
Explicitly Modeled Attention Maps for Image Classification

Andong Tan* 1,4, Duc Tam Nguyen* 2,4, Maximilian Dax3,4, Matthias Nießner1, Thomas Brox2

1 Technical University of Munich
2 University of Freiburg

3 University of Bonn
4 Robert Bosch GmbH

andong.tan@tum.de, nguyen@cs.uni-freiburg.de, maximiliandax@gmx.com, niessner@tum.de, brox@cs.uni-freiburg.de

Abstract

Self-attention networks have shown remarkable progress in
computer vision tasks such as image classification. The main
benefit of the self-attention mechanism is the ability to cap-
ture long-range feature interactions in attention-maps. How-
ever, the computation of attention-maps requires a learnable
key, query, and positional encoding, whose usage is often
not intuitive and computationally expensive. To mitigate this
problem, we propose a novel self-attention module with ex-
plicitly modeled attention-maps using only a single learnable
parameter for low computational overhead. The design of ex-
plicitly modeled attention-maps using geometric prior is based
on the observation that the spatial context for a given pixel
within an image is mostly dominated by its neighbors, while
more distant pixels have a minor contribution. Concretely, the
attention-maps are parametrized via simple functions (e.g.,
Gaussian kernel) with a learnable radius, which is modeled
independently of the input content. Our evaluation shows that
our method achieves an accuracy improvement of up to 2.2%
over the ResNet-baselines in ImageNet ILSVRC and outper-
forms other self-attention methods such as AA-ResNet152
in accuracy by 0.9% with 6.4% fewer parameters and 6.7%
fewer GFLOPs. This result empirically indicates the value of
incorporating geometric prior into self-attention mechanism
when applied in image classification.

Introduction
An attention mechanism allows the network to focus on the
global context in each layer. Attention is an essential part
of human vision, also known as foveation, which allows the
vision system to focus its limited resources on a small part of
the input signal. The implementation of this concept as self-
attention in the transformer network (Vaswani et al. 2017)
has resulted in a substantial performance increase in natu-
ral language processing (Devlin et al. 2018; Radford et al.
2018). Recent works in computer vision (Bello et al. 2019;
Parmar et al. 2019) proposed self-attention for object recogni-
tion tasks. Their suggested modification of common network
architectures, such as the Resnet (He et al. 2016a,b), leads
to significant performance improvement over the original
convolutional baseline.
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One key benefit of a self-attention layer is that such a layer
can incorporate the entire spatial context for the computation
of features in the subsequent layers through the calculation of
attention-maps. As an intuitive explanation, attention-maps
express how much attention different areas of the input re-
ceive when focusing on a particular pixel position. However,
the high degree of freedom of self-attention networks, such
as in (Bello et al. 2019), requires learning the weights for the
key and the query to calculate attention-maps. There is no
obvious need for this excessive, computationally expensive
parametrization in the context of computer vision tasks. By
visualizing the weights, we show that the content-dependent
key and query play a minor role in the final attention-maps,
where an area with high attention weight is more related to
the geometric position; compare Fig. 1c, 1g to Fig. 1b, 1f.
Further, in vision tasks such as image classification, a com-
mon observation is that neighbor pixels are more related than
distant ones. In other words, when focusing on particular
pixels, neighbor areas should receive higher attention.

Based on these insights, we propose a self-attention mech-
anism with explicitly modeled attention-maps, which consid-
ers the global context information with positive correlation
to the distance between pixels. The freedom of the attention
module is reduced to a predefined form (e.g., Gaussian ker-
nel) with a learnable parameter, as illustrated in Fig. 2. We
integrate the local context prior in self-attention explicitly
by restricting the learnable attention-map to a centered, yet
global kernel with a learnable shape parameter. The primary
motivation is to maintain global information for the feature
computation while reducing the freedom caused by learning
key and query for higher efficiency. Surprisingly, networks
augmented with such modules not only outperform regular
self-attention in parameters, memory and computation cost,
but also achieve very competitive accuracy.

The contributions of this paper are summarized as follows:
(1) We analyze the efficiency of AA-Net (Bello et al. 2019)
and empirically show that geometric information plays an
essential role in attention-maps. (2) Based on the above anal-
ysis, we propose a novel self-attention module with explicitly
modeled attention-maps under the assumption that neighbor
pixels are more related than distant ones. We investigate fixed
attention-maps parametrized by different global, yet centered
simple functions (e,g, cosine, linear) to model monotonically
decreased attention paid to distant pixels w.r.t. centered pixel.
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Figure 1: Attention-maps of two pixels: (a,e) are the input from ImageNet, red crosses indicate the positions of 2 pixels. (b,f) show
key×query; (c,g) show key×query+positional encoding; (d,h) show explicitly modeled attention-maps using Gaussian kernel.
All pictures are extracted from the first layer where attention mechanism is applied in ResNet50. Brighter color indicates higher
weight. First and second row of pictures correspond to attention-maps of the center and left pixels. All values are normalized for
visualization.

Further, we study the effect of automatically determining
attention-maps using the Gaussian kernel with a learnable ra-
dius. (3) Experimental results in CIFAR10, CIFAR100, Tiny
ImageNet, and ImageNet show that convolutional networks
augmented with such modules have lower model complexity
than augmented with regular self-attention while achieving
very competitive accuracy.

Related Works
The most important works on attention in deep networks
comprise advances for sequence-to-sequence modeling in
natural language processing (NLP) tasks such as neural ma-
chine translation (Bahdanau, Cho, and Bengio 2014). More
recently, multi-head self-attention (Vaswani et al. 2017; So,
Liang, and Le 2019) allows effective pretraining for many
NLP-tasks using language modeling as a self-supervision
task ((Devlin et al. 2018; Radford et al. 2018)) and for other
tasks (Shaw, Uszkoreit, and Vaswani 2018; Zhang et al. 2018;
Yu et al. 2018; Zhang, Winn, and Tomioka 2016). Since
self-attention is computationally expensive, there are also
works exploring efficient self-attention (Shen et al. 2018,
2019; Kitaev, Kaiser, and Levskaya 2019). Further, Synthe-
sizer (Tay et al. 2020) challenges the necessity of computa-
tionally expensive key-query self-attention, and fixed self-
attention patterns are proposed for machine translation (Ra-
ganato, Scherrer, and Tiedemann 2020). However, these pro-
posed self-attention mechanisms are designed for sequences-
to-sequence tasks and do not necessarily transfer to imaging
tasks with different dynamics. Contrary, the focus of our work
is to study the self-attention concept from NLP for learning
on computer vision tasks.

Attention methods in image recognition tasks can be

roughly categorized into channel attention, spatial attention,
or a combination of them. A representative work exploring
channel attention is SE-Net (Hu, Shen, and Sun 2018), which
calculates channel attention by using global average pooling
and channel scaling. GE-Net (Hu et al. 2018) uses depth-
wise convolution to calculate spatial attention. CBAM (Woo
et al. 2018) extends SE-Net by additionally considering spa-
tial attention independently. ResNeSt (Zhang et al. 2020)
uses a cardinal group to generalize prior work in channel
attention. Further, GSoP (Gao et al. 2019) exploits channel
and spatial attention respectively from a statistical perspec-
tive. More recent work such as AA-Net (Bello et al. 2019)
calculates spatial and channel attention jointly using the self-
attention concept from NLP. These works mainly aim at
improving performance with intricate module design. In the
domain of efficient attention mechanism, ECA-Net (Wang
et al. 2019) improves SE-Net (Hu, Shen, and Sun 2018) for
an efficient channel attention mechanism by controlling the
size of 1D convolution. Different from all the above, we try
to improve AA-Net (Bello et al. 2019) and aim at offering
efficient attention in spatial and channel dimensions jointly
by incorporating geometric prior.

Overall, to the best of our knowledge, we are the first
to propose a self-attention module with explicitly modeled
attention-maps in an extremely simplified way for vision task.
In this form, the attention-maps are shared across multiple
heads and are parameterized by only one single learnable
parameter in each layer. Compared to AA-Net (Bello et al.
2019), our module does not employ any key or query and
retains only the value. Since our method is strongly motivated
by AA-Net (Bello et al. 2019), we first introduce how AA-
Net (Bello et al. 2019) applies the self-attention concept from



NLP in vision task.

Background on Multi-head Self-attention in
Computer Vision

We first denote the notations used in this section. Following
the convention, we denote H, W, C as height, width, and
the number of channels of input X ′ ∈ RH×W×C (Batch
dimension is omitted for simplicity). The flattened input is
denoted as X ∈ RHW×C . Further, we define d as the depth
of key or query, dhv as the depth of value in each head, and N
as the total number of heads.

The multi-head self-attention is calculated as in the Trans-
former architecture (Vaswani et al. 2017). The three steps of
the process are defined as (Bello et al. 2019):

Att(X) = Softmax

(
KQT + PosEncoding√

d

)
V (1)

V = XWh
v ;K = XWh

k ;Q = XWh
q (2)

Multihead(X) = Concat[Att1, ..., AttN ]W o (3)

where Wh
v ∈ RC×dh

v , Wh
k ∈ RC×d, Wh

q ∈ RC×d, and
W o ∈ RNdh

v×Ndh
v are 4 learnable matrices to calculate value

V , key K, query Q and final output respectively. The posi-
tional encoding term refers to a learnable relative positional
encoding (?), which is translational invariant. The division of√
d is designed for better training. The calculations in Eq. 2

are repeated multiple times with different learnable matrices
to get multiple Att(X) (also named as one head). In the last
step, the results of N heads are concatenated along the depth
dimension and linearly projected to achieve final multi-head
self-attention. An overview of this method is offered in the
left part of Fig. 2

What are attention-maps? The attention-map describes
how much attention every pixel in the input is paid to when
the model is focusing on one specific pixel. Every pixel has
one attention-map, so there are in total HW attention-maps for
the input of height H and width W , and every attention-map
has spatial shape H ×W . Therefore the softmax part in Eq.
1 with the shape HW ×HW indicates the attention paid to
all H ×W pixels when focusing on every pixel, respectively.
Figure 1 shows a visualization of attention-maps of 2 pixels.

Content-dependent attention-maps. The attention-map
of the above mechanism is constructed by key K, query Q,
and a relative positional encoding term. Both key and query
are linear projections of input, while the relative positional
encoding term also depends on the query (Bello et al. 2019).
Therefore, attention-maps are content-dependent. The mul-
tiplication between K ∈ RHW×d and QT ∈ Rd×HW in Eq.
1 calculates the similarity between extracted features K and
Q. Its output KQT with shape HW ×HW indicates how
similar each pixel’s extracted feature is related to every other
pixel. Finally, after adding a positional encoding and scaling,
the final attention-maps are built.

However, as shown above, constructing attention-maps in
such a way requires many learnable parameters and multipli-
cation operations, and why the above mechanism is beneficial
in the computer vision context is not obvious.

Explicitly Modeled Attention-maps
Intuitively, from the visualization of Figure 1, it could be
observed that the key × query highly depends on the input
(Figure 1b, 1f), while the weights consisting of key, query
and positional encoding (Figure 1c, 1g) does not depend
much on the input content. The fact that the latter form is
proved to increase the performance in image classification
(Bello et al. 2019) indicates the importance of geometric
information. This observation inspires us to design input in-
dependent attention-maps for vision tasks. Therefore, in com-
parison to previously described multi-head self-attention in
the last section, we made the following modification: replace
content-dependent attention-maps with content-independent
explicitly modeled attention-maps using the assumption that
neighbor pixels are more related than distant ones.

General Form
Generally, the spatial context for a given pixel within an im-
age is mostly dominated by its neighbors, while more distant
pixels have a minor contribution. Motivated by this observa-
tion and noting that attention-maps indicate the importance
of all input pixels when focusing on each pixel, we explic-
itly design the weight distribution in attention-maps. In each
attention-map of one specific pixel i, the weight assigned
to any pixel j decreases monotonically as the spatial dis-
tance between two pixels (i and j) in input increases. Our
proposed design for attention-maps is translational invariant
and incorporates relative positional information by assigning
spatial distance-dependent weights in a less costly manner
than regular self-attention as introduced in previous section.

We define three steps of our attention mechanism as fol-
lows:

V = XWv (4)

P = Norm(G+ 1)V (5)

ExpAtt(X) = PW o (6)

In addition to existing notations, we define dv as the to-
tal number of channels of all attention heads, where dv =
N × dhv . Wv ∈ RC×dv is a learned linear transformation,
which can be easily realized by dv 1D convolutions to cre-
ate value V in N heads together. We introduce the matrix
G ∈ RHW×HW in Eq. 5 to model weight distribution in
attention-maps explicitly and constrainGij ∈ (0, 1]. The con-
crete forms of G are discussed in the subsequent section. We
add an element-wise offset of 1 to G to impose global feature
consideration which ensures that information from the rela-
tively distant area also has a reasonable magnitude of weight.
This makes the whole spatial input considered. Following
the normalization design of Softmax in Eq. 1, Norm de-
notes a row-wise normalization on input, and Norm(G+ 1)
indicates the attention-maps. Norm normalizes values by di-
rectly dividing sum of values in each row of its input instead



Figure 2: Comparison between self-attention mechanism using content-dependent and independent attention-maps: content-
dependent attention-maps are constructed using linearly projected input key (K) and query (Q), while our explicitly modeled
attention-maps simply incorporate geometric prior. In the end, the attention-maps are used to calculate the weighted average of
the value (V) for the output of one attention head. Attention-maps are restructured for better visualization.

.

of additionally using an exponential function as in Softmax.
This retains the effect of the designed G.

Additionally, we share attention-maps across heads. This
helps to avoid splitting value V into multiple heads and con-
catenate them together in the end as Eq. 3. Finally, in Eq. 6,
the output is linearly projected to achieve final self-attention
output, where the weights are expressed in W o ∈ Rdv×dv .

Fully Fixed Attention-maps
A natural choice of modeling attention-maps explicitly is
directly fixing all weights in attention-maps using exact func-
tions. We design different simple functions for G to model
the weight decrease in attention-maps with increasing rela-
tive spatial distance. As a special case, we include the option
of using a constant function. Gij indicates how much atten-
tion is paid to pixel j when focusing on pixel i. We denote
ix, iy, jx, jy as the corresponding spatial coordinate of pixel
i and j in the input X ′. For a fair comparison, all alterna-
tive formulations of G are designed such that when i = j,
Gij = Gmax = 1 (one pixel should receive the highest
attention when focusing on itself).

Constant In this case, the weights are distributed uni-
formly. Using different constants does not make a difference
since the result after normalization will be the same.

Gij = 1 (7)

Linear decrease For linear function, the weight decreases
with an increasing Euclidean distance at a constant speed.

Gij = 1−
√
(ix − jx)2 + (iy − jy)2√

H2 +W 2
(8)

Cosine decrease In cosine decrease, weights are decreas-
ing slower in the neighborhood and quicker in the middle
distance and decreasing slower again in the very distant area.

Gij = 0.5 ·

1 + cos


√
(ix − jx)2 + (iy − jy)2
√
H2 +W 2

π


(9)

The main advantage of fully fixed attention-maps is they
can be fully pre-calculated before training and simply loaded
into the model without introducing any learnable parameter
or online computation. The implementation is very simple.

Learnable Attention-maps
Since our mechanism models weight distribution in attention-
maps explicitly, how exactly the weights are distributed needs
to be optimized. The optimized form of attention-maps can be
tuned manually with different kinds of functions. Some exam-
ples include constant, linear, and cosine functions. However,
manual tuning will cost lots of computing resources. There-
fore, we further show some possible options to automatically
determine the weight distribution in attention-maps.

Gaussian First of all, G is parametrized via the Gaussian
kernel function defined as:

Gij = exp

(
( ix−jxW )2 + (

iy−jy
H )2

−2σ2

)
(10)

σ is a learnable scalar, which indicates how flat the weights
are distributed in attention-maps. Since the Gaussian kernel is
also a radial basis function, we name σ as radius, which is the
shape parameter of this function. Visually, it also indicates
the ”radius” of the ”circle-shaped” attention-maps, as shown
in Figure 1d.

Exponential decrease We form the exponential decrease
in two different ways, where the weight decreases with Eu-
clidian and Manhatten distances, respectively as follows:



Gij = exp


√
( ix−jxW )2 + (

iy−jy
H )2

−σ

 (11)

Gij = exp

(
( |ix−jx|W ) + (

|iy−jy|
H )

−σ

)
(12)

Both options are similar to the Gaussian kernel function
and mainly differ in the form of the numerator. In the choice
of Gaussian kernel function, the weight also decreases expo-
nentially. However, we keep them separate for convenience
in later discussion.

Analysis on Efficiency
Since our method mainly improves the attention-maps con-
struction, we focus the theoretical analysis on this part. Given
input with height H , width W , and C channels, the calcu-
lation of key and query in regular self-attention projects the
input from C channels to d channels, respectively. Therefore
they introduce N ×2Cd learnable parameters for N heads in
one layer. In each head, different attention-maps with shape
HW × HW are saved, which has O(N(HW )2) memory
cost. The projection of key and query costs O(2HWC2d)
computation, and the multiplication between key and query
costs O(d2(HW )2) per head. The same computation is re-
peated in N heads. Relative positional encoding introduces
2(H+W −1)d parameters with memory costO(HWd) and
computation cost O((HW )2) per layer according to Bello
et al. (2019).

However, using our explicitly modeled attention-maps
will introduce only one learnable parameter (radius) if
they are learnable and will not introduce any parameter
if they are fixed. Further, we reduce the memory cost
from O(N(HW )2) to O((HW )2) thanks to the sharing of
attention-maps across heads. From the perspective of com-
putation, fully fixed attention-maps can be completely pre-
calculated and require no computation during training. Even
our learnable variant only needs some scaling operations
since the numerator of G can be pre-calculated. Both vari-
ants of our method drastically increase the efficiency. The
comparison is summarized in Table 1.

Experiments
In this section, we test our ExpAtt module in widely used ar-
chitectures such as ResNets (He et al. 2016b,a) and represen-
tative lightweight architecture such as MobileNetV2 (Sandler
et al. 2018) on small scale and large scale image classifica-
tion datasets including CIFAR10, CIFAR100 (Krizhevsky
2009), Tiny ImageNet (Yao and Miller 2015) and ImageNet
(Deng et al. 2009). We report average accuracy for all ex-
periments. The experiments show that our module leads to
improvement in different architectures in multiple aspects.
Since self-attention networks strongly motivate the proposed
ExpAtt module, we follow exactly the same network settings
of Bello et al. (2019) to integrate our ExpAtt module into
networks for comparability. Experiments in the same dataset
use same data preprocessing.

Integration by Feature Concatenation
For an original convolution with stride 1 and output chan-
nels Cout , we first split Cout to standard convolution fea-
tures Cconv and ExpAtt features Cexpatt. In other words,
Cconv + Cexpatt = Cout. Subsequently, the convolution out-
put has shape H × W × Cconv with H and W being the
input height and width, respectively. The ExpAtt output has
shape H ×W ×Cexpatt. From the perspective of multi-head
self-attention, Cexpatt is equivalent to N × dhv , where N is
the number of attention heads, and dhv is the depth of value in
each head. Finally, the ExpAtt output is concatenated with
convolution output along channel dimension to receive the
augmented convolutional features in shape H ×W × Cout.
For convolutions with stride 2, an additional 3× 3 average
pooling with stride 2 is applied to the ExpAtt output to keep
the spatial shape matching. The number of heads is fixed to 8
in ResNets and 4 in MobileNetV2. The ratio of Cexpatt/Cout

is set to 0.1 for ResNets and 0.05 for MobileNetV2. When
Cexpatt is not evenly dividable by 8 or 4, the closest value
that is evenly dividable is taken. Self-attention mechanism
(including AA-Net and our ExpAtt-Net) is incorporated into
3 × 3 convolutions of all 4 residual stages of ResNets in
CIFAR and only last 3 stages of ResNets in ImageNet ex-
periments. The integration into MobileNetV2 starts when
channel number is 24× 6 through concatenation with 1× 1
convolutions. More details are offered in the Appendix.

Training
Models are trained from scratch. All experiments (including
AA-Net and ExpAtt-Net) are based on the respective base-
lines from PyTorch (Paszke et al. 2019), use synchronous
SGD with momentum 0.9, and cosine learning rate with
restarts (Loshchilov and Hutter 2016) for in total 450 epochs,
164 epochs, and 324 epochs in CIFAR, ImageNet, and Tiny
ImageNet experiments respectively. Concretely, in the first
15 epochs, learning rate is linearly increased to 0.05, than a
cosine learning rate with restarts at 25,45,85,165,325 epochs
is applied where appliable. Additionally, CIFAR experiments
use learning rate 0.0002 between epoch 325 and 450. Batch
size of all experiments are chosen to fit the GPU memory.
The radius σ of Gaussian kernel is initialized to 0.75.

ResNet50 in CIFAR-10,100
Tab. 2 shows the performance of Resnet50 when the attention-
maps of our ExpAtt module are parametrized differently with
various simple functions. To fit the resolution of CIFAR,
we remove the first average pooling and change the stride
of the first convolution to one in ResNet50. All considered
attention modules with different parametric attention-maps
outperform the ResNet50 baseline and the plain self-attention
in AA-ResNet50. All functions perform similarly with the
Gaussian-kernel being slightly better than others. This may
occur because different functions have similar gaussian-like
patterns. Surprisingly, even using uniform distribution in
attention-maps achieves competitive performance compared
to AA-ResNet50. This may mean regularization is helpful in
the attention module.



PARAMETERS MEMORY COMPUTATION

KEY AND QUERY N × 2Cd O(N(HW )2) O(2NHWC2d+Nd2(HW )2)
POSITIONAL ENCODING 2(H +W − 1)d O(HWd) O((HW )2)
LEARNABLE ATT.-MAPS 1 O((HW )2) O((HW )2)
FULLY FIXED ATT.-MAPS 0 O((HW )2) 0

Table 1: Comparison on parameter, memory and computation cost between explicitly modeled attention-maps and attention-maps
calculated by key, query and relative positional encoding per layer.

DECAY FUNC. PARA. FLOPS ACC.
CIFAR-10

RESNET50 23.7M 1.31G 90.20
AA-
RESNET50

23.9M 1.45G 90.78

UNIFORM 22.7M 1.25G 90.77
COSINE 22.7M 1.25G 90.96
LINEAR 22.7M 1.25G 90.91
EXP. EUCLID. 22.7M 1.25G 90.94
EXP. MAN. 22.7M 1.25G 91.02
GAUSSIAN 22.7M 1.25G 90.99

CIFAR-100
RESNET50 23.7M 1.31G 79.46
AA-
RESNET50

23.9M 1.45G 80.32

COSINE 22.7M 1.25G 80.74
UNIFORM 22.7M 1.25G 80.76
LINEAR 22.7M 1.25G 80.82
EXP. EUCLID. 22.7M 1.25G 80.90
EXP. MAN. 22.7M 1.25G 80.91
GAUSSIAN 22.7M 1.25G 81.02

Table 2: Performance of modified ResNet50 using different
parametric attention-maps on CIFAR-10/100.

TYPE PARA. FLOPS TOP1 TOP5
RESNET34 21.8M 3.6G 73.30 91.42
SE-RESNET34 22.0M 3.6G 74.30 91.80
CBAM-RESNET34 22.0M 3.7G 74.01 91.76
AA-RESNET34 20.7M 3.6G 74.70 92.00
Gaussian-ExpAtt 17.3M 3.1G 74.24 91.81
RESNET50 25.6M 3.8G 76.15 92.87
SE-RESNET50 28.1M 3.9G 77.50 93.70
CBAM-RESNET50 28.1M 3.9G 77.34 93.69
ECA-RESNET50 24.4M 3.9G 77.48 93.68
AA-RESNET50 25.8M 4.2G 77.70 93.80
Gaussian-ExpAtt 24.5M 4.0G 78.13 94.07
RESNET101 44.5M 7.6G 77.37 93.56
SE-RESNET101 49.3M 7.6G 78.40 94.20
CBAM-RESNET101 49.3M 7.6G 78.49 94.31
ECA-RESNET101 42.5M 7.4G 78.65 94.34
AA-RESNET101 45.4M 8.1G 78.70 94.40
Gaussian-ExpAtt 42.7M 7.6G 79.56 94.78
RESNET152 60.2M 11.3G 78.31 94.06
SE-RESNET152 66.8M 11.3G 78.90 94.50
ECA-RESNET152 57.4M 10.8G 78.92 94.55
AA-RESNET152 61.6M 11.9G 79.10 94.60
Gaussian-ExpAtt 57.6M 11.1G 80.02 94.85

Table 3: Performance of ResNets utilizing different attention
modules in ImageNet. Our methods are cursive.

ResNets in ImageNet
In table 3, we compare representative networks exploring
channel attention (SE-Net(Hu, Shen, and Sun 2018)), effi-
cient channel attention (ECA-Net(Wang et al. 2019)), chan-
nel and spatial attention independently (CBAM (Woo et al.
2018)) and jointly (AA-Net (Bello et al. 2019)) with our
ExpAtt-Net, which explores efficient joint channel and spa-
tial attention. The methods are compared by integration
into multiple Resnet architectures. The Gaussian kernel
parametrized ExpAtt improves its counterpart using key
and query (AA-ResNet) by 0.47%, 0.87%, and 0.92% on
ResNet50, ResNet101, and ResNet152, respectively in Top1
accuracy, which indicates that increasing architecture depth
is beneficial for explicit modeling of the attention-maps. This
may due to the regulation introduced by ExpAtt model, which
helps to decrease training difficulty when the model becomes
deeper. Compared to ECA-ResNet, which is designed to ex-
ecute efficient channel attention, we use a similar number
of parameters and GFLOPs while achieving a higher Top1
accuracy. This further proves the benefit of our method.

However, the ExpAtt augmented ResNet34 underperforms
the AA-Resnet34, though still outperforming ResNet34 base-
line. Since ResNet50/101/152 uses a different type of residual
block (bottleneck) than ResNet34, this may indicate that our
method is more suitable to model attention weight distribu-
tion in architectures with bottleneck residual block which
consists of a 1× 1, 3× 3, and 1× 1 convolution instead of
the residual blocks consisting of two 3× 3 convolutions (e.g.,
ResNet34).

MobileNetV2 in Tiny ImageNet
In this section, we use a parameter efficient architecture Mo-
bileNetV2 as the backbone and compare ExpAtt with AA-Net
(Bello et al. 2019) using precisely the same training and net-
work setting. Following Bello et al. (2019), we apply the
Gaussian parametrized ExpAtt module in an inverted bottle-
neck by replacing part of expansion point-wise convolution
channels. Table 4 shows that we achieve an accuracy im-
provement with lower model complexity compared to AA-
MobileNetV2. Since the inverted bottleneck mainly consists
of two point-wise and one depth-wise convolution, this also
suggests a way to let our method complement depth-wise
convolution.

Ablation Study
Sharing attention-maps across heads From the perspec-
tive of multi-head self-attention, each head can have a dif-
ferent set of attention-maps. Therefore, we study the effect
of sharing and not sharing attention-maps (parametrized by



ARCHITECTURE PARA. FLOPS ACC.
MOBILENETV2 3.50M 0.32G 64.72
AA-MOBILENETV2 3.55M 0.33G 65.89
EXPATT-MOBILENETV2 3.51M 0.32G 66.14

Table 4: Performance of MobileNetV2 and its variants aug-
mented with self-attention modules.

Gaussian kernel) across heads by experiments in ResNet50
on CIFAR100. The result shows that sharing attention-
maps achieves 81.02% Top1 accuracy while using differ-
ent attention-maps across heads achieves only 80.78%. One
possible explanation is that the tied radius parameter might
reduce the difficulty of joint optimization in training neural
networks.

Interplay with content-based method In this study, we try
to understand whether our content-independent method is or-
thogonal to the content-dependent one using ResNet50 on CI-
FAR100. In all augmented layers, we combine the two meth-
ods by concatenating the output of ExpAtt and the content-
based method’s output (Bello et al. 2019). Unfortunately, the
accuracy (78.19%) is worse than plain ResNet50 (79.46%).
The result suggests that both methods are not complementary,
though they individually have an obvious improvement over
vanilla networks.

Importance of global features Though our method is mo-
tivated by focusing local features, we explicitly constrain the
attention-maps to consider global features by using element-
wise plus one to G. Without using element-wise plus one
in Eq. 5, attention-maps parametrized by Gaussian kernel
achieves only 80.42% in CIFAR100 while additionally using
element-wise plus one achieves 81.02%. This indicates the
importance of considering global features.

Results of Learned Radius
Since radius is the only learnable parameter of Gaussian ker-
nel parametrized ExpAtt, we show how it varies between lay-
ers. The augmented layers are denoted as ”stage.convolution”
on the x-axis, because ResNet50 consists of several stages,
and each stage has several 3× 3 convolution layers. Fig. 3a
shows the final learned value of the radius in different lay-
ers of ResNet50 on different datasets. There is an apparent
decreasing trend in the learned radius as the layer depth in-
creases in the first augmented stage. This suggests that the
global context is more important in early layers than later
ones. Further, the radius learned in stage one on CIFAR100 is
higher than the learned radius on CIFAR10. This may mean
that the global context is more important as the prediction
task becomes more difficult. In the third stage, although the
radius is not continuously decreasing, the general trend of
”peak radius” in neighbors is still decreasing as the layer goes
deeper. This trend can be easier observed in deeper network
such as ResNet101 (Fig. 3b) . In the fourth stage, only the first
augmented convolution is parametrized by the Gaussian ker-
nel, and the final radius is close to zero in all datasets. Radius

(a)

(b)

Figure 3: The final results of learned radius in different aug-
mented layers of Resnet50 on CIFAR and ImageNet (a) and
ResNet101 on ImageNet (b). Results in different stages are
split for clarity.

close to zero means that attention-map of any pixel F assigns
the highest weight to pixel F and considers information from
all other surrounding pixels equally.

Conclusion

We aim at offering an efficient self-attention mechanism for
vision task. To this end, we propose an ExpAtt module to
explicitly model weight distribution in attention-maps by in-
corporating a geometric prior. Despite the simplicity of this
module compared to self-attention, experimental results show
that it improves the performance of multiple architectures, in-
cluding widely used ResNets and lightweight MobileNetV2.
Surprisingly, it outperforms the regular self-attention design
not only in efficiency but also in accuracy when integrated
into the bottleneck residual block. Although experiments fo-
cus on image classification, we expect ExpAtt to be applicable
to other vision tasks, because the assumption that nearby pix-
els are more related than distant ones is a general principle in
images and that the Resnet baseline for image classification
is widely used as backbone for many other tasks.
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Ethical Impact
Our content-independent attention-maps can help to decrease
bias introduced by datasets against minorities. For example,
in a face image recognition task, more training images of ma-
jorities may cause the system to perform worse in people of
minorities. Self-attention with content-dependent attention-
maps might learn such bias due to its large number of param-
eters learned from datasets. In contrast, both variants of our
method try to avoid learning such bias. Concretely, the fully
fixed attention-maps will not be influenced by any bias of
datasets because it learns nothing from datasets. Our learn-
able attention-maps would also be much less influenced by
such bias compared to content-based methods, since it only
learns a single shape parameter thanks to our very general
assumption that neighbor pixels are more related than distant
ones. However, we still note that the system might be misused
to cause negative ethical impact.
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