

Problem Statement

- Disparity estimation models trained on synthetic data have **limited generalization**. Obtaining labels for supervised fine-tuning on the target domain is expensive.
- Self-supervision based on view reconstruction allows label-free training on the target domain, but **performs worse**, especially on challenging areas due to limitations of the common photometric consistency.
- Self-supervision based on deep feature reconstruction may help to overcome photoconsistency limitations. However, this requires further analysis.

Contributions

• We propose a semi-supervised pipeline for disparity estimation with supervised training on labeled synthetic data and selfsupervised training on unlabeled real data.

 \rightarrow Improves cross-domain generalization.

• We perform a thorough analysis of deep feature reconstruction. \rightarrow Shows the potential of deep feature reconstruction and **analyses** problems that limit its effectiveness.

- We use a **DispNet architecture** [5] that predicts **occlusion masks** M and **disparity maps** D at multiple scales.
- We use a **supervised loss** for disparity and occlusion predictions **on** synthetic data and a self-supervised reconstruction-based loss for disparity predictions on real data.
- For self-supervised training, we experiment with either photometric or deep feature reconstruction as supervisory signal.
- We consider feature maps F_l, F_r from the DispNet encoder (first three conv layers) for the deep feature reconstruction.

Semi-Supervised Disparity Estimation with Deep Feature Reconstruction Sergio Izquierdo* Julia Guerrero-Viu* Philipp Schröppel Thomas Brox

guerrero, izquierd, schroepp, brox@cs.uni-freiburg.de

Synthetic Data $L_{occ}(\hat{M}, M) + L_{epe}(\hat{D}, D)$ $L_{ph}(I_l, W(I_r, \hat{D})) \odot \hat{M}$ - Deep Feature Reconstruction $L_{cos}(\mathcal{F}_l, W(\mathcal{F}_r, D)) \odot M$

Semi-Supervised Pipeline

- Previous works either apply
 - a) supervised pre-training on synthetic data and supervised finetuning on real world target domain data (e.g. [5]), or
 - b) self-supervised training from scratch directly on the target domain (e.g. [3]).
- We train from scratch in a semi-supervised fashion: alternating batches of synthetic data (with labels) and real data (without labels).
- We use predicted occlusions to mask the loss on real world samples.

Deep Feature Reconstruction (DFR)

- Most works apply self-supervision based on view reconstruction: warp the right image according to the predicted disparities and measure reconstruction via photometric consistency.
- Instead, we apply DFR: warp and compute loss on feature maps.

 \rightarrow loss is based on consistency of the warped right image feature map and the respective original left image feature map.

Analysis

of DFR:

- We identity the following problems
 - 1. Higher sensitivity to occlusions.
 - 2. Large dependence on the distance metric and resampling strategy.
 - information around Tainted disparity discontinuities due to convolutional aggregation.
 - 4. Higher entropy on matching curves.
 - 5. High gradient locality that complicates optimization.
- On the left figure we illustrate (3) and (4). Despite DFR's clearly better response in texture-less areas (road), it fails near disparity discontinuities (sky-pole). Due to its higher entropy curve, DFR is less precise on object boundaries (van).

- (real, unlabeled)

			Endpoint Error (EPE)			
Model	train DS	time	FT	K15	ETH3D	MidH
DispNet Supervised	FT	0.04	1.69	1.46	0.92	3.21
DispNet Supervised ft	FT + K15	0.04	3.05	(0.69)	1.99	3.79
DispNet SemiSup. PH	FT + (K)	0.04	1.77	1.23	0.61	2.92
DispNet SemiSup. DFR	FT + (K)	0.04	1.77	1.32	0.67	2.94
GWCNet-gc [4]	FT	0.32	1.65	2.35	1.73	5.08
GWCNet-gc ft [4]	FT + K12	0.32	5.63	0.82	1.09	5.41
LEA Stereo [2]	FT	0.30	1.58	1.98	0.87	4.72
Reversing PSMNet [1]	(K)	0.41	6.03	1.01	0.51	6.02

Results on FT 'cleanpass' test set and K15, ETH3D, MidH train sets. Train datasets are in brackets when no labels are used. We report all SOTA results by evaluating their publicly available models. We do not filter disparities>192.

- forming previous works in this setting.

- hanced monocular distillation. In ECCV, 2020.
- *NIPS*, 2020.
- sistency. In CVPR, 2017.
- optical flow, and scene flow estimation. In CVPR, 2016.

Acknowledgements

acknowledge Foundation We partial funding Caixa by 'la (LCF/BQ/EU19/11710058), by the German Research Foundation (BR 3815/10-1) and by the German Federal Ministry for Economic Affairs and Energy within the project "KI Delta Learning".

Experiments

• Training data: FlyingThings3D (synthetic, labeled), KITTI RAW

• Test data: FlyingThings3D-Test, KITTI2015, ETH3D, Middlebury

• Our results show **improved generalization** across domains, outper-

• Our network is **drastically faster** than most SOTA models.

References

[1] Aleotti et al. Reversing the cycle: self-supervised deep stereo through en-

[2] Cheng et al. Hierarchical neural architecture search for deep stereo matching.

[3] Godard et al. Unsupervised monocular depth estimation with left-right con-

[4] Guo et al. Group-wise correlation stereo network. In CVPR, 2019. Mayer et al. A large dataset to train convolutional networks for disparity,