation as a new component to ran-
domize across scales during training. This plain baseline
achieves what the use of motion parallax promises: it gen-
eralizes across domains and scales.

2. Previous methods and benchmarks
Depth-from-video In depth-from-video, depth maps are
estimated from consecutive images of a video. Typically, it
is assumed that the camera intrinsics are known, but not
the camera motion. Hence, the task usually also com-
prises estimating the camera motion between images. De-
MoN [22] was the first deep learning based approach for
this task. DeMoN consists of a single network, which esti-
mates depth and camera motion jointly from a pair of con-
secutive images. Later approaches are DeepTAM [31] and
DeepV2D [19], which both process more than two frames,
and estimate depth and camera motion with separate map-
ping and tracking modules, that are applied alternatingly.
In such approaches, the mapping and tracking module typ-
ically overfit to the scene scale seen during training. Ap-
plying the models to scenes at a different scale requires
aligning predictions to the scene scale based on additional
information. Furthermore, our studies show that the map-
ping modules of such approaches do not generalize across
scale, i.e. it is not generally possible to input ground truth
camera poses at real-world scale and obtain absolute depth.
We argue that this is a shortcoming, as the concept of map-
ping motion parallaxes to depths given camera motion is
independent of the scale.

Multi-view stereo In multi-view stereo, the task is to es-
timate the 3D geometry of an observed scene from an un-
structured set of multiple images with known intrinsics and
camera poses. Here, we focus on depth maps as a 3D ge-
ometry representation. DeepMVS [6] was the first deep net-
work based approach for this task. DeepMVS brings the
keyview in correspondence with source views with a corre-
lation layer that samples patches from source images based
on candidate depth values and compares them to patches
from the key image. The resulting view-wise matching fea-
tures are fused by max-pooling. MVSNet [27] takes a sim-
ilar approach, but compares source views and the keyview
in a learned feature space, and fuses multi-view informa-
tion based on the variance across source views. Many fol-
low up works build upon this concept. R-MVSNet [27] re-
duces memory consumption by recurrent application. CVP-
MVSNet [25] and CAS-MVSNet [5] correlate in a coarse-
to-fine fashion to reduce computational constraints and en-
able higher output resolutions. Vis-MVSNet [30] improves
fusion of multi-view information with a late-fusion strategy
based on predicted uncertainties. Regarding different scene
scales, all these approaches require the minimum and maxi-
mum depth value of the observed scene as input and predict
depths relative to this range. Our studies show that these
approaches have problems in a more general setting where
ground truth poses are given, but the depth range of the ob-
served scene is unknown.

Benchmarks and datasets Learned depth-from-video
approaches are mostly evaluated on KITTI [4, 21] and



ScanNet [2]. KITTI is a benchmark suite for key tasks
in vision-based autonomous driving, including depth esti-
mation. ScanNet is a dataset for 3D scene understanding
with annotated RGB-D videos of indoor scenes that were
acquired at scale with an elaborate capturing framework.
Learned multi-view stereo approaches are mostly evaluated
on DTU [9, 1], ETH3D [17], and Tanks and Temples [10].
DTU consists of 80 scenes, each showing a tabletop object
that was captured with a camera and a structured light scan-
ner mounted on a robot arm. Tanks and Temples consists of
real-world scenes that were captured indoors and outdoors
with a high resolution video camera and an industrial laser
scanner. Likewise, the ETH3D high-resolution multi-view
stereo benchmark consists of images of diverse indoor and
outdoor scenes, captured with a high resolution DSLR cam-
era and an industrial laser scanner. Training is often done
on the same datasets, namely on KITTI, ScanNet, and DTU.
Additionally, some approaches train on BlendedMVS [28],
which is designed specifically for large diversity to improve
generalization. In this work, we additionally train on the
FlyingThings3D dataset [14], which has been shown to en-
able good generalization in other matching-based tasks like
disparity [14] and optical flow estimation [8, 20].

3. Robust Multi-view Depth Benchmark
Key considerations In this work, we aim to evaluate
multi-view depth models regarding robust depth estimation
on arbitrary real-world data. To reflect this, we propose the
Robust Multi-view Depth (MVD) Benchmark based on the
following four key considerations:

(1) Depth estimation performance should be independent
of the target domain. As a proxy, the benchmark de-
fines test sets from diverse existing datasets. The train-
ing set is not defined, but must differ from test datasets.
Evaluation is done in a zero-shot cross-dataset setting
without fine-tuning. This simulates robustness to arbi-
trary, potentially unseen real-world data.

(2) The benchmark should be applicable to different multi-
view depth estimation settings. To this end, the bench-
mark allows different input modalities and optional
alignment between predicted and ground truth depths.

(3) Estimated uncertainty measures should be aligned with
the depth estimation error. This is evaluated with the
Area Under Sparsification Error Curve metric [7].

(4) The evaluation should not be affected by the selection
of source views. For this, a procedure to find and eval-
uate with a quasi-optimal set of source views is used.

Relation to existing benchmarks For multi-view stereo,
multiple established benchmarks exist, e.g. DTU [9, 1],
ETH3D [17], and Tanks and Temples [10]. We consider
the proposed benchmark as complementary to these bench-
marks. Existing multi-view stereo benchmarks evaluate

3D reconstruction performance on the basis of fused point-
clouds. Complementarily, the proposed benchmark evalu-
ates the generalization capabilities of learned models based
on their typical raw outputs, namely depth maps and un-
certainties. We encourage future works to evaluate 3D re-
construction performance on existing benchmarks, but ad-
ditionally evaluate generalization capabilities on the Robust
MVD Benchmark. Depth-from-video models are usually
trained and evaluated on existing datasets, e.g. KITTI or
ScanNet. Usually the test sets are less diverse than in the
proposed benchmark. We hence encourage future works on
depth-from-video to evaluate generalization capabilities on
the Robust MVD Benchmark. Depth estimation at absolute
scale is usually not evaluated. However, we consider this
setting as relevant in practice and encourage future work to
evaluate in this setting on the Robust MVD Benchmark.

In the following, we first describe the setup of the Ro-
bust MVD Benchmark in Sec. 3.1. We then present results
of recent multi-view depth models, as well as the proposed
Robust MVD Baseline model on the benchmark in Sec. 3.2.
We provide details on the baseline model in Sec. 4.

3.1. Setup

Test sets The test sets of the Robust MVD Benchmark are
defined based on the KITTI [21], ScanNet [2], ETH3D [17],
DTU [9, 1] and Tanks and Temples [10] datasets, as they are
common for multi-view stereo and depth-from-video eval-
uation and cover diverse domains and scene scales.

Test set KITTI [4, 21] ScanNet [2] ETH3D [17] DTU [9, 1] T&T [10]
domain driving indoor in- & outdoor tabletop in- & outdoor
setting DFV DFV MVS MVS MVS
cam motion small small large small small
scene scale 2−85m 0.2−9m 0.3−60m 0.4−1.2m 1.1−42m
split test split from test split from orig. train val. split from orig. train
based on Eigen et al. [3] Tang and Tan [18] split Yao et al. [27] split
full res. 1226x370 640x480 6048x4032 1600x1200 1962x1092
# samples 93 200 104 110 69

Table 1. Test sets of the Robust MVD Benchmark are based on
KITTI, ScanNet, ETH3D, DTU, and Tanks and Temples (T&T).
These datasets are commen for depth-from-video (DFV) or multi-
view stereo (MVS) and cover different domains and scene scales.

Each test set is a set of samples from the respective
dataset. Each sample has input views V = (V0, · · · , Vk),
consisting of a keyview V0 and source views V1,..,k, and
(potentially sparse) ground truth depth values z∗ for the
keyview. Each view Vi = (Ii,

i
0T,Ki) consists of an im-

age Ii, a pose i0T relative to the keyview, and intrinsics Ki.
The task is to estimate a dense depth map Z for the keyview
V0 from the input data. The test sets are chosen such that
they are as comparable to existing data splits as possible.
The test sets are deliberately rather small to speed up eval-
uation, but samples have been selected to cover a large di-
versity. An overview of the test sets is given in Tab. 1 and
further details are provided in the Appendix.

Training set The benchmark does not define a training set
as the objective is robustness to arbitrary real-world data,



independent of a specific training setup. However, it must
be specified in case training data is used that overlaps with
test datasets of the benchmark.

Evaluation settings The benchmark allows evaluation
with different input modalities that are provided to the
model and with an optional alignment between predicted
and ground truth depths. The provided input modalities al-
ways include the images Ii and intrinsics Ki for each view
and can optionally include the poses i

0T and the ground
truth depth range (z∗min, z

∗
max) with minimum and maxi-

mum ground truth depth values. To account for the scale-
ambiguity of some models, predicted depth maps can op-
tionally be aligned to the ground truth depth maps before
computing the metrics, e.g. based on the ratio of the median
ground truth depth and the median predicted depth.

In literature, depth-from-video models are typically ap-
plied without poses and ground truth depth range and eval-
uated with alignment. Multi-view stereo models are typi-
cally applied with poses and ground truth depth range and
evaluated without alignment. Both settings evaluate depth
estimations on a relative scale, i.e. up to an unknown scale
factor or within a given depth range. In contrast, the bench-
mark additionally evaluates depth estimation on an absolute
scale. Here, the models are provided with poses but without
depth range and the task is to estimate depth maps at abso-
lute real-world scale. Evaluation is done without alignment.

Depth estimation metrics Results are reported per test
set for the Absolute Relative Error (rel) and the Inlier Ratio
(τ ) with a threshold of 1.03 [3, 21]:

rel =100 · 1
n

n∑
i=1

1

m

m∑
j=1

∣∣zi,j − z∗i,j
∣∣

z∗i,j
(1)

τ =100 · 1
n

n∑
i=1

1

m

m∑
j=1

[max

(
zi,j
z∗i,j

,
z∗i,j
zi,j

)
< 1.03] (2)

where j indexes the m pixels with valid ground truth depth,
i indexes the n samples in a test set, and [·] denotes the Iver-
son bracket. The Absolute Relative Error indicates the aver-
age relative deviation of predicted depth values from ground
truth depth values in percent. The Inlier Ratio indicates the
percentage of pixels with correct predictions, where a pre-
diction is considered correct if it has an error below 3%. In
addition to results on individual test sets, average metrics
and model runtimes are reported over all test sets.

Estimated depth maps are upsampled to the full reso-
lution before computing the metrics. Additionally, to re-
move the effect of implausible outliers, depth estimates are
clipped to a range of 0.1m to 100m. We conjecture that
this is a reasonable range for real-world application.

Uncertainty estimation metrics Results are reported
with commonly used Sparsification Error Curves and the
Area Under Sparsification Error Curve (AUSE) metric [7].

For the Sparsification Error Curves, the most erroneous
pixels are gradually excluded from the error metric based
on actual pixel errors (oracle uncertainty) versus estimated
pixel uncertainties. The Sparsification Error Curve then is
the difference of the oracle-based and uncertainty-based er-
ror reduction. The AUSE is the area under the Sparsifica-
tion Error Curve. An AUSE of 0 is optimal and indicates
perfect alignment between estimated uncertainties and ac-
tual errors. More details are provided in the Appendix.

Source view selection To factor out effects from the se-
lection of source views on the model performance, the
benchmark finds and evaluates with a quasi-optimal set of
source views for each model. For a given sample, the model
is run for all pairs (V0, Vi) of the keyview and a single
source view and the resulting Absolute Relative Errors are
stored. The set of source views is then grown incremen-
tally by adding the source views in the order of the stored
Absolute Relative Errors. Results are reported for the set
of source views with the overall lowest Absolute Relative
Error. Additionally, the Absolute Relative Error is plotted
over the size of the source view set.

3.2. Robust MVD Benchmark results

Evaluated models In this work, we evaluate the
COLMAP [16, 15], DeMoN [22], DeepTAM [31],
DeepV2D [19], MVSNet [27], CVP-MVSNet [25], Vis-
MVSNet [30], PatchmatchNet [23], Fast-MVSNet [29], and
MVS2D [26] models on the proposed benchmark. This
choice reflects seminal works that lay ground for later im-
provements, as well as works that represent the current state
of the art. For all models, we use the original provided code
and weights, except for MVSNet where we use the PyTorch
implementation from Xiaoyang Guo, as it gave better per-
formance than the original Tensorflow version. We addi-
tionally evaluate a MVSNet that we re-trained with plane
sweep sampling in inverse depth space. For DeepV2D, we
evaluate the KITTI and ScanNet models. For MVS2D, we
evaluate the ScanNet and DTU models. Note that we inten-
tionally not re-train models on a specific uniform dataset,
as the objective of the benchmark is generalization across
diverse test sets, independent of the training data.

Results In Tab. 2, we report results of evaluated models
on the proposed Robust MVD Benchmark. We report re-
sults up to a relative scale in the typical depth-from-video
and multi-view stereo settings, as well as on an absolute
scale. In the following, we discuss the results.
Classical approaches For a comparison to classical ap-
proaches, in Tab. 2a we report results of COLMAP [16, 15]
on the benchmark. The results of applying COLMAP with
default parameters cannot be directly compared to those
of learned models, as COLMAP estimates depth maps at a
lower density (54% in average) and we compute the met-
rics only for pixels with a valid prediction. We additionally



Approach GT GT Align KITTI ScanNet ETH3D DTU T&T Average
Poses Range rel ↓ τ ↑ rel ↓ τ ↑ rel ↓ τ ↑ rel ↓ τ ↑ rel ↓ τ ↑ rel ↓ τ ↑ time [s] ↓

a)
COLMAP [16, 15] 3 7 7 12.0 58.2 14.6 34.2 16.4 55.1 0.7 96.5 2.7 95.0 9.3 67.8 ≈ 3min
COLMAP Dense [16, 15] 3 7 7 26.9 52.7 38.0 22.5 89.8 23.2 20.8 69.3 25.7 76.4 40.2 48.8 ≈ 3min

b)
DeMoN [22] 7 7 ‖t‖ 15.5 15.2 12.0 21.0 17.4 15.4 21.8 16.6 13.0 23.2 16.0 18.3 0.08
DeepV2D KITTI[19] 7 7 med (3.1) (74.9) 23.7 11.1 27.1 10.1 24.8 8.1 34.1 9.1 22.6 22.7 2.07
DeepV2D ScanNet [19] 7 7 med 10.0 36.2 (4.4) (54.8) 11.8 29.3 7.7 33.0 8.9 46.4 8.6 39.9 3.57

c)
MVSNet [27] 3 3 7 22.7 36.1 24.6 20.4 35.4 31.4 (1.8) (86.0) 8.3 73.0 18.6 49.4 0.07
MVSNet Inv. Depth [27] 3 3 7 18.6 30.7 22.7 20.9 21.6 35.6 (1.8) (86.7) 6.5 74.6 14.2 49.7 0.32
CVP-MVSNet [25] 3 3 7 156.7 2.2 137.1 15.9 156.4 13.6 (4.0) (68.4) 24.7 52.9 95.8 30.6 0.49
Vis-MVSNet [30] 3 3 7 9.5 55.4 8.9 33.5 10.8 43.3 (1.8) (87.4) 4.1 87.2 7.0 61.4 0.70
PatchmatchNet [23] 3 3 7 10.8 45.8 8.5 35.3 19.1 34.8 (2.1) (82.8) 4.8 82.9 9.1 56.3 0.28
Fast-MVSNet [29] 3 3 7 14.4 37.1 17.0 24.6 25.2 32.0 (2.5) (81.8) 8.3 68.6 13.5 48.8 0.30
MVS2D ScanNet [26] 3 3 7 21.2 8.7 (27.2) (5.3) 27.4 4.8 17.2 9.8 29.2 4.4 24.4 6.6 0.04
MVS2D DTU [26] 3 3 7 226.6 0.7 32.3 11.1 99.0 11.6 (3.6) (64.2) 25.8 28.0 77.5 23.1 0.05

d)
DeMoN [22] 3 7 7 16.7 13.4 75.0 0.0 19.0 16.2 23.7 11.5 17.6 18.3 30.4 11.9 0.08
DeepTAM [31] 3 7 7 68.7 0.4 (6.7) (39.7) 20.4 19.8 58.0 9.1 40.0 12.9 38.8 16.4 0.85
DeepV2D KITTI [19] 3 7 7 (20.4) (16.3) 25.8 8.1 30.1 9.4 24.6 8.2 38.5 9.6 27.9 10.3 1.43
DeepV2D ScanNet [19] 3 7 7 61.9 5.2 (3.8) (60.2) 18.7 28.7 9.2 27.4 33.5 38.0 25.4 31.9 2.15
MVSNet [27] 3 7 7 14.0 35.8 1568.0 5.7 507.7 8.3 (4429.1) (0.1) 118.2 50.7 1327.4 20.1 0.15
MVSNet Inv. Depth [27] 3 7 7 29.6 8.1 65.2 28.5 60.3 5.8 (28.7) (48.9) 51.4 14.6 47.0 21.2 0.28
CVP-MVSNet [25] 3 7 7 158.2 1.2 2289.0 0.1 1735.3 1.2 (8314.0) (0.0) 415.9 9.5 2582.5 2.4 0.50
Vis-MVSNet [30] 3 7 7 10.3 54.4 84.9 15.6 51.5 17.4 (374.2) (1.7) 21.1 65.6 108.4 31.0 0.82
PatchmatchNet [23] 3 7 7 29.0 16.3 70.1 16.7 99.4 3.5 (82.6) (5.6) 39.4 19.3 64.1 12.3 0.18
Fast-MVSNet [29] 3 7 7 12.1 37.4 287.1 9.4 131.2 9.6 (540.4) (1.9) 33.9 47.2 200.9 21.1 0.35
MVS2D ScanNet [26] 3 7 7 73.4 0.0 (4.5) (54.1) 30.7 14.4 5.0 57.9 56.4 11.1 34.0 27.5 0.05
MVS2D DTU [26] 3 7 7 93.3 0.0 51.5 1.6 78.0 0.0 (1.6) (92.3) 87.5 0.0 62.4 18.8 0.06
Robust MVD Baseline 3 7 7 7.1 41.9 7.4 38.4 9.0 42.6 2.7 82.0 5.0 75.1 6.3 56.0 0.06

Table 2. Quantitative results for the evaluated multi-view depth models on the Robust MVD Benchmark with different evaluation
settings: a) Classical approaches. b) Evaluation without poses, without depth range, with alignment. This is the common setting in
depth-from-video literature. c) Evaluation with poses, with depth range, without alignment. This is the common setting in multi-view
stereo literature. d) Absolute scale evaluation with poses, without depth range, without alignment. Results are reported for the Absolute
Relative Error (rel) and Inlier Ratio (τ ) with a threshold of 1.03 on each test set and as averages across all test sets. Additionally, the
average runtime in seconds of each model across all test sets is reported. All results are for the quasi-optimal selection of source views of
each model. (Parentheses) denote training on data from the same domain. Bold denotes best results.

report results for COLMAP without filtering, which results
in dense predictions but lower accuracy.
Evaluation up to a relative scale In Tab. 2b and 2c, we re-
port results in the typical depth-from-video and multi-view
stereo settings up to a relative scale. It shows that all models
perform significantly better on the training domain.
Evaluation on an absolute scale In Tab. 2d, we provide
results of the evaluated models in an absolute scale depth
estimation setting. For DeepV2D and DeepTAM, we only
use the mapping module and input ground truth poses. For
models that require a given depth range, we assume an un-
known depth range and provide a default range of 0.2m to
100m. This covers the range of all test sets and simulates
real-world applications with no information except poses.

In this setting, all evaluated models perform signifi-
cantly worse. Depth-from-video models perform worse
on datasets with a different depth range than the training
data (e.g. DeepV2D-ScanNet on KITTI). Multi-view stereo
models perform worse on datasets where the depth differs

from the given default depth range (e.g. MVSNet on DTU).
Most evaluated models internally build and decode a cost
volume, which is computed in a plane sweep stereo fashion
by correlating source views with the keyview for specific
(inverse) depth values. We attribute the performance de-
crease to out-of-distribution cost volume statistics. Depth-
from-video models learn to use only the cost volume scores
corresponding to absolute depth values seen during train-
ing. Multi-view stereo models overfit to the cost volume
distribution within the provided depth range.

In practice, this means that existing depth-from-video
models cannot be generally used with known ground truth
camera poses. Multi-view stereo models in turn require a
sufficiently accurate depth range of the observed scene to
be known. Even though this depth range can be obtained
by running structure-from-motion, this comes at the cost of
increased runtime and complexity.

The proposed Robust MVD Baseline model shows con-
sistent performance across all test sets. We conjecture that



the model really learned to exploit multi-view cues that gen-
eralize across domains. Furthermore, the proposed scale
augmentation enables absolute scale depth estimation inde-
pendent of the scene scale.

Performances depending on source views In Fig 2, we
plot performances for different numbers of source views.
Additionally, model runtimes for different numbers of
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Figure 2. Effect of the number of source views on the perfor-
mance of evaluated models. Each plot shows the average Abso-
lute Relative Error across all test sets relative to the quasi-optimal
performance of each model (Tab. 2). The shaded area indicates the
standard deviation across test sets.

source views are provided in the Appendix. For all models,
we plot results in the respective setting that gives best aver-
age results according to Tab. 2. In an ideal curve, the error
would decrease with additional source views and converge
to a minimal value when more views do not contain addi-
tional information. The evaluation shows that multi-view
fusion strategies of most models are suboptimal.

Uncertainty evaluation In Fig. 3, we plot sparsification
error curves for evaluated models that predict a measure of
their depth prediction uncertainty. In Tab. 3, we report the
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Figure 3. Evaluation of estimated uncertainty measures. Lower
curves indicate better alignment between estimated uncertainties
and actual errors. The area under the curves is the Area Under
Sparsification Error Curve, which is reported in Tab. 3.

corresponding Area Under Sparsification Error Curve met-
ric. Again, we report results for each model in the respective
setting that gives best average performance. The results of
previous models show a suboptimal alignment between es-
timated uncertainties and errors, whereas the Robust MVD
Baseline model gives better uncertainties.

Approach KITTI ScanNet ETH3D DTU T&T Average
rel ↓AUSE ↓

MVSNet [27] 0.18 0.69 0.35 0.39 0.32 18.6 0.39
Vis-MVSNet [30] 0.28 0.53 0.37 0.27 0.39 7.0 0.37
PatchmatchNet [23] 0.47 0.55 0.52 0.28 0.40 9.1 0.45
Fast-MVSNet [29] 0.28 0.73 0.42 0.29 0.48 13.5 0.44
MVS2D DTU [26] 0.41 0.50 0.43 0.31 0.47 77.5 0.43
CVP-MVSNet [25] 0.56 0.68 0.57 0.56 0.55 95.9 0.58
Robust MVD Baseline 0.24 0.33 0.28 0.28 0.24 6.3 0.27

Table 3. Evaluation of estimated uncertainties with the Area
Under Sparsification Error Curve (AUSE). An AUSE of 0 means
optimal alignment of uncertainties and errors.

4. Robust MVD Baseline
In the following, we describe the Robust MVD Baseline,

which is designed specifically as a baseline for robust depth
estimation across domains and scene scales and can serve
as baseline for evaluation on the proposed benchmark. The
model is mostly based on existing components and we pro-
vide ablation studies for individual components in Tab. 4.

4.1. Model architecture

The Robust MVD Baseline model builds on the simple
DispNet [14] network architecture, but is adapted to the
given multi-view setting with non-rectified images. More
specifically, as illustrated in Fig. 4, and using the notation
defined in Sec. 3.1, the model architecture is structured as
follows: (1) a siamese encoder network fθ that maps in-
put images Ii to feature maps, Fi = fθ (Ii), (2) a corre-
lation layer that correlates keyview features f0 with source
view features fi in a plane sweep fashion, resulting in view–
wise cost volumes C1,..,k, (3) a context encoder network
hσ that maps the key image to features F̂0 = hσ (I0) that
are used to decode cost volumes, (4) a fusion module gρ
that fuses the cost volumes from multiple source views to a
fused representation C = gρ(C1,..,k, F̂0) via weighted av-
eraging with learned weights, and (5) a 2D convolutional
cost volume decoder network (D,U) = kφ(C, F̂0) that
maps the fused cost volume to an output inverse depth map
D, and an uncertainty map U. The inverse depth map
D holds predicted inverted depth values d = 1/z for ev-
ery keyview pixel. The plane sweep correlation has been
shown to work well in other multi-view depth architec-
tures [19, 31, 27, 12, 6] and is explained in the Appendix.

In the first experiments, we apply the base model in dual-
view mode, using only a single source view. This factors



Approach KITTI ScanNet ETH3D DTU T&T Average
rel ↓ τ ↑ rel ↓ τ ↑ rel ↓ τ ↑ rel ↓ τ ↑ rel ↓ τ ↑ rel ↓ τ ↑ time [ms] ↓

a) Scale augmentation
No scale augmentation 18.5 19.6 81.9 8.9 42.0 15.8 804.2 0.0 17.9 43.2 192.9 17.5 32.1
With scale augmentation 15.2 21.7 8.5 31.5 19.4 22.7 5.7 49.5 14.5 50.5 12.7 35.2 32.7

b) Training data
ST3D 15.2 21.7 8.5 31.5 19.4 22.7 5.7 49.5 14.5 50.5 12.7 35.2 32.7
BMVS 11.1 27.3 9.3 29.5 12.4 31.6 4.6 62.9 9.4 52.9 9.4 40.8 34.7
ST3D+BMVS 10.2 27.7 8.7 31.7 14.6 30.7 4.7 61.4 11.3 57.3 9.9 41.8 33.6

c) Model architecture
MVSNet architecture 11.3 29.7 15.2 23.4 36.8 25.9 123.8 48.8 10.8 60.4 39.6 37.6 193.2
DispNet architecture 10.2 27.7 8.7 31.7 14.6 30.7 4.7 61.4 11.3 57.3 9.9 41.8 33.6

d) Uncertainty estimation
Deterministic 10.2 27.7 8.7 31.7 14.6 30.7 4.7 61.4 11.3 57.3 9.9 41.8 33.6
Laplace distribution 9.3 31.9 8.2 35.0 11.7 38.1 3.4 76.6 9.1 63.7 8.4 49.1 35.6

e) Multi-view fusion
1 source view 9.3 31.9 8.2 35.0 11.7 38.1 3.4 76.6 9.1 63.7 8.4 49.1 35.6
Averaging 6.7 40.1 7.5 38.5 9.7 39.9 3.0 79.6 6.0 74.2 6.6 54.5 58.6
Learned view weights 6.6 42.0 7.4 38.7 9.2 42.9 2.9 80.6 7.6 76.0 6.8 56.0 61.7
Learned view weights + Eraser 7.1 41.9 7.4 38.4 9.0 42.6 2.7 82.0 5.0 75.1 6.3 56.0 59.2

Table 4. Ablation studies for the Robust MVD Baseline model. All results are for the absolute scale depth estimation setting (Tab. 2d).
a) Scale augmentation is essential for generalization across scene scales. b) Joint training on StaticThings3D and BlendedMVS gives best
performance. c) A DispNet architecture performs better than a MVSNet architecture. d) Predicting parameters of a Laplace distribution
instead of point estimates improves performance. e) Multi-view fusion via weighted averaging with learned weights work slightly better
than simple averaging. The last model is the Robust MVD Baseline model.
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Figure 4. Robust MVD Baseline model architecture. The model
consists of a siamese encoder network, a plane sweep correlation
that correlates source views with the keyview, a fusion module,
and a decoder that predicts inverse depths and uncertainties.

out effects from the multi-view cost volume fusion and al-
lows for an isolated evaluation of effects from data augmen-
tation, training dataset, model architecture, and uncertainty
estimation. Following this, we evaluate different strategies
for fusing multi-view information. In Tab. 4c, we compare
the DispNet architecture with a MVSNet architecture.

4.2. Data augmentation

Standard photometric and spatial augmentations are ap-
plied uniformly to all views. Additionally, to prevent the
model from overfitting to the depth distribution of the train-
ing data, we introduce a novel data augmentation strat-
egy that we term scale augmentation. Scale augmenta-
tion re-scales ground truth translations i

0t during training
before feeding them to the model. Likewise, the ground
truth inverse depth map D∗ is scaled with the inverse
scaling factor. Inverse depth values outside the range
[0.009m−1, 2.75m−1] are masked. To choose the scaling
factor, a histogram of the depth values that were seen during

previous training iterations, is maintained. The size of the
histogram bins increases logarithmically, as consistent per-
formance across the full depth range requires training for
smaller depth values at a finer resolution. This is illustrated
by Fig. 5. Scaling factors are then computed as the ratio of
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Figure 5. Effect of scale augmentation on the distribution of depth
values seen during training on StaticThings3D. With scale aug-
mentation, smaller depth values are sampled at a higher density.
All bins in the ”With Scale Augmentation” histogram cover the
same area. This gives consistent performance across scene scales.

the depth label of the histogram bin with the lowest count
and the median ground truth depth value of the current sam-
ple. Fig. 6 shows effects of the data augmentation on an ex-
emplary sample. As shown by the results in Tab. 4a, scale
augmentation is a key component for enabling the model to
generalize across different scene scales.

4.3. Training data

The Robust MVD Baseline model is jointly trained on a
static version of the existing FlyingThings3D dataset [14],



(a) (b) (c) (d)

Figure 6. Training data and augmentation: (a) keyview image
I0 of a StaticThings3D training sample, (b) augmented keyview
image, (c) ground truth inverse depth D∗, and (d) D∗ after scale
augmentation with a randomly sampled scaling factor of 3.27.
Translations i

0t to source views are scaled with the same factor.

that we term StaticThings3D (see Fig. 6), and on the ex-
isting BlendedMVS [28] dataset. StaticThings3D is similar
to FlyingThings3D: it contains 2250 train and 600 test se-
quences with 10 frames per sequence, showing randomly
placed ShapeNet objects in front of random Flickr back-
grounds. However, in StaticThings3D, all objects are static,
and only the camera moves. The advantage of using this
randomized synthetic dataset is that it reduces the possi-
bility of a model to overfit to domain-specific priors. In
Tab. 4b, we compare joint training on StaticThings3D and
BlendedMVS against training on a single dataset. Joint
training performs quantitatively on par with training solely
on BlendedMVS, but results in more accurate object bound-
aries, as shown in Fig. 7. Further training details are pro-
vided in the Appendix.

(a) (b)

Figure 7. Effect of the training dataset: the first row shows
keyview images (KITTI and ScanNet), and the second predicted
inverse depth maps. (a) Model trained on BlendedMVS. (b) Model
trained jointly on BlendedMVS+StaticThings3D.

4.4. Uncertainty estimation

Instead of predicting a point estimate of the inverse depth
map, the Robust MVD Baseline model predicts parameters
of a Laplace distribution, as in [7] and [30]. For this, an
additional output channel is added to the network such that
one channel encodes the predicted location parameter and
the other the predicted scale parameter. Training is then
done by minimizing the negative log likelihood. Effects on
the depth prediction performance are evaluated in Tab. 4d.
Predicted uncertainties are evaluated in Tab. 3 and shown
qualitatively in Fig. 8.

(a) (b) (c) (d)

Figure 8. Uncertainty estimation: the first row shows keyview
images, the second predicted inverse depth maps, and the third
predicted uncertainty maps (red is uncertain). The model outputs
high uncertainties for problematic cases e.g. (a) moving objects,
(b) textureless regions, (c) windows, or (d) fine structures.

4.5. Multi-view fusion

We evaluate two strategies for multi-view fusion, namely
averaging of cost volumes from multiple source views, and
weighted averaging with learned weights, e.g. as in [24].
For the weighted averaging, a small 2D convolutional net-
work with two layers is applied with shared weights to all
view-wise cost volumes and outputs pixel-wise weights for
each view. We conduct multi-view training with an eraser
data augmentation, where regions in source views are ran-
domly replaced with the mean color. Results for both multi-
view fusion strategies are given in Tab. 4e. The model with
learned weights is the Robust MVD Baseline model.

5. Conclusion

We presented the Robust MVD Benchmark to evaluate
the robustness of multi-view depth estimation models on
different data domains. The benchmark supports different
evaluation settings, i.e. different input modalities and op-
tional alignment between predicted and ground truth depths.
We found that existing methods have imbalanced perfor-
mance across domains and cannot be directly applied to ar-
bitrary real-world scenes for estimating depths with their
correct scale from given camera poses. We also demon-
strated that this can be resolved mostly with existing tech-
nology. Together with the benchmark, we provide a robust
baseline method that can serve as a basis for future work.
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Delta Learning” (Förderkennzeichen 19A19013N). The authors would like
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