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Problem Statement
• Disparity estimation models trained on synthetic data have

limited generalization. Obtaining labels for supervised fine-tuning
on the target domain is expensive.

• Self-supervision based on view reconstruction allows label-free
training on the target domain, but performs worse, especially on
challenging areas due to limitations of the common photometric
consistency.

• Self-supervision based on deep feature reconstruction may help
to overcome photoconsistency limitations. However, this requires
further analysis.

Contributions
• We propose a semi-supervised pipeline for disparity estimation

with supervised training on labeled synthetic data and self-
supervised training on unlabeled real data.

→ Improves cross-domain generalization.

• We perform a thorough analysis of deep feature reconstruction.

→ Shows the potential of deep feature reconstruction and analyses
problems that limit its effectiveness.

Approach Overview

Synthetic Data

- Deep Feature Reconstruction

Real Data
- Photometric

• We use a DispNet architecture [5] that predicts occlusion masks
M̂ and disparity maps D̂ at multiple scales.

• We use a supervised loss for disparity and occlusion predictions on
synthetic data and a self-supervised reconstruction-based loss
for disparity predictions on real data.

• For self-supervised training, we experiment with either photo-
metric or deep feature reconstruction as supervisory signal.

• We consider feature maps Fl, Fr from the DispNet encoder (first
three conv layers) for the deep feature reconstruction.

Semi-Supervised Pipeline

• Previous works either apply

a) supervised pre-training on synthetic data and supervised fine-
tuning on real world target domain data (e.g. [5]), or

b) self-supervised training from scratch directly on the target do-
main (e.g. [3]).

• We train from scratch in a semi-supervised fashion: alternating
batches of synthetic data (with labels) and real data (without labels).

• We use predicted occlusions to mask the loss on real world samples.

Deep Feature Reconstruction (DFR)

• Most works apply self-supervision based on view reconstruction:
warp the right image according to the predicted disparities and mea-
sure reconstruction via photometric consistency.

• Instead, we apply DFR: warp and compute loss on feature maps.

→ loss is based on consistency of the warped right image fea-
ture map and the respective original left image feature map.

Analysis

a)

b)

c)

We identity the following problems
of DFR:

1. Higher sensitivity to occlu-
sions.

2. Large dependence on the dis-
tance metric and resampling
strategy.

3. Tainted information around
disparity discontinuities due to
convolutional aggregation.

4. Higher entropy on matching
curves.

5. High gradient locality that
complicates optimization.

On the left figure we illustrate (3)
and (4). Despite DFR’s clearly bet-
ter response in texture-less areas
(road), it fails near disparity dis-
continuities (sky-pole). Due to its
higher entropy curve, DFR is less
precise on object boundaries (van).

Experiments

• Training data: FlyingThings3D (synthetic, labeled), KITTI RAW
(real, unlabeled)

• Test data: FlyingThings3D-Test, KITTI2015, ETH3D, Middlebury

Endpoint Error (EPE)
Model train DS time FT K15 ETH3D MidH

DispNet Supervised FT 0.04 1.69 1.46 0.92 3.21
DispNet Supervised ft FT + K15 0.04 3.05 (0.69) 1.99 3.79
DispNet SemiSup. PH FT + (K) 0.04 1.77 1.23 0.61 2.92
DispNet SemiSup. DFR FT + (K) 0.04 1.77 1.32 0.67 2.94

GWCNet-gc [4] FT 0.32 1.65 2.35 1.73 5.08
GWCNet-gc ft [4] FT + K12 0.32 5.63 0.82 1.09 5.41
LEA Stereo [2] FT 0.30 1.58 1.98 0.87 4.72
Reversing PSMNet [1] (K) 0.41 6.03 1.01 0.51 6.02

Results on FT ’cleanpass’ test set and K15, ETH3D, MidH train sets. Train datasets are in brackets
when no labels are used. We report all SOTA results by evaluating their publicly available models.
We do not filter disparities>192.

Qualitative results on Kitti 2015:

a) Supervised b) Semi-Supervised

• Our results show improved generalization across domains, outper-
forming previous works in this setting.

• Our network is drastically faster than most SOTA models.
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