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Conserved structures of neural activity in
sensorimotor cortex of freely moving rats
allow cross-subject decoding

Svenja Melbaum1,2,7, Eleonora Russo 3,4,7, David Eriksson 2,5,
Artur Schneider2,5, Daniel Durstewitz 4, Thomas Brox 1,2 & Ilka Diester 2,5,6

Our knowledge about neuronal activity in the sensorimotor cortex relies pri-
marily on stereotyped movements that are strictly controlled in experimental
settings. It remains unclear how results can be carried over to less constrained
behavior like that of freely moving subjects. Toward this goal, we developed a
self-paced behavioral paradigm that encouraged rats to engage in different
movement types. We employed bilateral electrophysiological recordings
across the entire sensorimotor cortex and simultaneous paw tracking. These
techniques revealed behavioral coupling of neurons with lateralization and an
anterior–posterior gradient from the premotor to the primary sensory cortex.
The structure of population activity patterns was conserved across animals
despite the severe under-sampling of the total number of neurons and varia-
tions in electrode positions across individuals.We demonstrated cross-subject
and cross-session generalization in a decoding task through alignments of low-
dimensional neural manifolds, providing evidence of a conserved
neuronal code.

Humans and animals are capable of generating a vast array of beha-
viors. This feature is dependent on the brain’s ability to generate awide
repertoire of neural activity patterns, which may rely on subsets of
general motifs1. Experimental, computational, and theoretical work
has identified the rich underlying structures within neural populations
regarding movement control, decision-making, and memory tasks2.
Similarities in population structures acrossdifferentmodalities such as
speech and arm movements3, as well as the relevance of population-
level phenomena to learning4, hint at the existence of general princi-
ples that could be shared across subjects. For simple, constrained
behavior such as running on a linear track, population structures in
some brain regions such as the hippocampus seem to be conserved,
even across subjects5. Similarities in neural population structures have

not yet been shown for freely roaming animals and various naturally
occurring behaviors. Whether population structures are sufficiently
conserved across subjects to allow for the cross-subject decoding of
behavioral categories remains an open question in systems neu-
roscience. This question has great implications for neuro-prosthetic
approaches, among other research topics. Such conservation of neural
structures would allow for a shorter adaptation or fine-tuning phase of
Brain-Machine-Interface (BCI) systems from one subject to another as
opposed to training the system from scratch. We addressed this
question with non-linear mapping applied to electrophysiological
recordings across the entire bilateral sensorimotor cortex of the rat.
The neural trajectories of dynamical systems have been suggested as a
method to understand neural activity4,6–21. Therefore, we built on
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Laplacian Eigenmaps (LEMs)5,22, which map high-dimensional data via
the data’s affinity to a low-dimensional manifold. When affinities are
defined according to neuronal population activity, they can be used as
tools to visualize structures and relationships among population
activities at different time points of a recording session in a low-
dimensional space. This can potentially reveal conserved structures
across sessions and animals5. To investigate the degree to which low-
dimensional structures are conserved, it is necessary to involve several
types of behavior. In principle, it is possible to train animals in different
tasks, but this has several limitations: (1) training animals is time-con-
suming, especially if multiple behaviors are involved; (2) the trained
behavior often results in stereotyped movements and (due to the
plasticity of themammalian brain) corresponding changes in neuronal
representations; and (3) frequent transitions between behaviors are
not feasible. Furthermore, spontaneous movements influence neuro-
nal activity, even in well-controlled tasks23. Therefore, we refrained
from controlling the behavior from the start, instead allowing the rats
to roam freely in a Plexiglas box. Consequently, the animals showed a
wide range of naturalistic behavior, such as rearing, grooming, turning,
stepping, drinking, and resting. To verify this approach, we first com-
pared neuronal activity with previously reported results from more
constrained behaviors by focusing on step- and swing-like paw
movements. This study confirmed that the quality of information
conveyed by our recorded data was comparable to that found in
conventionally controlled settings. In addition, we reported a strong
anterior–posterior gradient in the lateralization of forelimb repre-
sentations from the premotor cortex to the primary sensory cortex.
This gradient emphasizes the strong involvement of more posterior
regions in the encoding of step-like behavior. After this validation, we
focused on analyzing the population code for more complex beha-
viors. We conducted a normal within-session decoding experiment to
show that the neuronal code contains enough information about the
behavior classes. Across sessions, the signals of individual neurons
were not comparable since neurons typically cannot be traced over
multiple days. Across subjects, even the electrode positions varied.
However, we found evidence that the signal from the population of
neurons shared a common structure across sessions and even across
subjects. In particular, decoding behavioral categories from the neu-
ronal population activity was possible across different subjects.

Results
Rats moved unconstrained in a rectangular arena and conducted
movements in different behavioral categories (i.e., stepping, turning,
drinking, grooming, and rearing)while searching forwater drops,which
a robot arm positioned under mesh occasionally delivered (Fig. 1a). We
recorded neuronal activities using electrodes that covered the sensor-
imotor cortex over both hemispheres (Fig. 1b). Two cameras video-
taped the behavior of the rats for simultaneous 3D tracking. Recording
sessions (n = 106 in total)weredistributedover threemonths andvaried
between 30 and 60min (μ = 36.1min, σ = 5.2min). In total, we identified
3723 single-units (μ = 35, σ = 21 across sessions) that we used for further
analysis: 734, 896, and 231 in the left M2, M1, and S1, respectively, and
435, 796, and 631 in the right M2, M1, and S1, respectively24.

We focused on step-like behavior to extract behavioral compo-
nents from the movements. To extract the steps, we binarized the
movements of the paws into swing (moving) and stance (not moving)
according to a horizontal velocity threshold (0.03mm/ms). With each
paw, rats performed one step per second on average (μ = 1.22, σ =
0.29). The averagepercentage of time spent in the stancephase across
rats was 71%, σ = 17%.

The strongest paw coupling in contralateral S1
Since classical methods such as peristimulus time histograms (PSTHs)
are not applicable to behavior without a trial structure, we computed
spike-triggered averages to investigate the relationship between

neuronal activity and unconstrained movements25. We defined the
spike-triggered average paw swing–stance status (STAPSSS) as a rough
measure of the coupling of individual neurons to pawmovements. For
each neuron and each paw, we calculated the STAPSSS by averaging
the swing–stance status in the period ±1 s around the spikes (Fig. 1c).
For statistical control, we randomly shifted the spike train 1000 times
to calculate 1000 control STAPSSS waveforms. Bootstrapping via
temporal shifting preserves autocorrelations in time series and,
therefore, helps to exclude false positives arising solely from auto-
correlations in paw movements. We considered the STAPSSSs to be
significant if their standard deviation over time exceeded the 0.99
quantile standard deviation of the control STAPSSS waveforms. Only
neurons that spiked more systematically than expected by chance in
relation to movement parameters could pass this test. Significantly
coupled neurons were characterized by clear peaks in the STAPSSS
(Fig. 1d and Supplementary Fig. 1). In total, 54% (2029/3723) of all
neuronswere significantly coupled to at least onepaw.Thesewere47%
(546/1169) of all neurons inM2, compared to 53% (906/1692) inM1 and
67% (577/862) in S1.

To take into account the strength of coupling, we defined a con-
tinuous measure for paw coupling as the ratio of the STAPSSS’s stan-
dard deviation and the control standard deviation (>1 for significant
neurons). Using this quotient as a dependent variable, we calculated
three-way ANOVAs (with hemisphere, area, and rat as factors) for all
four paws separately (detailed results in Supplementary Table 2). In
summary, for all four paws, we found a stronger coupling on the
contralateral side (p =0.04), which suggests lateralization during
locomotion. The coupling increased from anterior to posterior areas
(p < 1e − 11). For all four paws, the highest mean coupling was localized
in contralateral S1 (Fig. 1e). In three out of the four paws, the interac-
tion between the area and hemisphere was also significant, that is, the
differences between the contralateral and ipsilateral hemisphere
increased from anterior to posterior areas (p = 0.02). To further
investigate the difference in magnitude between contralateral and
ipsilateral paw coupling, we defined contralateral bias as the ratio
between the coupling of the contralateral and ipsilateral paws: b = cr/cl
for left-hemispheric neurons and b = cl/cr for right-hemispheric neu-
rons (b ≈ 1 for non-biased neurons), with bias denoted as b, coupling as
c, the right paw as r, and the left paw as l. We calculated this bias
separately for the front and hind paws. A two-way ANOVA on the
contralateral bias of individual neurons revealed a significant effect of
the brain area for the front paws (F2,3715 = 44.66, p < 1e − 19) and the
hind paws (F2,3715 = 54.56, p < 1e − 23). This confirmed that single neu-
rons had a larger contralateral bias from anterior to posterior areas for
the front and hind paws (Supplementary Fig. 2).

To further investigate the temporal relationship between neuro-
nal activity in differentmotor areas andpawmovements, wequantified
the offset between each movement peak (the STAPSSS peak) and
spike. We found that for all four paws, the offset for neurons in S1
tended to be more negative (i.e., the spike followed movement) than
that of neurons in M1 and M2 (Supplementary Fig. 3). This effect was
more pronounced for the hind paws according to an unpaired
Mann–Whitney U-test between offsets from S1 and M1/M2 (front left
paw Mann–Whitney U = 1157042, n1 = 862, n2 = 2861, p =0.002 two-
sided; front right paw U = 1155623.5,p =0.002; hind left paw
U = 1056184.5,p < 1e − 10; hind right paw U = 1070083, p < 1e − 8). The
finding that neurons in S1 tended to spike after movements, whereas
neurons in M1 and M2 spiked in a closer temporal relationship to paw
movements, aligns well with the idea of S1 reacting to sensory input
and M1 and M2 being more involved in movement generation.

Single-unit activity allows for the decoding of paw movements
within sessions
Owing to the strong paw coupling, we hypothesized that it is possible
to decode the paw movements of freely moving rats from neuronal
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activity. To test this hypothesis, we applied feed-forward neural net-
works to decode the swing–stance status of the right front paw posed
as a two-class classification problem. For each time point, we fed in the
spike trains ±400ms of all units in time bins of 10ms. Deep neural
networks were trained and evaluated separately for each recording
session. We chose this approach because single-neuron activity does
not generalize over sessions, in contrast to our population-level
decoding approach in the following section. The mean per-class
decoding accuracies were well above-chance level (μ = 71%, σ = 10%;
chance level 50%). While there was no significant correlation between
accuracy and train set sizes (Spearman’s ρ = 0.17, p =0.07), we found a
significant correlation between the accuracy and percentage of cou-
pled neurons according to our STAPSSS analysis per session (Spear-
man’s ρ =0.63, p < 1e − 12, Fig. 1f). This confirms that STAPSSS is a

reliable measure of the correlation between neuronal activity and
movement.

The structure of population activities allows the decoding of
behavior
Owing to the promising decoding results of paw movements, we
sought to determine whether population activity during uncon-
strained movements also contained information on more complex
behavior. We used LEMs5,22 to reveal and visualize the structures in
the population activities. LEM is a non-linear dimensionality-reduc-
tion method for extracting low-dimensional manifolds in high-
dimensional data using spectral techniques. Owing to redundancy
in the code of the cortex, organized in subpopulations of correlated
units, we expected in fact to capture most of the population variance
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Fig. 1 | Spike-triggered average paw swing–stance status (STAPSSS) during
unconstrained movements extracts lateralized paw coupling. a Behavioral
setup with a groundmesh, camera, and robot arm delivering water drops, adapted
from ref. 52. b Locations of the electrodes of the six implanted rats, adapted from
ref. 52. c Paw movements were binarized into swing (moving) and stance (not
moving). STAPSSSwas calculated by averaging the swing–stance status in windows
±1s (indicatedwith red boxes) around each spike.d STAPSSS for the right front paw
of four example single-units in the left and right S1 (upper panel) and the left and
right M1 (lower panel). Black lines refer to the statistical control waveforms.
e Coupling for each paw, brain area, and hemisphere, averaged over neurons
(n = 734, n = 896,n = 231 in left M2, M1, S1, and n = 631,n = 796, n = 435 in right S1,

M1, M2). Black stars denote the results of the post-hoc Tukey–Kramer tests (only
intra-hemispheric results are indicated, detailed results in Supplementary Table 3).
The boxplots show the median and the first and third quartile, the whiskers extend
to 1.5 times the interquartile range. Orange stars denote mean values, and notches
represent the 95% confidence intervals for the median. See the main text for a
definition of paw coupling. *p <0.05, **p <0.01, ***p <0.001. f The accuracies of
neural networks trained to predict the status of the right front paw from the neural
data were strongly correlated to the percentage of significantly coupled neurons.
Source data are provided as a Source Data file. Rat drawings adapted from SciDraw
(https://doi.org/10.5281/zenodo.3926077, https://doi.org/10.5281/zenodo.
3926277, https://creativecommons.org/licenses/by/4.0/)59.
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in a space with a lower dimension than the recording space. We
applied LEM to the neighborhood graphs of neuronal activity vectors
to visualize structures and relationships among population activities
at different time points of a recording session in a low-dimensional
space. Most of the resulting projections showed a clear saddle-like
shape when visualized in three dimensions (Fig. 2a, 52/95, roughly
55% of session structures had a similar shape, as classified visually),
although there were also random-like population structures that
differed from this general trend (14/95, about 15% of the sessions,
Supplementary Fig. 4; the remaining 35% had intermediate levels of
structuredness). In random-like population structures, the time
points were uniformly distributed in a sphere. Sessions with a clear
saddle-like shape were characterized by a larger number of neurons
that were significantly coupled to at least one paw compared to
sessions with an intermediate or low level of structuredness
(μ = 23.6, σ = 14.7 vs. μ = 16.6, σ = 12.3 neurons, Mann–Whitney
U = 797, n1 = 52, n2 = 43, p = 0.008 two-sided). To ensure that the
saddle-like structures were not a simple artifact of the
dimensionality-reduction method, we also performed time-shuffled,
neuron-shuffled, and time-shifted control reductions5. These did not
lead to any apparent structure (Supplementary Fig. 5).

To investigate the relationshipbetweenpopulation structures and
the corresponding behavior, we proceeded by manually labeling ses-
sions in 500 ms snippets into six behavioral classes (stepping/paw
movement, turning/headmovement, drinking, grooming, rearing, and
resting). These six classes included complex behaviors, recruiting the
full body of the rat and the full sensorimotor cortex (Supplementary
Fig. 6). We included all sessions with clear saddle-like shapes and with
at least five significantly coupled neurons, which resulted in a total of

48 sessions (13 for RatA, 16 for RatB, 7 forRat C, 6 for RatD, 3 forRat E,
3 for Rat F).

While each session contained at least some samples of each
behavior, the occurrences of behaviors still differed considerably
across sessions and rats (Supplementary Fig. 7). In contrast, the dis-
tributions of behaviors across the neural structures revealed clear
similarities across rats, which was surprising assuming a sampling of
approximately 0.005% of all neurons (ratio between the number of
recorded cells and the estimated total number of cells, approximated
for the area covered by the implanted electrodes by assuming a cor-
tical thickness of 2mm and a density of 90k neurons per mm326) on
average in only roughly overlapping recording sites (cf. Fig. 1b). For
example, the second eigenvector (here: first dimension), the so-called
Fiedler vector, clearly represented the difference between movement
and rest (Fig. 2b left column). For some animals, a clear distinction
betweenmore paw-related (pawmovement, rearing) and head-related
behavior (head movement, drinking) was observable in the third and
fourth eigenvector (here: second/third dimension, Fig. 2b right col-
umn). Although the position of a population vector in the LEM space is
univocally defined by the instantaneous activity of all its composing
units, and is relatively little affected by the activity of a single-unit,
there is a relationship between the overall structure emerging in the
LEM space when observing the totality of recorded data and the firing
of neurons with high behavioral selectivity. While population vectors
cluster in spacedue to the similarity betweenneuronal representations
during a specific behavior, single-units with high selectivity for such a
behavior will fire more strongly at that behavior’s cluster (Supple-
mentary Fig. 8). Moreover, the distance in the LEM space between
population vectors corresponding to two behaviors will increase with
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sions. Left panel: The first dimension clearly differentiated between rest and
movement (all other behavioral classes). Right panel: The second and third
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relatedbehavior (rear vs. drink).One session for eachofRats A, B, andC isdepicted.
c Classification accuracies for the six behavioral classes given low-dimensional
neural input were above-chance level for the sessions for all six rats. The gray

dashed line indicates the chance level, and the error bars show standard deviations
around the mean (n = 13, n = 16, n = 7,n = 6,n = 3, n = 3 sessions for rats A–F).
d Accuracies were correlated to the number of significantly coupled neurons
(neurons coupled to at least one paw according to the STAPSSS measure). e One
example confusion matrix for the test set of a single session of Rat A, with a mean
per-class accuracyof68.46%. f Formost of the sessions, classification accuracies for
the six behavioral classes were the highest given dimensionality-reduced neural
activity from M1 as input, followed by S1 and M2. Source data are provided as a
Source Data file.
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the number of units within the population that change their firing rate
between the two behaviors (Supplementary Fig. 9a, b).

To quantify the separation between the neuronal representations
of the six identified behaviors in the LEM space, we trained a neural
network based on the first 10 dimensions of the population vectors. We
chose 10 dimensions because we found themean dimensionality in the
LEM space to be μ=8.6, σ = 1.1 (see Methods). By choosing a slightly
higher value than the mean dimensionality, we added a small safety
margin to ensure the inclusion of all relevant dimensions. The neural
network correctly classified behaviors more frequently than by chance
(mean per-class accuracy μ =47.1%, σ =9.6%; chance level 16.66%,
Fig. 2c). The accuracies were correlated to the number of significantly
coupled neurons (n =48, Pearson’s ρ =0.59, p< 1e − 5, Fig. 2d), the total
number of units (Pearson’s ρ =0.54,p < 1e −4, Supplementary Fig. 10a),
and the signal-to-noise ratio (SNR) averaged over units (Pearson’s
ρ =0.49, p <0.001, Supplementary Fig. 10b). Common classification
mistakes consisted of confusing rearing or turning with stepping, as
well as turning with drinking or resting (Fig. 2e). At the single-unit level,
these behavioral classes shared, in fact, the highest number of selective
units (Supplementary Fig. 9c, d) in each of the three recorded regions
(Supplementary Fig. 9e). Moreover, we observed the lowest accuracy
for Rat D, Rat E, and Rat F. These rats had a low mean SNR (Rats E–F,
Supplementary Fig. 10b) or no electrode coverage of posterior areas
(Rats D and F, cf. Fig. 1b). This last aspect made us hypothesize that
more posterior regions are primarily involved in the encoding of
behavioral classes. To test this hypothesis, we investigated the influence
of the different sensorimotor areas on neural population structures.
Thus, we conducted dimensionality reductions with equal numbers of
neurons (i.e., 20 randomly chosen units) from M2, M1, or S1 as input.
With this subset, we trained artificial neural networks to decode the
behavioral classes with the neural activity in a given area reduced to five
dimensions as input. The decoding accuracies for M1 were significantly
better than those for M2 (Wilcoxon signed-rank test W= 155,n =41,
p < 1e − 5 two-sided) and those for S1 (W = 335,n =42,p =0.009). In
total, the accuracies were highest in M1 for 28 out of the 48 sessions,
compared to 15 for S1 and5 forM2 (Fig. 2f, accuraciesμ= 25.8%, σ = 4.9%
in M2, μ = 28.6%, σ = 5.3% in M1, μ = 26.7%, σ = 5.4% in S1). The low rele-
vance of anterior sensorimotor regions is in line with the STAPSSS
results, as well as with the lower decoding accuracies in Rat D and Rat F.

A cross-session polytope comparison reveals similarities in the
average encoding of behavioral classes across animals
The visual similarity between neural population structures in three
dimensions (cf. Fig. 2a, b) led us to wonder whether correspondences

between the full dimensional structures could be quantified. Such
similarities become more apparent when reducing the extended
manifolds to polytopes—high-dimensional polyhedra—with vertexes
defined by the average population vectors associated with the six
behavioral classes (Fig. 3a). This encouraged us to systematically
investigate whether population activities during unconstrained
movements contained structures that were conserved across record-
ing sessions or even across different animals. We excluded Rat F from
all of the following analyses because of low recording quality, which
may reflect the long delay between implantation and measurements
compared to the other rats (see Supplementary Table 1).

Polytopes are useful tools to facilitate the visualization of the
complex structure associatedwith the neuronal representations of the
six identified behaviors and their reciprocal distance. To test whether
such distances were preserved across sessions and animals above-
chance level, we first tested whether behaviors associated with similar
population vectors in one session corresponded to behaviors with
similar population vectors in other sessions. For example, if in one
session the population vectors during turn and step are similar to each
other but dissimilar from those during rest, we wondered whether the
same relationship can be found in other sessions as well. More for-
mally, for each pair of sessions v andw and each behavioral class i, we
ranked the remaining classes by the Euclidean distance between their
average population vector and the average population vector of class i.
If v and w had the same polytope structure, the rank associated with
eachbehaviorwouldbe identical.We quantified the similarity between
ranks across sessions with the statistic svwi , defined as the number of
concordant ranks, and compared its distribution with that obtained
from bootstrapping (see Methods for details). We found significant
similarities across sessions, both when computing distances in the
high-dimensional recording space (Kolmogorov–Smirnov test,
p < 1e − 39) and in the reduced LEM space (p < 1e − 73) (Supplementary
Fig. 11a, b). This finding confirms that the obtained result was not an
artifact of the dimensionality-reduction procedure. Moreover, to
ensure that such significance did not depend exclusively on the
enhanced distance between the “rest” class and any other classes, we
repeated the analysis with “rest” excluded from the accounted classes
(p < 1e − 21, Supplementary Fig. 11c).

We performed a second test to compare the overall conservation
of relative distances among the population vectors associated with
different behaviors at the single-session level. We captured the dif-
ferences between the cross-behavioral distance matrices of two ses-
sions with the Jeffries–Matusita metric and compared them with the
bootstrap distribution obtained by shuffling the behavioral labels
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age population vectors in the 3D LEM space. The gray shading is added to visualize
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sessions, the difference between the session-specific matrices collecting the
Euclidean distance between the average population vectors associated with each
behavioral class (see Methods). Significance was assessed by bootstrapping the
class labels (n = 720, all possible permutations of class labels, see Methods). Dis-
tances were computed in the 20-dimensional LEM space. Of the 990 possible
sessionpairs, 78%hadap-valuebelow0.05 (one-sidedbootstrap test, no correction
applied for multiple comparisons), indicating that the similarities of the neuronal
activities could be captured using the polytope structures.
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(see Methods for details). This was done for each pair of sessions
within and across animals, both in the high-dimensional recording
space and in the LEM space, and by excluding the “rest” class from the
test (Supplementary Fig. 11d, Fig. 3b, and Supplementary Fig. 11e,
respectively). In all of these cases, the similarity between the polytopes
of different sessions and animals was above chance for most session
pairs, and non-significance often occurred for animals with a low SNR
(cf. Supplementary Fig. 10b). Finally, we wondered whether the
observed similarity between polytopes might have been induced by
the sheer presence of somatotopy along the sensorimotor cortex. In
fact, in the case of behaviors selectively engaging different parts of the
sensorimotor cortex, somatotopy would generate a coarse-grained
covariance structure between somatotopic regions that is similar
across animals. However, the spontaneous behaviors considered here
are complex and engage the full sensorimotor cortex (cf. Supple-
mentary Fig. 6). This makes such a scenario unlikely. Nevertheless, to
rule out this hypothesis, we divided the recorded units according to
their somatotopic region (Supplementary Fig. 11e) and repeated the
analysis from Supplementary Fig. 11d while shuffling the identities of
the units recorded in the same somatotopic region across behaviors
(i.e., the identities of the neurons recorded in the same somatotopic
region were shuffled when building each of the average population
vectors representing the six considered behaviors). This destroyed the
covariance of neuronal activity across behaviors at the single-unit
level, but maintained both the covariance of neuronal activity across
behaviors at the somatotopic-region level, and the average firing rate
of the different somatotopic regions. With the shuffled data, no ses-
sion pair comparison reached an average p-value below 0.05

(Supplementary Fig. 11g), demonstrating that the obtained results on
polytope similarity across animals were not the byproduct of
somatotopy.

Cross-subject and cross-session decoding
Polytopes capture the distance between the average neuronal repre-
sentations of the different behaviors but neglect their shape and
extension on the manifold. Encouraged by the similarities observed
among the polytope structures of different recording sessions, we
decided to perform a stronger test and attempted cross-subject
decoding. Cross-subject decoding requires not only an agreement
between the average representation of behaviors but also accounts for
the variability in neuronal representations associated with each beha-
vior. While it is impossible to find a direct correspondence at the
single-neuron level across animals, similarities in lower-dimensional
population structures can be used for cross-subject and cross-session
decoding (Fig. 4a). For the decoding analysis, we divided the six
behavioral classes (Fig. 4b) into two disjointed sets: one “alignment
set”, which was used to align the neural structures, and one “decoding
set”, which was used for training and testing a classifier. Thereby we
ensured that no class was used for aligning the structures and classi-
fication in the neural space at the same time. The mean neural vectors
(four dimensions) corresponding to the behavioral classes in the
alignment set were used to compute a Procrustes transformation
between two sessions to align the population activity structures27,28

(Fig. 4c). Procrustes transformations involve translation, scaling,
reflection, and rotation and thus preserve the shape of a set of points.
For decoding, we trained a classifier on samples from the decoding set
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of one session for a single rat using the activity in the dimensionality-
reduced neural space as input. Then, we tested the generalization on
another session of the same rat (cross-session decoding) or another rat
(cross-subject decoding) (Fig. 4c). Notably, the samples of the
decoding set of the two tested sessions were not used for computing
the Procrustes transformation. In the first experiment, the alignment
set consisted of four behavioral classes, with two other classes
remaining for the decoding set. This resulted in a total of 15 possible
splits into two sets. Classifiers trained on highly decodable sessions
also successfully generalized to other sessions from the same or other
rats (Fig. 5a–c and Supplementary Fig. 14a–b). In the generalization
matrix (Fig. 5a), 13.88% of the generalization results (275 out of
45*44 = 1980) had a mean per-class accuracy higher than 60%, and 59
higher than 65%. In the set of sessions with the highest 10% signal-to-
noise ratio (SNR > 4.33), the mean per-class accuracy in the general-
ization task was μ = 59.7%, σ = 5.4. The best-performing sessions
included sessions of Rats A, B, and C with sufficient recording quality
and a sufficiently high number of units for a robust estimation of the
underlying population structures (Fig. 5d). Additionally, the correla-
tion between within-session and between-session accuracies was high
(Fig. 5c, n = 45, Pearson’s ρ = 0.68, p < 1e − 6). We defined the

“generalization accuracy” of a session as the average test accuracy
across all sessions (mean value per row of Fig. 5a first matrix). These
generalization accuracies were correlated to the total number of units
(Pearson’sρ =0.38, p <0.01),with a higher number of units leading to a
better estimation of the population structure. The generalization
accuracies were also correlated to the session length (Pearson’s
ρ = 0.37, p <0.05) since the number of samples used for LEM (which
included only time points with sufficient activity) varied across ses-
sions and rats. Finally, the recording quality—namely, the SNR aver-
aged over units—was correlated with generalization (Pearson’s
ρ = 0.38, p < 0.01). Particularly, Rats A and B, which performed best in
the generalization, had both a high SNR and a high total number of
units (Fig. 5d).

Decoding is robust to methodological and class-selection
changes
To evaluate whether our results depended on a specific
dimensionality-reduction method, we repeated the analysis using
Isomap, another non-linear dimensionality-reduction method, and
principal component analysis (PCA). Also Isomap revealed neuronal
structures that were comparable across subjects (Supplementary
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Figs. 12 and Fig. 5a second matrix). In contrast, linear methods such as
PCAwerenot powerful enough to extract these neuronal structures, as
they search for projections in the directions of largest variance (which
can be biased by outliers) and are not optimized to maintain the local
neighborhood structure of the high-dimensional neural space (Fig. 5a
thirdmatrix); the LEM results were significantly better than those from
data reduced using PCA (Wilcoxon signed-rank test W = 167978303,
n = 30375,p =0 two-sided). These results highlight that the activity of
the sensorimotor cortex during spontaneous behavior evolves over a
non-linear manifold embedded in the original high-dimensional
neural space.

For a more systematic test of the relationship between the
number of units and generalization, we took all sessions with a
generalization accuracy of at least 55% (a total of 19 sessions from
Rats A, B, and C) and conducted an ablation study with LEM reduc-
tions on the reduced number of units (20, 40, 60, and 80 units
removed per session). We then repeated the generalization experi-
ment on the aligned LEM structures. The accuracies steadily
decreased with fewer units (Supplementary Fig. 13), confirming the
high relevance of the number of units for a robust estimate of the
population structure.

To determine which sensorimotor areas were most relevant for
generalization, we again took the 19 best sessions and conducted
LEM reductions after removing M1, S1, or M2. Additionally, for a fair
comparison, we removed a random portion of all of the other units
for underrepresented areas such that the number of units after
the removal of M1, M2, and S1 neurons remained constant
across sessions. Generalization accuracies on aligned LEM structures
decreased considerably after the removal of M1 (accuracies
μ = 53.9%, σ = 7.5%); these values were slightly but significantly
lower than after the removal of units from S1 (accuracies μ = 55.9%,
σ = 7.7%, Wilcoxon W = 5497776, n = 5415, p < 1e − 56), M2 (accuracies
μ = 55.0%, σ = 8.3%, W = 6341443, p < 1e − 17), or of the same number
of units distributed over all areas (accuracies μ = 55.6%, σ = 7.8%,
W = 5659147, p < 1e − 47).

In a second experiment, we used only three classes in the align-
ment set and the three remaining in the decoding set to test the gen-
eralization under more difficult conditions, resulting in 20 possible
splits of the six classes in total. The general pattern of the general-
ization matrix stayed the same (Supplementary Fig. 14c–d). To verify
that the classifiers did not only learn to discriminate the simplest dif-
ference—the difference between rest and movement—we conducted
another experiment without the class “rest”. Although the accuracies
were lower in this setting, the general pattern remained the same
(Supplementary Fig. 14e–f). To assess the relevanceof the alignment of
neural structures, we also tested the generalization on neural struc-
tures without explicit alignment as a control. In most cases, the
accuracies on aligned structures were much higher than those on
unaligned structures (Supplementary Fig. 15).

To further explore our results, we performed control classification
experiments in which we examined the generalization on shuffled data
(cf. Supplementary Fig. 5). Accuracies of shuffled data were sig-
nificantly lower than those computed in the original LEM space (Wil-
coxon W = 116677979, n = 30375, p =0 when comparing with neuron-
shuffled, W = 115385202, p =0 with time-shuffled, and W = 123943794,
p =0 with time-shifted data) and did not exceed the chance level
(Supplementary Fig. 16). Furthermore,we computedLEMreductions in
the non-binarized neural space and repeated the generalization
experiment. Also in this case we could find significant generalization
formultiple sessions, but with accuracies lower thanwhen the analyses
were performed on binarized spikes (Supplementary Fig. 16d,
W = 186661468, p < 1e − 180). This is probably because the binarization
acts as a form of normalization that reduces the impact of overall firing
rate differences between neurons, and could suggest that similarities
are best captured by the differentiation between sub-groups of units

that are co-active during the different behaviors than by exact single-
unit firing rate modulations.

Discussion
In this study, we investigated single-neuron activity as well as popu-
lation activity patterns in the rats’ sensorimotor cortex during
unconstrained and self-paced behavior. The behavior was as closely
related as possible to naturally occurring behavior, as it was based on
foraging, but it was still performed in a limited arena to allow for
reliable movement tracking. The first analyses were sanity checks to
validate our approach of studying freely moving animals without a
clear trial structure. Based on the chosenmeasure, STAPSSS, 54% of all
neuronswere significantly coupled topawmovements. This fractionof
coupled neurons is in the range of previously reported numbers. For
example, 60% of neurons in the hindlimb motor cortex reacted to
different locomotion scenarios29, and 44% in M1 were body-coupled in
freely moving rats25. Our multi-side recording approach allowed us to
comprehensively test for differences in neuronal activity across the
entire sensorimotor cortex. Previous research has found that the
laterality of forelimb representations increases from M2 to M1 in a
pedal task for head-restrained rats30. Here, we extended this laterality
gradient to more posterior regions—in particular, S1. As we targeted
the output layer of the cortex (layer V), we putatively biased our
recordings toward pyramidal tract neurons, which have been descri-
bed as being predominately involved in laterality30.

While the above-described findings refer to the general features of
the sensorimotor cortex, the main finding of our study was based on
conserved neuronal population structures. Experimental, computa-
tional, and theoretical work has identified a rich structure within the
coordinated activity of interconnected neural populations in move-
ment control, decision-making, and memory tasks. These findings are
conceptualized within the framework of neural population dynamics,
which can reveal generalmotifs2. Recurrent neural networks (RNNs) can
be applied to neural data to reveal structural and geometric
properties31. Multiple tasks can then be represented in different RNN
models. In these networks, some clusters of units have been identified
as specialized for subsets of tasks1. Alternatively, methods such as PCA
and its variants dPCA and jPCA have been applied to identify the sta-
bility of motifs across modalities such as arm and speech control3, as
well as within and across brain areas4. In contrast to the previously
described studies, we focused on the existence of conserved neuronal
structures across animals without any clear instructed task line but with
several behavioral classes. These two points differentiate our study
from previous publications in the field. We investigated population
activity patterns, which are commonly assumed to reside on low-
dimensional manifolds in the full neural state space14,16,32–34. In contrast
to the (globally) linear method like PCA that most studies have
used4,12,15–18,20,35, we assumed the preservation of local neighborhood
relations in the data. Therefore, we employed LEM5,22 to reveal the
presumedpreserved low-dimensional structures. Remarkably, neuronal
population activity during unconstrained behavior contained similar
structures across animals and sessions, already visible in the first three
dimensions. Furthermore, the distribution of different behaviors across
low-dimensional neural structures was systematic, which we confirmed
with our above chance, within-subject decoding results. The allocation
of different behaviors on the population structures revealed strong
similarities across rats. Particularly, movement and rest could be clearly
visually distinguished in the first dimension. This is in line with results
on clear separations in the neural state space for output-potent and
output-null (e.g., preparatory) neural activity12,20.

To support ourmain claim that low-dimensional neuralmanifolds
are comparable across sessions and animals even in the case of
unconstrained behavior, we first showed with our polytope analysis
that the relative positions of the neural representations associated
with different behavioral classes were conserved across animals and
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sessions above chance. The analyses of the polytope structures com-
pared the distance between the average neuronal representations of
behaviors, neglecting theirprecise spatial extensionon themanifold as
determined by the variability in neuronal representation of each
behavior. Conversely, cross-subject decoding was also affected by
such variability and, therefore, tested an even stronger degree of
similarity. Ultimately, we evaluated the performance of a classifier
trained on the neuronal activity of one subject to predict the behavior
of another based on its own neuronal activity; this provided us with a
proxy to experimentally test and quantify the degree of universality of
neural representations across subjects. Since the neuronal state space
of different subjects cannot be directly compared (given thedifference
in number and identity of the recorded neurons), applying dimen-
sionality reduction and alignment was necessary to achieve this goal. A
simple, supervised, shape-preserving alignment procedure—namely, a
Procrustes transformation between mean population vectors for dif-
ferent behavioral classes in the dimensionality-reduced neural space—
sufficed for successful cross-subject generalization in a decoding task
with distinct but related behavioral classes. Our procedure was
applicable to sessions with sufficient recording quality (indicated by a
high SNR of the recorded units) and enough units for robust popula-
tion estimation. Further, the generalization accuracies of the sessions
were closely related to their within-session accuracies. Generalization
was considerably worse for population structure estimates based on
fewer units. In line with the within-session decoding results, we also
found that generalization significantly decreased after the removal of
M1, which indicated consistent population responses especially in this
area. The low relevance of the anterior motor cortex to information
regarding behavioral categories is in line with our STAPSSS results.
Nevertheless, in contrast to the encoding of paw movements, our
results on the population decoding of the higher-level behavioral
categories hinted at major contributions from M1, not only S1. Thus,
our results close a gap in a previous study that investigated postural
and behavioral encoding in the posterior parietal cortex and M236.
While we mostly used LEM as a dimensionality-reduction method
given its solid theoretical basis, we also showed that another non-linear
dimensionality-reduction method, Isomap, can be used to reveal
neural structures that are comparable across subjects.

A shared structure in neuronal activity across subjects has been
shown mostly in fMRI studies, where even between-subject classifica-
tion has been demonstrated27,37–41. While these works have focused on
watching movies (an activity that can be conducted similarly for dif-
ferent subjects), EEG and EMG cross-subject decoding has been shown
for handmovements42,43. In rodents, relatedwork has shown the cross-
subject decoding of odor sequences in the orbitofrontal cortex44 and
place-cell activity in the hippocampus45. Here, the presentation of
external stimuli and the presence of a precise trial structure might
facilitate the detection of an operational manifold common to all
animals. In contrast to these studies, we showed cross-subject classi-
fication in a more complex case where rats roamed freely without
training or a trial structure in the underlying task. Therefore, our main
finding of shared neural structures is consistent with recent findings
but also extends them tomore complex, less constrained behavior. To
our knowledge, this is the first time that the conservation of neural
structures across animals and for distinct, spontaneous behavioral
classes has been shown. This finding implies that conserved neuronal
structures occur without training. Therefore, the neuronal computa-
tions underlying these structures might be similarly realized across
individuals, either from birth or during development.

The similarity of neural population structures in the sensorimotor
cortex is of great relevance for the development of BCI systems, which
are built to aid physically disabled people and, thus, often target the
sensorimotor cortex46. Essentially, BCI systems aim to map neuronal
activity to targeted movements by first transforming the noisy and
non-stable recorded single-unit neuronal activity (which strongly

varies across a longer recording time span) to a, supposedly, more
stable lower-dimensional space, and then using a linear or non-linear
decoder mapping to movement classes or trajectories. Gallego et al.
showed that in monkey sensorimotor cortex, it is possible to find an
alignment between low-dimensional manifolds during cursor tasks,
even when they are reconstructed from recordings interspaced by
long periods of time35. Following these lines, the topic of the alignment
of low-dimensional neural manifolds across time for the long-term
stability of BCI systems has recently gained focus, fostering the
developmentofnewanalytical techniques47–50. Once the reconstructed
manifolds are aligned to a common frame, the decoder mapping
between neuronal activity and movement classes can be fixed in time,
which diminishes patients’ discomfort caused by the constant re-
training of the BCI system. While progress has been made in the
alignment of manifolds across time for a single subject, the cross-
subject generalization of neuralmotor patterns has not been shown so
far. If the neuronalmanifolds of the sensorimotor cortex were subject-
specific, BCI systems would need to learn the mapping from the neu-
ronal manifold to the movement space from scratch for each subject.
For deep artificial neural networks, which, today, are often used as the
most powerful non-linear mapping methods, the training phase is
computationally expensive, often requiring hours of GPU training51; in
contrast, once a network is trained, it can be used in the prediction
phase with low computational effort. In this manuscript, we demon-
strate that the neuronal manifolds of the sensorimotor cortex asso-
ciated with spontaneous behavior are not only stable in time but are
also conserved across animals. This implies that BCI training time can
be substantially reduced by pre-using data from other subjects, in
which case only a short fine-tuning phase would be necessary. Our
work provides a proof-of-principle for the cross-subject generalization
of complex self-paced behaviors that involve the whole body, with
recordings of a few single-units (in the range of 100–200 neurons
per session) from only partially overlapping areas of the sensorimotor
cortex provided as data. While it has been hypothesized that cross-
individual decoding might not be possible with increasing task
complexity5, our results indicate that even during unconstrained
behavior, the relationships among neural activity patterns are con-
served across different animals. This conservation of population-level
neural phenomena provides a foundation for cross-subject decoding,
even in the difficult case of unconstrained behavior.

Methods
Animal surgery
We implanted six male Long Evans rats at the age of eight weeks with
22 tungsten electrodes (200 to 600 kOhm impedance, polyimide
insulation, WHS Sondermetalle, Grünsfeld, Germany) at a 1.2mm
implantationdepth in eachhemisphere (implantation: January 2017 for
Rat F, April 2017 for Rats A–E). Recordings were taken in June-August
2017 (see Supplementary Table 1). The relatively long implantation
time (perfusion in November 2017), as well as the amount of electrode
wires, led to tissue growth around the electrodes and changes in the
original implantation depth. We, thus, cannot provide histological
pictures. Electrode locations spanned from –2 to +5mm in the ante-
rior/posterior direction and from 1 to 4 mm in the lateral/medial
direction. This resulted in three medial–lateral rows of six electrodes
each, plus one row of four electrodes (see Fig. 1b). More information
regarding the procedure can be found in ref. 52. The Regierung-
spräsidium Freiburg, Abteilung Landwirtschaft, Ländlicher Raum,
Veterinär- und Lebensmittelwesen approved all animal procedures.

Behavioral task
The rats were kept water-restricted for the time course of the experi-
ments (free access to water for two days per week). For the experi-
ments, the rats moved unconstrained on a mesh of 30 × 40 cm in a
closed arena. Every 10 to 30 s, a waterspout pseudo-randomly
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positioned by two servo motors released a drop of water onto the
mesh, which the animals could find and consume. To prevent the rats
frommerely following the movements of the waterspout, we included
dummymovements that were not followed by a release of water. Even
experienced animals were not able to predict the position of water
drops without an active search, and the animals did not find all water
drops throughout a session. This task has been previously described52.
Here, we only usedpart of the dataset discussed in ref. 52; inparticular,
we only included sessions with a minimum duration of 30 min.

Data acquisition and the preprocessing of extracellular
recordings
Extracellular signals were recorded at 30 kHz and band-pass filtered,
amplified, and digitized using a head stage (Intan Technologies, Los
Angeles, California) situated at the head of the animal. Spike sorting
was conducted on high-pass filtered signals (cut-off at 300Hz) sepa-
rately for each electrode. Spikes were defined as amplitude threshold
crossings of four times the standard deviation of the signals. For each
spike, we extracted the window of −0.5 to 2ms around the peak
amplitude (resulting in 76 values per spike). Spike sorting consisted of
two phases for each unit. First, a seed spike was estimated. This was
accomplished by calculating the spike neighborhoods (spikes within
the average noise level, half a millisecond before the spike, across all
units) for 500 randomly chosen spikes. The spike with the most
neighbors was chosen as the seed spike. Second, we optimized the
spike waveform through an iterative procedure. This was done by
alternating the calculation of a new noise level for the neighboring
spikes, the update of the neighborhood (spikes within the new noise
level), and the update of the average waveform. This iterative proce-
dure ended when the neighborhood assignments remained constant.
The algorithmproceededwith the remaining spikes by choosing a new
seed spike. For our single-unit analysis, we only kept single-units
according to the distributionof inter-spike intervals. single-unitswith a
firing rate lower than 0.1 Hz were not included in the analysis. Two
cameras (Stingray, F033C IRF CSM, Allied Vision Technologies) posi-
tioned below the mesh tracked the movements of the colored paws.
The videos were taken with a frame rate of 80Hz and smoothed with a
Gaussian filter before analysis.

Single-unit STAPSSS analysis
Paw movements were labeled as “swing” for horizontal velocities
higher than 0.3mm per 10ms (the bin size we used for our analysis)
and “stance” otherwise. Spikes were also binned with a bin size of
10ms. For each neuron and each paw, we defined the spike-
triggered average paw swing–stance status (STAPSSS) as the beha-
vioral average over all windows ±1 s around the spikes. We nor-
malized each STAPSSS waveform by the mean. We defined the paw
coupling of a neuron as the ratio of the standard deviation of the
STAPSSS waveform to the statistical control standard deviation. The
latter was defined as the 0.99 quantile standard deviation of a dis-
tribution constructed out of the standard deviations of the STAPSSS
waveforms of 1000 randomly shifted spike trains. If a neuron was
not related to a paw’s movement, its STAPSSS waveform would be
flat and its standard deviation would not exceed the control stan-
dard deviation. We defined the contralateral bias as the ratio of
contralateral to ipsilateral paw coupling. Statistical analyses were
done using the anovan, multcompare, and ttest Matlab functions.
The ANOVA tests always included the rat’s ID as an additional factor.
The analyses of this manuscript were performed with Matlab 2019a,
Python 3.6, pandas 0.24.1, matplotlib 3.0.0, numpy 1.14.5, scikit-
learn 0.20.0, scipy 1.1.0, and tensorflow 1.10.0.

Decoding from spike trains
We used fully connected neural networks with three hidden layers of
500 units each for decoding. The networks’ inputs were the Gaussian-

smoothed (σ = 20 ms) binned spikes in ±400ms, resulting in 81 input
bins for each neuron. In contrast to the STAPSSS analysis, where only
single-units were considered, we used all units as input for decoding.
Each session was split into training, validation, and test sets (70/15/
15%). Twoof the 106 sessionswere excluded fromdecoding becauseof
insufficient data. Training was conducted with the Adam optimizer53,
batch size 64, and an initial learning rate of 0.0001. A dropout rate of
75%, L2 regularization (λ = 1e − 4), and early stopping were applied to
prevent overfitting. To deal with class imbalance, we used weighted
cross-entropy loss to put more weight on the less frequent class
(swing). The reported accuracies were mean per-class accuracies. The
decoding accuracies of the deep neural network were significantly
better than a baseline linear classifier (two-sided paired t-test,
t = 6.55,p < 1e − 8). For the baseline, we used a logistic regression with
three-fold cross-validation of the L2 regularization strength on the
concatenated training and validation sets. The test sets for each ses-
sion were the same as for the artificial neural network. Class weights
were adjusted to be inversely proportional to class frequencies, as for
the artificial neural network. The artificial neural network was imple-
mented in Tensorflow. For the linear baseline, we used Python’s scikit-
learn function LogisticRegressionCV.

Dimensionality reduction
We used LEM5,22, an unsupervised non-linear dimensionality-reduction
method, to investigate the low-dimensional structure of population
activity. For each session, spike counts were binned in 100ms bins and
then binarized (1 for at least one spike per bin, 0 for no spikes). Single
andmulti units were used. Only time points with at least 15 active units
were retained. Since we restricted further analysis to sessions with at
least 5000valid timepoints, we consideredonly95 of the 106 sessions.
For each session, we constructed an unweighted, mutual kNN graph
based on the Hamming distance on the columns of the n × tmatrix (n
units, t time points). Our code for LEM was built on recent work5. Two
iterations of the LEM algorithm were performed. However, in contrast
to Rubin et al., we used the Hamming distance in the first iteration and
reduced to 20 dimensions. In the first iteration, we used 0.5% of the
timepoints as neighbors; in the second, this parameter was set to 7.5%.
Furthermore, we applied a random walk normalized graph Laplacian
instead of the symmetric normalized graph Laplacian, as proposed in a
previous study54. In detail, we constructed the unnormalized graph
Laplacian as L =D −W, with D as the diagonal degree matrix andW as
the adjacency matrix of the kNN graph. Solving the generalized
eigenvalue problem Lv = λDv corresponded to finding the first eigen-
vectors of the random walk normalized graph Laplacian Ln =D−1L54.
Since the eigenvector corresponding to the smallest eigenvalue (zero)
is constant, we discarded thefirst dimension of the LEM for all analyses
and decoding studies. The other LEM eigenvectors (i.e., dimensions)
were ordered by eigenvaluemagnitude—that is, the “splitability” of the
time points in different clusters (i.e., the dimensions that best divided
the time points into clusters came first). For the LEM reductions on
units from different sensorimotor areas, we randomly chose 20 units
from each area as input (if fewer than 20 units for an area were avail-
able, the analysis was omitted). We chose to reduce to six dimensions
in the LEM space, leaving us with five dimensions for decoding with
deep neural networks (as mentioned above, the first dimension of the
LEM must be discarded). For the ablation study on sessions with 20,
40, 60, or 80 units removed, we reduced to 20 dimensions in the first
two and 10 dimensions in the second two cases (in these latter cases,
we did not have enough neurons left to retain high dimensionality in
the LEM space). For the study on LEM reductions after the removal of
sensorimotor areas, we removed nmax = max(#M1, #M2, #S1 units)
from each area for each session. For underrepresented areas, we
additionally discarded nmax − narea randomly chosen units. As before,
given the lower number of neurons, we reduced to 10 dimensions. To
investigate the dimensionality of the LEM space using the method of

Article https://doi.org/10.1038/s41467-022-35115-6

Nature Communications |         (2022) 13:7420 10



ref. 5, we computed the average number of neighborsof all timepoints
in the 20-dimensional LEM space in circles with increasing radii. The
dimensionalities were then obtained as the slope of a line around the
steepest point in a log–log plot of neighbors against radii.

For the dimensionality reduction with Isomap, we used
Landmark–Isomap55, which ismore efficient for very large datasets.We
set the number of neighbors to 0.5%, as for the LEM, and used 10% of
the time points as landmarks. PCA reductions where computed on
non-binarized spikes.

Behavioral labeling
We used the freely available tool MuViLab for the behavioral labeling
of the videos. Two human annotators who were blinded to the neural
data manually labeled the 48 sessions divided into 500 ms snippets.
The 48 sessions were chosen based on them having a clear saddle-
like shape and at least five significantly coupled units: Rat A—13 ses-
sions recorded between 2017/06/08 and 2017/08/03, Rat B—16 ses-
sions recorded between 2017/06/01 and 2017/08/21, Rat C—seven
sessions between 2017/06/01 and 2017/06/29, Rat D—six sessions
between 2017/06/08 and 2017/07/11, Rat E—three sessions between
2017/06/08 and 2017/06/22, and Rat F—three sessions between 2017/
06/07 and 2017/06/30. The criteria for the behavioral classes were as
follows: Step—the rat moved at least one paw but did not drink or
rear at the same time; turn—the rat moved its head; drink—the rat
drank from the spout or collected water drops from themesh with its
mouth; groom—the rat performed typical grooming movements;
rear—the rat stood on its hind paws; rest—the rat showed no obvious
movements. In rare cases, samples were excluded from labeling
when the behavior of the rat was not visible because it was located
near the borders of the arena. Examples of the different behaviors
can be found at https://gin.g-node.org/optophysiology/Conserved_
structures_cortex.

Single-unit behavioral coding
To establish the single-unit coding of a specific behavior or stimulus, it
is commonpractice to compare the average firing rate of the unit prior
to the event (baseline) and after it (response). In the case of self-
initiated behaviors, however, it is difficult to unambiguously identify
temporal windows that can be associated with a baseline or response.
Thus, we tested whether a unit increased its firing rate during each of
the six behavioral categories and compared this rate to the unit’s firing
during the remainder of the recorded time. The test was performed
using a Wilcoxon rank-sum test with Benjamini–Hochberg correction
for multiple comparisons and α = 0.05.

In a second analysis, we aimed to compare the diversity in single-
unit firing rates during two behaviors with the distance in the LEM
space of the population vectors associated with such behaviors. To
obtain the number of single-units that changed their firing rates during
different behaviors, we divided the spike counts (500ms binning) of
each unit according to the six behavioral classes and performed a
Kruskal–Wallis test. When the main effect was significant, we per-
formed a post-hoc analysis to selectively compare the unit firing rates
during each pair of behaviors. Significance was fixed at 0.05. Since the
final aim of this analysis was to compare the average number of units
that changed rates with the distance in the LEM space of the popula-
tion vectors associated with different behaviors, we did not want the
unequal sample size of the behavioral classes to affect the significance
of the post-hoc tests. Therefore, before performing the Kruskal–Wallis
test, we randomly selected an equal number of samples (equal to the
sample size of the smallest class) from all behavioral classes for each
unit. We then repeated the test 100 times and computed the average
number (first across the 100 samplings and then across the session’s
units) of significant post-hoc tests obtained for each class comparison
and each session. Supplementary Fig. 9a displays their average across
sessions.

Similarities among behavioral representations across sessions
To investigate whether the relative positions of the neural repre-
sentations associatedwith different behavioral classes were conserved
across sessions and animals, we computed the Euclidean distance
between the average behavioral population vectors of a session, then
tested whether these distances weremore similar to those observed in
other sessions than to what would be expected by randomly shuffling
the behavioral state labels. This was performed by first comparing the
ranked distances between the polytope vertexes and then comparing
the actual distance values. For each session v, we computed the
Euclidean distanceDv

ij between the average population vector pi andpj

of all pairs of behavioral classes i and j. Then, for eachbehavioral class i,
we ranked the remaining classes j according to their distanceDv

ij from i.

For each pair of sessions v andw and each class i, we accounted for the
similarities in ranked distances by defining the statistic svwi as the
number of classes matching the same rank in the two sessions. For the
six behavioral classes, svwi ranged between a maximum value of 5
(perfect match) to a minimum value of 0 (no match). The distribution
of svwi across all sessionswas comparedwith a bootstrapdistribution in
which the same statistic, sboot, was computed over two random per-
mutations of the numbers from 1 to 5. With six possible classes, there
are 5! = 120 possible permutations of the remaining five classes, giving
5!
2

� �
+ 5!= 7260 unordered pairs of random permutations. We thus

used the Kolmogorov–Smirnov test to compare the distribution
between the observed svwi (n = 990 session pairs) and bootstrapped
sboot (n = 7200) similarities.

The analysis described in the previous paragraph tested whether
the distances between the pairs of behaviors (polytope vertexes) had
a similar order (e.g., from the closest to the furthest) for different
sessions or animals. To compare the actual distance values, we
computed the matrix of pairwise Euclidean distances Dv between the
average class population vectors pi in the LEM space. Then, for each
other session w, we performed a Procrustes transformation to
rescale the behavioral population vectors of w with those of v and
computed the distance matrix Dw on the rescaled vectors. The Pro-
crustes transformation did not affect the relative distance between
vertexes but prevented differences in scale between the polytopes of
different sessions from obscuring the quantity of interest. To quan-
tify whether the set of relative distances between behavioral classes
was, to some extent, maintained across sessions, we computed the
difference between Dv and Dw as the Jeffries–Matusita distance

dJM ðDv,DwÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i,jð
ffiffiffiffiffiffiffi
Dv
i,j

q
�

ffiffiffiffiffiffiffi
Dw
i,j

q
Þ
2

r
, where i and j were indexes run-

ning over the six classes, and compared this difference with what we
would obtain by chance. We employed the Jeffries–Matusita metric
because it reduces the effect of outliers, but similar results were
found with a Euclidean metric as well. The distribution dJM(Dv,Dw)
obtained with the original distance matrices was tested against the
bootstrap distribution dJM ðDv,Dw

b Þ1:::nbootstraps obtained by randomly

permuting the behavioral labels associated with the population
vectors of the session w. For each session pair (v,w), we then com-
pared dJM(Dv,Dw) with those obtained on the bootstrapped Dw

boot and
computed a p-value for the H0 of dJM(Dv,Dw) that was obtained by
chance. The bootstrap sample included all possible class label per-
mutations (n = 720). Figure 3b and Supplementary Fig. 11d show the
significance of the comparison of each session pair when computed
on all six behavioral classes, and Supplementary Fig. 11e shows the
same but with the “rest” class excluded. Finally, to ensure that the
observed similarity between the polytopes of different animals was
not the byproduct of somatotopy but reflected the generalization of
the behavior-specific covariance structure at a finer scale, we repe-
ated the analysis described in the previous paragraph, shuffling the

Article https://doi.org/10.1038/s41467-022-35115-6

Nature Communications |         (2022) 13:7420 11

https://gin.g-node.org/optophysiology/Conserved_structures_cortex
https://gin.g-node.org/optophysiology/Conserved_structures_cortex


identities of the units recorded within the same somatotopic
region. In particular, for each session, we first divided the recorded
units according to their somatotopic region (adapted from refs.
56,57) as indicated in Supplementary Fig. 11f. Then, to compute Dv,
we composed the average population vectors pi associated with each
behavior, this time by randomly shuffling the identities of the units
recorded in the same somatotopic region separately for each beha-
vior. For example, after shuffling, if the third entry of the vector pstep

corresponded to a unit x recorded in the motor region for the con-
trol of forelimbs, the third entry of prear was a unit recorded in the
same region but possibly with different identity y. In this way, we
removed the relation between the fine coding information of each
behavior within somatotopic regions, while maintaining the region-
specific average firing rate and the relation of the average region
information between behaviors. We repeated the analysis for 500
random permutations of unit dispositions on the pi vectors. As in
Supplementary Fig. 11d, for each permutation, we obtained a p-value
following the same bootstrap procedure described above. Supple-
mentary Fig. 11g shows pair comparisons with average p-values below
(white) or above (black) 0.05.

Population-level decoding
We trained one deep neural network per session to classify the six
behavioral classes given the 10-dimensional neural data in seven bins
with 100ms each as input. The data was min–max normalized (min
and max were only calculated on training sets). The deep network
architecture and training were almost identical to the network used
for the decoding task above. However, we used only 200 units per
layer and a dropout rate of 25%, and we chose a cross-validation
strategy to deal with unbalanced classes. In the latter step, the
available data was split into four parts of equal size. Four runs were
conducted per session, using two parts as the training set, one as the
validation set for early stopping, and the fourth as a test set. The final
test results were calculated as the mean over all four test sets and
runs. As for the decoding of the swing–stance status, we used
weighted cross-entropy loss (more weight on less frequent classes)
to deal with the class imbalance. All accuracies that we report were
mean-per-class accuracies (balanced accuracies) to ensure that more
frequent classes did not bias the results. While we used 10 dimen-
sions for this behavioral decoding task—in line with the estimated
dimensionality—only five dimensions remained for the area-specific
dimensionality-reduced data since the lower number of neurons did
not allow for a reduction in a higher-dimensional LEM space. For the
supervised alignment procedure, we always restricted the analysis to
four neural dimensions to avoid underdetermination (that is, the
remaining dimensions provided by LEM were not used—no com-
pletely new dimensionality reduction was computed). We used
Matlab’s Procrustes function to find a transformation between class
means. Proper transformation was important because of the sign
ambiguity of eigenvectors, which might otherwise have led to dif-
ferent orientations of the neural structures. Before alignment, both
neural structures were normalized to the 0–1 range. An SVM with a
Gaussian kernel (Matlab fitcecoc) was used as classifier. Training was
conducted with an equalized number of samples per class (i.e., the
class with the fewest samples determined the number of samples
taken from each class) and default parameters (kernel size 1). For the
SVM classification, we did not use four-fold cross-validation as we did
for the classification of neural networks (see above). Instead, we
performed 20 repetitions with different samplings of the training set
(Monte Carlo cross-validation).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
One example dataset used in this study has been deposited in the
GitHub database at [https://doi.org/10.5281/zenodo.7296960]. The full
data are available from the corresponding author upon reasonable
request. Video examples of the rats showing different behaviors can be
foundat [https://gin.g-node.org/optophysiology/Conserved_structures_
cortex]. The data used to generated the figures of this study are pro-
vided in the Source Data file. Source data are provided with this paper.

Code availability
Code for the most important functions is available at https://doi.org/
10.5281/zenodo.729696058.
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