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Abstract. We propose SF2SE3, a novel approach to estimate scene
dynamics in form of a segmentation into independently moving rigid
objects and their SE(3)-motions. SF2SE3 operates on two consecutive
stereo or RGB-D images. First, noisy scene flow is obtained by applica-
tion of existing optical flow and depth estimation algorithms. SF2SE3
then iteratively (1) samples pixel sets to compute SE(3)-motion propos-
als, and (2) selects the best SE(3)-motion proposal with respect to a
maximum coverage formulation. Finally, objects are formed by assigning
pixels uniquely to the selected SE(3)-motions based on consistency with
the input scene flow and spatial proximity.
The main novelties are a more informed strategy for the sampling of
motion proposals and a maximum coverage formulation for the proposal
selection. We conduct evaluations on multiple datasets regarding applica-
tion of SF2SE3 for scene flow estimation, object segmentation and visual
odometry. SF2SE3 performs on par with the state of the art for scene
flow estimation and is more accurate for segmentation and odometry.

Keywords: low-level vision and optical flow · clustering · pose estima-
tion · segmentation · scene understanding · 3D vision and stereo.

1 Introduction

Knowledge about dynamically moving objects is valuable for many intelligent
systems. This is the case for systems that take a passive role as in augmented
reality or are capable of acting as in robot navigation and object manipulation.

In this work, we propose a novel approach for this task that we term Scene-
Flow-To-SE(3) (SF2SE3). SF2SE3 estimates scene dynamics in form of a seg-
mentation of the scene into independently moving objects and the SE(3)-motion
for each object. SF2SE3 operates on two consecutive stereo or RGB-D images.
First, off-the-shelf optical flow and disparity estimation algorithms are applied to
obtain optical flow between the two timesteps and depth maps for each timestep.
The predictions are combined to obtain scene flow. Note that the obtained scene
flow is noisy, especially in case of occlusions. SF2SE3 then iteratively (1) sam-
ples pixel sets to compute SE(3)-motion proposals, and (2) selects the best
SE(3)-motion proposal with respect to a maximum coverage formulation. Fi-
nally, objects are created for the selected SE(3)-motions by grouping pixels
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Fig. 1. Overview of SF2SE3: Optical flow and disparity are estimated with off-the-
shelf networks and combined to an initial scene flow estimate. The resulting scene flow
is noisy due to inaccurate estimations and due to occlusions (center image). SF2SE3
optimizes a set of objects with corresponding SE(3)-motions and an assignment from
pixels to objects such that the initial scene flow is best covered with a minimal number
of objects. Finally, an improved scene flow estimate can be derived from the object
segmentation and SE(3)-motions, as shown in the last image. Furthermore, SF2SE3
obtains the camera egomotion by determining the SE(3)-motion of the background.

based on concistency of the input scene flow with the object SE(3)-motion.
Further, SF2SE3 derives scene flow and the camera egomotion from the segmen-
tation and SE(3)-motions. The described pipeline is illustrated in Fig 1.

Regarding related work, SF2SE3 is most similar to ACOSF [12] in that it
approaches the problem as iteratively finding SE(3)-motion proposals and op-
timizing an assignment of pixels to the proposals. However, SF2SE3 introduces
several improvements. Firstly, instead of randomly accumulating clusters that
serve to estimate SE(3)-motion proposals, we propose a more informed strategy
that exploits a rigidity constraint, i.e. forms clusters from points that have fixed
3D distances. Secondly, we propose a coverage problem formulation for selecting
the best motion proposal such that (a) the input scene flow of all data points
is best covered, and (b) irrelevant or similar SE(3)-motions are prohibited. The
iterative process ends when no proposal fulfills the side-constraints from (b),
whereas ACOSF iteratively selects a fixed number of SE(3)-motions.

We evaluate SF2SE3 and compare to state-of-the-art approaches for multiple
tasks and datasets: we evaluate scene flow estimation on the KITTI [17] and
FlyingThings3D [16] datasets, moving object segmentation on FlyingThings3D,
and visual odometry on FlyingThings3D, KITTI and TUM RGB-D [19]. We use
the state-of-the-art approaches CamLiFlow [13], RAFT-3D [22], RigidMask [30]
and ACOSF as strong baselines for the comparison. CamLiFlow, RAFT-3D and
RigidMask are currently the best approaches on the KITTI leaderboard and
ACOSF is the most similar baseline to SF2SE3.

Compared to RAFT-3D, SF2SE3 obtains similar scene flow outlier rates on
KITTI (−0.45%) and FlythingThings3D (+0.47%). However, the advantage is
additional output information in form of the object segmentation as opposed to
pixel-wise motions.

Compared to RigidMask, the scene flow outlier rate of SF2SE3 is slightly
worse on KITTI (+0.43%) but significantly better on FlyingThings3D (−6.76%),
which is due to assumptions about blob-like object shapes within RigidMask. Re-
garding object segmentation, SF2SE3 achieves higher accuracy than RigidMask
on FlyingThings3D (+2.59%).
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Compared to ACOSF, SF2SE3 decreases the scene flow outlier rate on KITTI
(−2.58%). Further, the runtime is decrease from 5 minutes to 2.84 seconds.

On all evaluated dynamic sequences of the TUM and Bonn RGB-D dataset,
SF2SE3 achieves, compared to the two-frame based solutions RigidMask and
VO-SF, the best performance.

To summarize, SF2SE3 is useful to retrieve a compressed representation of
scene dynamics in form of an accurate segmentation of moving rigid objects,
their corresponding SE(3)-motions, and the camera egomotion.

2 Related Work

In the literature, different models for the scene dynamics between two frames ex-
ist: (1) non-rigid models estimate pointwise scene flow or SE(3)-transformations,
and (2) object-rigid models try to cluster the scene into rigid objects and esti-
mate one SE(3)-transformation per object. Regarding the output, all models
allow to derive pointwise 3D motion. Object-rigid models additionally provide a
segmentation of the scene into independently moving objects. Furthermore, if an
object is detected as static background, odometry information can be derived.

Our work falls in the object-rigid model category, but we compare to strong
baselines from both categories. In the following, we give an overview of related
works that estimate scene dynamics with such models.

2.1 Non-Rigid Models

Non-rigid models make no assumptions about rigidity and estimate the motion
of each point in the scene individually as scene flow or SE(3)-transformations.

The pioneering work of Vedula et al . [24] introduced the notion of scene flow
and proposed algorithms for computing scene flow from optical flow depending
on additional surface information.

Following that, multiple works built on the variational formulation for op-
tical flow estimation from Horn and Schunk [5] and adapted it for scene flow
estimation [6,28,1,23,25,9].

With the success of deep learning on classification tasks and with the avail-
ability of large synthetic datasets like Sintel [3] and FlyingThings3D [16], deep
learning models for the estimation of pointwise scene dynamics have been pro-
posed [11,14,7,29,18,22]. In particular, in this work, we compare with RAFT-
3D [22], which estimates pixel-wise SE(3)-motions from RGB-D images. RAFT-
3D iteratively estimates scene flow residuals and a soft grouping of pixels with
similar 3D motion. In each iteration, the residuals and the soft grouping are used
to optimize pixel-wise SE(3)-motions such that the scene flow residuals for the
respective pixel and for grouped pixels are minimized.

2.2 Object-Rigid Models

Object-rigid models segment the scene into a set of rigid objects and estimate
a SE(3)-transformation for each object. The advantages compared to non-rigid
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models are a more compressed representation of information, and the availability
of the object segmentation. The disadvantage is that scene dynamics cannot be
correctly represented in case that the rigidity assumption is violated.

Classical approaches in this category are PRSM [26,27] and OSF [17], which
split the scene into rigid planes based on a superpixelization and assign SE(3)-
motions to each plane. MC-Flow [10] estimates scene flow from RGB-D images
by optimizing a set of clusters with corresponding SE(3)-motions and a soft
assignment of pixels to the clusters. A follow-up work [8] splits the clusters into
static background and dynamic objects and estimates odometry and dynamic
object motion separately.

An early learned object-rigid approach is ISF [2], which builds on OSF but
employs deep networks that estimate an instance segmentation and object coor-
dinates for each instance. The later approach DRISF [15] employs deep networks
to estimate optical flow, disparity and instance segmentation and then optimizes
a SE(3)-motion per instance such that is consistent with the other quantities.

In this work, we compare to the more recent learned approaches ACOSF [12]
and RigidMask [30]. ACOSF takes a similar approach as OSF but employs deep
networks to estimate optical flow and disparity. RigidMask employs deep net-
works to estimate depth and optical flow and to segment static background and
dynamic rigid objects. Based on the segmentation, SE(3) motions are fit for
the camera egomotion and the motion of all objects. A key difference between
RigidMask and our approach is that RigidMask represents objects with polar co-
ordinates, which is problematic for objects with complex structures. In contrast,
our approach takes no assumptions about object shapes.

3 Approach

In the following, we describe the proposed SF2SE3 approach. SF2SE3 takes two
RGB-D images from consecutive timestamps τ1 and τ2 and the associated optical
flow as input. While the optical flow is retrieved with RAFT [21], the depth is
retrieved with a depth camera or LEAStereo [4] in the case of a stereo camera.
Using the first RGB-D image as reference image, the corresponding depth at
τ2 is obtained by backward warping the second depth image according to the
optical flow. Further, occlusions are estimated by applying an absolute limit on
the optical flow forward-backward inconsistency [20]. The depth is indicated as
unreliable in case of invalid measurements and additionally for the depth at τ2
in case of temporal occlusions. SF2SE3 then operates on the set D of all image
points of the reference image:

D = {Di = (︸ ︷︷ ︸
spatial

xi, yi, zi,

motion︷ ︸︸ ︷
pτ1i , p

τ2
i , r

τ1
i , ui, vi, di, r

τ2
i ) }, (1)

where each image point D consists of its pixel coordinates (x, y), its depth z at
τ1, its 3D points (pτ1 , pτ2), its optical flow (u, v), its warped disparity d at τ2
and its depth reliability indications rτ1 and rτ2 .
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The objective then is to estimate a collection of objects O where each object
O consists of a point cloud P and a SE(3)-motion (R, t):

O = {Ok = ( Pk︸︷︷︸
spatial

,

motion︷ ︸︸ ︷
Rk, tk) }. (2)

3.1 Algorithm Outline

SF2SE3 aims to estimate objects O which explain or rather cover the downsam-
pled image points D. To quantify the coverage of an image point D by an object
O, we introduce a motion inlier model PmotionI (D,O) and a spatial inlier model

P spatialI (D,O). These models are described in detail in Section 3.2. Based upon
these models, objects O are retrieved iteratively, see Figure 2.

Fig. 2. Cycle of Single Object Estimation: SF2SE3 estimates objects O iteratively.
All image points which are not covered by any previous objects Oprev., and which depth
is reliable, are accumulated to obtain sparse rigid clustered Sprop.. This is described in
Section 3.3. Fitting an SE(3)-motion to each cluster results in the proposed objects
Oprop. which do not contain a spatial model. Based on the inlier probabilities for
the proposed and the previous objects, Pmotion

I (D,Oprop.) and PI(D,Oprev.), the one
object is selected which maximizes the coverage objective. The coverage problem is
described in Section 3.4. After selecting a single object Osel., the image points which
are covered based on the motion model Pmotion

I (D,Osel) are forming the point cloud
which serves from then on as spatial model. Further, the selected object is split into
multiple objects by splitting the point cloud into multiple spatially connected point
clouds. This is not illustrated in the diagram for the sake of clarity. In case no proposed
object has a sufficiently high coverage, the iterative process ends.

Finally, based on the obtained rigid objects O, SF2SE3 derives odometry,
segmentation and scene flow, which is described in Section 3.5. For this, one
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object is determined as background and each image point is assigned to one
object based on the likelihood f(D|O), which is introduced in Section 3.2.

For further implementation details, including parameter settings, we publish
the source code at https://www.github.com/lmb-freiburg/sf2se3.

3.2 Consensus Models

To quantify the motion consensus between the scene flow of a data point and the
SE(3)-motion of an object, we define a motion inlier probability PmotionI (D,O)
and likelihood fmotion(D|O). These are defined by separately imposing Gaussian
models on the deviation of the data point’s optical flow in x- and y-direction and
the disparity d of the second time point from the respective projections πu, πv, πd
of the forward transformed 3D point pτ1 according to the object’s rotation R
and translation t. Formally, this can be written as

∆u = u− πu(Rpτ1 + t) ∼ N (0, σ2
u) (3)

∆v = v − πv(Rpτ1 + t) ∼ N (0, σ2
v) (4)

∆d = d− πd(Rpτ1 + t) ∼ N (0, σ2
d). (5)

Spatial proximity of the data point and the object’s point cloud is mea-
sured with the likelihood fspatial(D|O) and the inlier probability P spatialI (D,O).
Therefore, we separately impose Gaussian models on the x-, y-, and z- deviation
of the data point’s 3D point pτ1 from its nearest neighbor inside the object’s
point cloud P. More precisely, we define the models

∆x = x− xNN ∼ N (0, σ2
geo−2D) (6)

∆y = y − yNN ∼ N (0, σ2
geo−2D) (7)

∆zrel =
z − zNN
z+zNN

2

∼ N (0, σ2
geo−depth−rel). (8)

The joint inlier probability for the spatial model yields

P spat.I (D,O) =

{
PI,Gauss.(∆x)PI,Gauss.(∆y)PI,Gauss.(∆zrel) , rτ1 = 1

PI,Gauss.(∆x)PI,Gauss.(∆y) , rτ1 = 0
, (9)

likewise the spatial likelihood fspatial(D|O) is calculated. Details for the calcu-
lation of the Gaussian inlier probability PI,Gauss. are provided in the Supple-
mentary.

Regarding the motion model, the joint inlier probability yields

Pmot.I (D,O) =


PI,Gauss.(∆u)PI,Gauss.(∆v)PI,Gauss.(∆d) , rτ1 = 1, rτ2 = 1

PI,Gauss.(∆u)PI,Gauss.(∆v) , rτ1 = 1, rτ2 = 0

1 , else,

(10)

https://www.github.com/lmb-freiburg/sf2se3
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the same applies for the motion likelihood fmotion(D|O).
Joining the motion and the spatial model, under the assumption of indepen-

dence, results in

f(D|O) = fspatial(D|O)fmotion(D|O) (11)

PI(D,O) = P spatialI (D,O)PmotionI (D,O). (12)

3.3 Proposals via Rigidity Constraint

Fig. 3. Rigidity: Points of the same color are rigid, which means that the distance
between each pair remains constant despite the movement. Two accumulated points
are already sufficient to calculate new SE(3)-motion proposals.

Each proposed object is found by fitting an SE(3)-motion to a cluster of
scene flow points which fulfill the rigidity constraint, see Figure 3. For each pair
of points (pi, pj) it must hold

|
∥∥pτ2i − pτ2j ∥∥− ∥∥pτ1i − pτ1j ∥∥ | < δrigid−dev−max. (13)

Clusters are instantiated by single scene flow points, which are sampled uni-
formly. Further points are iteratively added while preserving rigidity. Even though
two points are already sufficient to estimate a SE(3)-motion, additional points
serve robustness against noise.

3.4 Selection via Coverage Problem

Having obtained the SE(3)-motion proposals Oprop., we select the one which
covers the most scene flow points which are not sufficiently covered by previous
objects Oprev.. Coverage is measured for the proposed objects with the motion
model PmotionI (D,O). For previously selected objects, the spatial model is avail-
able in form of a point cloud. This allows us to use the joint model PI(D,O),
consisting of motion and spatial model. Formally, we define the objective as

max
O∈Oprop.

1

|D|
∑
D∈D

max

[
PmotionI (D,O), max

Õ∈Oprev.

PI(D, Õ)

]
. (14)
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Separating the previous coverage results in

max
O∈Oprop.

Pcontribute(D, O,Oprev.) +
1

|D|
∑
Di∈D

max
Õ∈Oprev.

PI(D, Õ)), (15)

with the contribution probability Pcontribute(D, O,Oprev.) defined as

Pcontribute(D, O,Oprev.) =
1

|D|
∑
D∈D

max

[
PmotionI (D,O)− max

Õ∈Oprev.

PI(D, Õ), 0

]
.

(16)

To exclude irrelevant objects, we impose for each object a minimum contribution
probability.

Moreover, to exclude duplicated objects, we impose for each pair of objects
a maximum overlap probability, which we define as

Poverlap(D, O1, O2) =

∑
D∈D PI(D,O1)PI(D,O2)∑

D∈D PI(D,O1) + PI(D,O2)− PI(D,O1)PI(D,O2)
.

(17)

This overlap probability constitutes an extension of the intersection-over-union
metric for soft assignments, e.g., probabilities.

Taken together, we formulate the optimization problem as

max
O⊆Oprop.

Pcontrib.(D, O,Oprev.) (18a)

subject to Pcontrib.(D, O,Oprev.) ≥ δcontrib.−min (18b)

Poverlap(D, O,Oprev.) ≤ δoverlap−max ∀Oprev. ∈ Oprev. (18c)

An example for the calculation of contribution as well as overlap probability
is provided in Figure 4.

Automatically the algorithm ends when the contribution probability falls
below the minimum requirement.

1.1.
1.1.

1.1.

1.1.

0.50.5

1.1. 1.1.

1.1.

0.50.5
OO11

OO22
PPcontrib.contrib. (D, O(D, O 11, {O, {O 11, O, O22}) = 3.5 / 9.}) = 3.5 / 9.

PPcontrib.contrib. (D, O(D, O 11, {O, {O 11, O, O22}) = 2.5 / 9.}) = 2.5 / 9.

PPoverlapoverlap (D, O(D, O 11, O, O22) = 1. / 7.) = 1. / 7.

Fig. 4. Contribution and Overlap Probability for two Objects: The edge
weights equal the inlier probabilities PI(D,O), a missing edge indicates PI(D,O) = 0.
Corresponding probabilities for contribution of each object and the overlap probability
of both objects are calculated on the right side.
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3.5 Deduction of Odometry, Image Segmentation, and Scene Flow

For estimating the odometry we determine the dynamic rigid object that equals
the background. Assuming that the background equals the largest object, we
choose the one that yields the largest contribution probability

Obackground = arg max
O∈O

Pcontribute(D, O,O). (19)

Based on the maximum likelihood, we assign each pixel from the high-
resolution image to one of the objects

φD,O =

{
1 , arg maxOk

f(D|Ok) = O

0
. (20)

Given the object assignment the scene flow s can be retrieved for each 3D
point pτ1 as

s = Rpτ1 + t− pτ1 . (21)

4 Results

We compare the performance of our method against the state of the art regarding
scene flow, segmentation, odometry, and runtime.

Fig. 5. Qualitative results of our approach, RigidMask, and Raft-3D (left to right) on
KITTI-2015, FlyingThings3D, and TUM RGB-D (top to bottom). The scene flow is
color coded for the x- and z-directions, as indicated by the color wheel. The edges of the
object segmentation are highlighted and the motions of object centroids are indicated
with arrows. The odometry is indicated with an arrow starting from the center of the
color wheel. Note that RAFT-3D estimates no segmentation and odometry.
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Table 1. Listed are the outlier percentages for disparities at both timestamps, optical
flow, and scene flow. An outlier for optical flow and disparity implies a deviation from
the ground truth of > 3 pxl absolutely and > 5% relatively. An outlier for scene flow
implies an outlier for either disparity or optical flow.

Method Dataset D1 Out. [%] D2 Out. [%] OF Out. [%] SF Out. [%]

ACOSF [12] KITTI - test 3.58 5.31 5.79 7.90
DRISF [15] KITTI - test 2.55 4.04 4.73 6.31
RigidMask [30] KITTI - test 1.89 3.23 3.50 4.89
RAFT-3D [22] KITTI - test 1.81 3.67 4.29 5.77
CamLiFlow [13] KITTI - test 1.81 2.95 3.10 4.43
SF2SE3 (ours.) KITTI - test 1.65 3.11 4.11 5.32

Warped Scene Flow FT3D - test 2.35 16.19 9.43 19.09
RigidMask FT3D - test 2.35 6.98 15.42 15.49
RAFT-3D FT3D - test 2.35 4.40 8.47 8.26
SF2SE3 (ours.) FT3D - test 2.35 4.86 8.76 8.73

Scene Flow To evaluate the performance of estimating scene flow, we measure
the outlier percentages of disparity, optical flow and scene flow, in the same way
as the KITTI-2015 benchmark [17]. The results for KITTI-2015 and FlyingTh-
ings3D are listed in Table 1.

Segmentation For the segmentation evaluation, we retrieve a one-to-one match-
ing between predicted and ground truth objects with the Hungarian method and
report the accuracy, i.e. the ratio of correctly assigned pixels. In addition to the
accuracy, we report the average number of extracted objects per frame.

In Table 2 the results are listed for the FlyingThings3D dataset. The original
ground truth segmentation can not be directly used, as it splits the background
into multiple objects even though they have the same SE(3)-motion (Fig. 6
left). To resolve this, we fuse objects that have a relative pose error, as defined
in Equation 24 and 25, below a certain threshold (Figure 6 right).

Fig. 6. Based on the segmentation of objects from the FlyingThings3D dataset, illus-
trated on the left side, the segmentation for evaluation, shown on the right side, is
retrieved. To achieve this, we fuse objects with similar SE(3)-motion.
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Table 2. Results for segmenting frames into moving objects. Metrics are the segmen-
tation accuracy and the average objects count in each frame.

Method Dataset Segmentation Acc. [%] Objects Count [#]

RigidMask FT3D - test 80.71 16.32
SF2SE3 (ours.) FT3D - test 83.30 7.04

Odometry We evaluate the odometry with the relative pose error, which has a
translational part RPEtransl and a rotational part RPErot. These are computed
from the relative transformation Trel between the ground truth transformation
t1 T̂t0 and the estimated transformation t1Tt0 , which is defined as follows:

Trel = t1 T̂−1t0
t1Tt0 (22)

Trel =

[
Rrel trel

0 1

]
. (23)

The translational and rotational relative pose errors RPEtransl and RPErot are
computed as follows:

RPEtransl =
‖trel‖
t1 − t0

in
m

s
(24)

RPErot =
‖w(Rrel)‖
t1 − t0

360

2π
in
deg

s
, (25)

with w(Rrel) being the axis-angle representation of the rotation. We report the
results on FlyingThings3D and TUM RGB-D in Table 3.

Table 3. Results for odometry estimation on FlyingThings3D and TUM RGB-D using
the translation and rotational relative pose errors RPEtransl and RPErot.

Method Dataset RPE transl. [m/s] RPE rot. [deg/s]

Static FT3D - test 0.364 2.472
RigidMask FT3D - test 0.082 0.174
SF2SE3 (ours.) FT3D - test 0.025 0.099

Static TUM FR3 0.156 18.167
RigidMask TUM FR3 0.281 4.345
SF2SE3 (ours.) TUM FR3 0.090 3.535

Runtime We report average runtimes of SF2SE3 and the baselines in Table 4.
The runtimes were measured on a single Nvidia GeForce RTX 2080Ti.

5 Discussion

Our method performs on par with state-of-the-art methods of the KITTI-2015
scene flow benchmark, achieving a scene flow outlier rate similar to RigidMask
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Table 4. Runtimes for different approaches on FlyingThings3D, KITTI-2015, and
TUM RGB-D. If depth and optical flow are estimated separately and the runtime is
known, it is listed. Runtimes in red are from the original authors on different hardware.

Method Dataset Depth [s] Optical Flow [s] Total [s]

ACOSF KITTI - test - - 300.00
DRISF KITTI - test - - 0.75
RigidMask KITTI - test 1.46 - 4.90
RAFT-3D KITTI - test 1.44 - 2.73
CAMLiFlow KITTI - test - - 1.20
SF2SE3 (ours.) KITTI - test 1.43 0.42 2.84

RigidMask FT3D - test 1.60 - 8.54
RAFT-3D FT3D - test 1.58 - 2.92
SF2SE3 (ours.) FT3D - test 1.58 0.40 3.79

RigidMask TUM FR3 0.23 - 2.34
RAFT-3D TUM FR3 0.23 - 1.15
SF2SE3 (ours.) TUM FR3 0.23 0.36 2.29

(+0.43%), CamLiFlow (+0.89%) and RAFT-3D (−0.45%). Further, on Fly-
ingThings3D it achieves similar scene flow performance as the pointwise method
RAFT-3D (−0.47%) and outperforms RigidMask significantly (−6.76%) while
also achieving an higher segmentation accuracy (+2.59%). In contrast to Rigid-
Mask and others, our method generalizes better because supervision is only ap-
plied for estimating optical flow and depth. Therefore, we detect the pedestrians
in Figure 7.

Fig. 7. Segmenting pedestrians on KITTI-2015: ground truth, estimate from
SF2SE3, estimate from RigidMask (left to right). In contrast to RigidMask, the pro-
posed SF2SE3 approach detects the pedestrians (marked with white bounding boxes)
because it is not visually fine-tuned for cars. This problem of RigidMask is not reflected
in the quantitative results because ground truth is missing for these points.

Moreover, our representation does not geometrically restrict object shapes.
Thus, we are able to fit objects with complex shapes, as shown in Figure 8.

Compared to ACOSF, which is the most accurate method in scene flow on
KITTI-2015 that estimates segmentation and takes no assumptions about object
shapes, our method reduces the scene flow outlier percentage by (−2.58%) and
the runtime from 300 seconds to 2.84 seconds. Furthermore, we expect ACOSF
to perform even worse in case of more objects, e.g. in FlyingThings3D, as it
uses random sampling for retrieving initial SE(3)-motions and assumes a fixed
number of objects.
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Fig. 8. Segmenting objects with complex shapes on FlyingThings3D: ground
truth, estimate from SF2SE3, estimate from RigidMask (left to right). RigidMask over-
segments the semi-circular shaped headphones on the bottom and misses the head-
phones on the right (marked with white bounding boxes).

6 Conclusion

We have proposed SF2SE3: a novel method that builds on top of state-of-the-
art optical flow and disparity networks to estimate scene flow, segmentation, and
odometry. In our evaluation on KITTI-2015, FlyingThings3D and TUM RGB-
D, SF2SE3 shows better performance than the state of the art in segmentation
and odometry, while achieving comparative results for scene flow estimation.
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