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Abstract— Visual Servoing has been effectively used to move
a robot into specific target locations or to track a recorded
demonstration. It does not require manual programming, but
it is typically limited to settings where one demonstration
maps to one environment state. We propose a modular ap-
proach to extend visual servoing to scenarios with multiple
demonstration sequences. We call this conditional servoing,
as we choose the next demonstration conditioned on the
observation of the robot. This method presents an appealing
strategy to tackle multi-step problems, as individual demon-
strations can be combined flexibly into a control policy. We
propose different selection functions and compare them on a
shape-sorting task in simulation. With the reprojection error
yielding the best overall results, we implement this selection
function on a real robot and show the efficacy of the pro-
posed conditional servoing. For videos of our experiments,
please check out our project page: https://lmb.informatik.uni-
freiburg.de/projects/conditional servoing/

I. INTRODUCTION

Programming robots to complete tasks remains a chal-
lenging and time-consuming problem, which prevents robots
from being used more widely. Servoing-from-Demonstration
(SfD) approaches enable few-shot imitation from demon-
stration videos and, thus, are an attractive direction for
robot programming. The key challenge is how to make
SfD approaches flexible enough to automatically adapt to
many variations of a task without the need to record a
demonstration for each particular case.

Our work builds on FlowControl [1], which servos to
the configuration specified in a demonstration frame, then
iterating to the next demonstration frame once one is close
enough. This process is repeated for all demonstration
frames, enabling the replication of demonstration tasks. The
algorithm requires RGB-D observations as well as fore-
ground object segmentations for the demonstrations. Robust-
ness to variations in appearance is achieved by establishing
correspondence between observation and demonstration via
learned optical flow.

FlowControl is bound to a single demonstration that must
match the control problem. In this paper, we allow for
a set of demonstrations to choose from. This enables the
option to select the most suitable demonstration, conditioned
on the initial demonstration frame, which is why we call
the approach conditional servoing. Moreover, it enables the
recombination of subtask demonstrations, similar to skills, to
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Fig. 1: In conditional servoing, the most suitable demonstra-
tion is selected. In our approach, this is done by evaluating a
distance score between initial live views and initial demon-
strations views, shown in the blue half. This demonstration
is then used with a servoing algorithm designed to replicate
demonstration sequences to complete tasks, shown in the red
half. A more detailed description of the method is shown in
Figure 2. The images are from an end-of-arm camera, which
we use for robot control.

more complex policies and avoids the necessity of a complete
demonstration for each possible permutation of the scene.

More precisely, the system is given a set of demonstrations
of different subtasks, some of which may be unsuitable
to follow, for instance, the object is not currently visible.
In conditional servoing, the system must select the best
demonstration to follow based on its current observation.
To do so, we propose to perform the selection based on
a matching score that assesses the similarity between the
demonstration and the current observation

We evaluated a number of different matching scores in
simulation and verified that the most promising scoring
metric works well also on a real robot. Our experiments in
simulation and on the real robot deal with a shape sorting
task in which multiple blocks are present in the scene and
must be inserted in the right opening of a sorter box. This
task is challenging from the control point of view, due to the
tight holes of the sorter box, and requires the selection of the
right entry point. Conditional servoing increases the success
rate of FlowControl on the real robot from 40% to 78%.
Furthermore, conditional servoing significantly increases the
chances of correctly recovering by re-grasping if an object
is dropped by mistake. In addition, we perform a qualitative
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evaluation on a number of related configurations.

II. RELATED WORK

Servoing: Visual Servoing [2], [3] is a well-established
approach to vision-based robotics problems, in which a
comparison between sensor observations and a target view,
or demonstration, is used to generate control commands in
a closed feedback loop. This allows the control to adapt
to the surrounding environment as observed by the system.
A large number of robotics problems can be approached
with visual servoing techniques [4], examples of this include
manufacturing [5] and surgery [6], among many others.

While we did not find any prior works featuring demon-
stration selection in visual servoing, there are some related
concepts. In hybrid visual servoing, control laws are extended
with additional constraints [7]. This allows the definition
of different subtasks, e.g., obstacle avoidance, manipulation
tasks, and joint-limits avoidance [8]. Subtasks are usually
defined simultaneously and often pertain to some constrain-
ing of the robot state. Task sequencing in visual servoing
describes a situation, where the control laws are changed over
the course of iteration [9]. In contrast to these works, we use
the term tasks to describe the problems in the environment
that the robot should complete.

Our work extends FlowControl [1], which combines the
use of learned optical flow with demonstration sequence
tracking to replicate tasks. The use of learned optical flow
for servoing is similar to [10], [11], [12], and the use
of demonstration sequence tracking is similar to [13], [6].
For the sake of completeness, we briefly recapitulate how
FlowControl works. It has two main parts, a frame alignment
part and a sequence tracking part. The frame alignment part
computes the transformation between the live state, as seen
by the robot’s camera, and the state shown in the selected
demonstration frame. This transformation is used to move
the robot accordingly. The method relies on optical flow
estimates to obtain correspondences between both states.
The correspondences are further filtered using a foreground
segmentation (attention mask) of the demonstration before
being converted into 3D points using the camera’s depth
measurements. Finally, a rigid 3D transformation is com-
puted between the point clouds. After achieving a good
alignment with the current frame, the method performs se-
quence tracking by iterating to the next demonstration frame,
allowing for the replication of tasks. A visual explanation
of the method is available on Youtube: https://youtu.
be/SSC8RyBGUug.

Compositionality: Individual demonstrations can be seen
as encoding different skills. A large number of robotics
works investigate compositional skills. These include [14],
associative skill memories [15], as well as the closely re-
lated hierarchical approaches [16]. More recent works have
extended this line of work to the deep-learning domain [17],
[18].

Frame Selection: Selecting a suitable demonstration se-
quence can be addressed as a registration problem, in which

frames from demonstrations are registered to a live view. A
large number of similar problems exist in computer vision.
Image retrieval tries to find the most similar image from
a database of candidates [19], [20], [21]. It is the basis of
visual place recognition, where one tries to localize based
on a query photograph [22], [23]. Some early works using
visual servoing can be regarded as predecessors of SLAM
[24]. More recent incarnations of similar ideas can be found,
for example, in [25]. In the field of SLAM, similar problems
are encountered in global localization [26] or re-localization
[27], which is closely related to the problem of loop closure.

Registering images to a map is also encountered in
Structure-from-Motion (SfM), in which large numbers of
images are registered to a scene [28].

The registration methods described here differ substan-
tially in the representations they compare. SLAM methods
often compare sequences of observations to maps. We are
interested in comparing single images to single images.
Furthermore, we are interested in just the registration of
the relevant foreground objects. Thus, these methods cannot
be used in our approach out-of-the-box. A similar setting is
encountered in the context of object pose estimation. There is
also the problem of template-based object instance detection
[29], [30], in which objects need to be localized within a
scene.

III. METHOD

This work considers a setting where multiple demonstra-
tion sequences are available and a suitable demonstration
must be chosen. We call this conditional servoing because
our choice of sequence depends on observations of the
current environment.

Our setting implies environments in which correspon-
dences between the current state and some of the demon-
strations may be poor or even nonexistent. Hence, we in-
vestigate selection mechanisms to retrieve the most suitable
demonstration from a set of multiple demonstration sequence
options. This allows following the selected demonstration
and discarding unsuitable ones.

This selection is implemented as an outer loop around
a servoing algorithm. The loop starts by selecting the best
demonstration and replicating it. Once it is completed, the
next demonstration can be selected and replicated. This
allows addressing multi-step tasks. A visual depiction of our
method can be seen in Figure 2.

In the following, we describe the setting formally. We want
to select the best demonstration, Dbest, from a set of demon-
strations, D = {D1, D2, ..., Dn}. Given a demonstration Di,
our selection is based on only di, its first frame, as well as
the current observation of the robot, x. To do so, we employ
a distance function to assign a score to each demonstration,
based on the similarity to the current observation, f (x, d)

As we build on FlowControl as the Servoing-from-
Demonstration method in the inner loop, we can start with
evaluating the residual of the rigid-transformation estimation
to assess the quality and reliability of the matching. For a
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Fig. 2: The demonstration selection, shown in blue, is performed by taking the first frame from a demonstration sequence and
comparing it to the initial live view. We then select the closest demonstration and continue with servoing from a demonstration
sequence using FlowControl, shown in red and yellow. Once a demonstration sequence is done, demonstration selection can
be repeated until the overall task is completed.

more detailed description of FlowControl, please see Section
II.

We propose four different distances to assess the quality
of a given demonstration:

Point-Quality Distance: We consider using the estimated
3D transformation between the live and the demo’s initial
point clouds, pL, pD. We transform the live point cloud into
the demo’s one according to the transformation retrieved by
FlowControl, (R, t). After this, outliers that are more than
5mm apart are removed. Finally, the L2 norm between the
two point clouds is computed to obtain the distance.

DPQ =

∑
i∈Ωp

‖ (R · pDi + t)− pLi ‖
| Ωp|

(1)

Color-Quality Distance: Instead of comparing the 3D
positions of the points, in this distance, we focus on the
points’ colors, C(p). The L2 distance between the RGB
values of the point cloud correspondences is calculated. This
distance aims to detect situations where the point clouds
obtain a good registration, but the colors of the object in
the live state and in the considered demonstration do not
match. As in the previous distance, possible outliers have
been discarded, and are not considered in the distance.

DCQ =

∑
i∈Ωp

‖ CD(pDi )− CL(pLi ) ‖
| Ωp|

(2)

Reprojection Distance: Similar to the color-quality dis-
tance, the reprojection distance evaluates the accuracy of
the RGB correspondences on the basis of images. As point
correspondences between the current observation and the
demonstration frames are obtained with an optical flow
estimation, we propose to evaluate the suitability of the
demonstration by evaluating the quality of the flow. As we,
naturally, lack the optical flow ground truth, we follow the
approach of some self-supervised flow estimation methods:
the use of photometric reconstruction as the evaluation
function [31], [32].

The live view, IL, is warped into the demo view, ID, by
using the optical flow, u, v, between the demo view and the
live view. By computing the dissimilarity between the warped
(reconstructed view) and the demo, we obtain a measurement
of the fit of the flow. We use the L2 distance between the two,
and only calculate the dissimilarity in the pixels selected by
the demonstration’s foreground mask, ΩM , as other pixels
do not need to be estimated correctly. An example of a
reprojection image is shown in Figure 3.

In contrast to the previous functions, this one relies only
on two-dimensional images. Moreover, it considers all pixels
in the segmentation mask, i.e., it does not discard possible
outliers. Outlier removal can have both benefits and draw-
backs, while it can make the distances more robust it can also
be problematic to apply in situations where the objects are
not visible in the current state, which can result in incorrect
transformation estimations.

DRP =

∑
x, y ∈ΩM

‖ IL(x+ u, y + v)− ID(x, y) ‖
| ΩM |

(3)

Learned distance: Trying to find interactions between
the previously presented distances, we propose to train a
classifier to predict the probability of success of a given
pair (x, d). We train a small multilayer perceptron that takes
the other distances as inputs and predicts the probability of
success. The best demonstration is selected by taking the one
with the highest estimated probability of success.

We train a small MLP with three hidden layers of θ = 64,
64, and 32 neurons. The last layer has one neuron to predict
the probability of success. We use ReLU activation in all
intermediate layers and logistic in the last one. For the loss
the binary cross-entropy is used and optimized with Adam
[33] using its default recommended parameters of β1 = 0.9
and β2 = 0.999 as well as an initial learning rate of 10−5.
We used a batch size of 128 and trained for 2500 iterations
or until the learning has converged.

DMLP = 1− PMLP(y | x, d, θ) (4)
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Fig. 3: Reprojection examples. Optical flow is computed
from the demo view (center) to the live view (left). Using this
flow, we warp the live view to be similar to the demonstration
view. The figure shows a bad warping in the top row, where
the flow matched the yellow object with the orange one, as
well as a good warping in the bottom row.

IV. EXPERIMENTS

We use a shape sorting task to evaluate the conditional
servoing. It is a popular multi-step task also used in other
works [34], [35]. The robot has to grasp three pieces and
introduce them precisely on a shape sorting cube, one after
the other. To do so, the robot has to select the best demon-
stration to follow before grasping the next piece. Given the
small tolerances, the task requires very precise grasping,
positioning, and insertion of the objects. This is much easier
if the optimal demonstration is selected.

A. Experimental Setup

We re-created the physical shape sorting task in the PyBul-
let physics simulator [36] to afford to collect a large number
of executions, something prohibitively expensive in a real
robot1. As shown in Figure 5, we aligned the simulation and
the real robot setup, but the simulation uses the Kuka iiwa
robot, whereas the physical robot was a Franka Emika Panda
robot. It was equipped with an Intel RealSense D435 RGB-
D camera mounted on the robot’s end-effector, obtaining an
eye-in-hand setup. For the gripper, two 3D printed fingers
are attached to the robot’s fingers. This setup is shown in
Figure 4.

For the control, we restricted the end-effector’s freedom
such that it always faces downwards, limiting its orientation
to the yaw rotation. We parametrize the control as in [1], with
a 5DoF continuous action a = [∆x,∆y,∆z,∆θ, agripper]

1Note that the simulation was only used for additional evaluation. In
contrast to many contemporary robot learning methods, the simulation is not
needed to learn the task. The real robot can be instructed by demonstration
of the subtasks in the physical world.

Fig. 4: Robot setup with end-of-arm camera in simulation
(left) and in the real environment (right).

Fig. 5: Simulation environment (left) used to better perform
large-scale quantitative evaluation of selection scoring func-
tions compared to the real environment (right).

in the end-effector frame. ∆x,∆y,∆z specify a Cartesian
offset for the desired end-effector position, ∆θ defines the
yaw rotation of the end effector, and agripper is the gripper
action that is mapped to the binary command to open or
close the fingers.

B. Simulation Experiments

First, we evaluated the scoring functions defined above.
Because the simulation allows for effortless larger-scale
experiments, we ran this evaluation in simulation. As the
MLP distance function requires training, we recorded 500
executions with three objects each, giving a total of 1500
runs. Of these, we use 1000 samples to learn the distance
and evaluate on the remaining samples as a test set. Details
of the network’s architecture and the training process are
described in Section III.

The suitability of a demonstration can only be evaluated
by tracking it with visual servoing to completion and seeing
if the task is successfully completed. Thus, to evaluate a
proposed scoring function, we run 100 simulations with
each of the three objects, resulting in 300 samples, selecting
the optimal demonstration according to the given scoring
function. The starting arrangement of the objects in each of
the 100 simulations is randomized, but the scoring functions
were evaluated with the same set of initial configurations to
enable a fair evaluation of their effectiveness.



TABLE I: Simulation success rates for different selection
scores evaluated on the simulated shape sorting task.

Score for argmin sampling Success Rates [%]
of demonstration sequence First Object All Objects

Uniform Random 55 47

Point-Quality 69 60

Color-Quality 76 58

Reprojection 81 63

MLP 81 65

Table I shows the success rate obtained in simulation
when following the proposed distances. We separate the
results considering all objects, counting all recorded samples,
and first object, only considering runs inserting the first
of the three objects. This distinction shows the benefits of
our conditional servoing in multimodal situations, where
the flow estimation can match incorrect objects with the
demonstrations. The point cloud based methods were also
tested without outlier removal, which did not improve results.

All our proposed distances obtain a higher success rate
than the uniform random baseline, where demonstrations are
picked according to a uniform random distribution. Of these,
the reprojection and MLP distance yield similar success rates
for the first object. The MLP distance achieves slightly higher
performance on the all objects set, as it was trained on this
quantity. However, we still chose the reprojection distance
as our preferred method, as it does not require collecting a
dataset and training.

Although the color-quality and the point-quality distance
may seem more robust, as they discard possible outliers, they
achieve a lower success rate than the reprojection distance.
We argue that incorrectly computed transformations in the
servoing may lead these functions into inconsistent results
when the fitting is based on incorrect flow estimates. On the
other hand, the reprojection distance directly evaluates the
quality of the flow prediction.

Figure 6 shows a detailed manual analysis of a set of 150
simulation runs. For these, we categorize the main cause
of failures for the baseline FlowControl method, as well
as our conditional servoing method, which uses reprojection
distance as selection criterion. This is named FlowControl-
C. The three main causes of error in FlowControl stem from
wrong optical flow estimates. In undecided flow the flow
estimation is unstable and jumps between different objects in
each step. In wrong object cases, the robot grasps an incorrect
shape due to a wrong projection, and finally, in incorrect
flow, estimates are not accurate and, thus, the servoing does
not converge or converges to an incorrect robot position. In-
cluding our conditional servoing significantly decreases these
errors, showing one of the main benefits of our approach: an
improvement in correspondence computation.

In an additional experiment, we show that the conditional
servoing approach can also help when recovering from
failure cases. To evaluate this in simulation we generate
failure cases by opening the gripper according to a Bernoulli
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Fig. 6: Error analysis for simulation experiments. Error types
were assessed manually by observing a set of 60 and 88
failure runs in FlowControl-C and FlowControl respectively.
Our method effectively reduces the top types of error of the
baseline method.

distribution with a probability of p = 0.25. To evaluate re-
covery we compare to the baseline of tracking the previously
followed trajectory, which results in a success rate of 27%.
This is clearly outperformed by the conditional selection of
the trajectory which has a success rate of 59%.

C. Real Experiments

To test the effectiveness of our proposed conditional
servoing we use a shape sorting task on the real robot. Based
on the simulation experiments we selected the reprojection
distance as the best overall selection score and subsequently
carried out all our real robot experiments with this choice.
These experiments are named FlowControl-C. An example
of reprojected images is given in Figure 3. We then per-
formed quantitative and qualitative experiments with our new
method.

Success Rate: Similar to experiments in simulation we
start by evaluating the success rate achieved on the shape
sorting task when using the baseline FlowControl method
compared to our FlowControl-C method with the reprojec-
tion distance. The shape sorting task is evaluated using the
first object, as we wanted to test the method in multi-modal
scenarios. With this setup, the flow estimation module is
more likely to produce erroneous results due to multiple
objects laying on the scene. An example of this possible
failure case is shown in Figure 3 top row.

The results of this experiment can be seen in Table II.
We obtain a similar improvement rate as in the simulation,
confirming that a guided selection of the demonstration
significantly increases the probability of success.

Scene Permutations: The quantitative experiments shown
to this point improve performance through improved flow
and registration. The conditional approach, however, also



TABLE II: Success rates for the shape insertion task eval-
uated in simulation and on the real robot. Compared to
the baseline FlowControl method, success rates on both
tasks increase when using our improved conditional servoing
method called FlowControl-C.

Simulation Real Robot

FlowControl 55% 40%

FlowControl-C 81% 78%

Fig. 7: Using a set of demonstrations allows tackling an
initial configuration of stacked shapes. This shows that
demonstrations allow addressing scenes that can be permuted
geometrically, which would otherwise require an unfeasible
number of complete demonstration sequences.

has other advantages: it is able to deal with geometric
permutations of the scene. We show this experimentally
by giving the robot a challenging scenario, in which the
shapes are initially stacked in a tower. To solve this task
without dividing demonstrations into subtasks one would
theoretically need a demonstration for each order in which
the cubes could be stacked. This is clearly infeasible for
complex scenes as the number of required demonstrations
to cope with all possible permutations increases rapidly.
Examples from this experiment are shown in Figure 7.

Robustness: As an additional verification that our method
does not lead to any unexpected failure cases, we evaluate
a number of robustness tests. These introduce variations be-

(a) Same Color Objects (b) Occlusions

(c) Different Color Objects (d) New Backgrounds

(e) Lighting (f) Unseen Objects

Fig. 8: Robustness to a number of nuisance variations results
from the use of learned optical flow. Large images show live
views and inset images show demonstrations. All examples
from recording of successful insertions.

tween the live view and the demonstration view, for example
by changing the lighting conditions or the backgrounds for
the tasks. Example images from these experiments are shown
in Figure 8.

V. CONCLUSIONS

We have presented conditional servoing as a concept – an
outer loop around a Servoing-from-Demonstration loop. A
practical implementation based on the FlowControl method
has been provided. This implementation was tested both in
simulation and on a real robot. In these experiments, we
showed that reprojection error is a suitable scoring function
for demonstration sequence selection. The method achieves
high success rates on the challenging problem solving an
insertion cube. In addition to these quantitative tests, we
conducted qualitative tests showing that the system is able
to handle scene permutations and works robustly despite the
presence of nuisance variations in the scene.
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