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Abstract. Medical image datasets are hard to collect, expensive to la-
bel, and often highly imbalanced. The last issue is underestimated, as
typical average metrics hardly reveal that the often very important mi-
nority classes have a very low accuracy. In this paper, we address this
problem by a feature embedding that balances the classes using con-
trastive learning as an alternative to the common cross-entropy loss. The
approach is largely orthogonal to existing sampling methods and can be
easily combined with those. We show on the challenging ISIC2018 and
APTOS2019 datasets that the approach improves especially the accuracy
of minority classes without negatively affecting the majority ones.

Keywords: Imbalance classification · Medical imaging · Contrastive
learning.

1 Introduction

Convolutional networks (CNN) have much to offer for computer-aided diagnos-
tics (CAD) as they can potentially bring cheap pre-screening to people, who do
not have regular access to medical experts, or they can decrease the screening
intervals even for those who have this access. Several domain specific issues in
medical image processing, like data scarcity, noisy labels, and low image quality,
have been addressed. Another issue, yet with less attention for far, is the often im-
balanced distribution of classes in medical datasets. Some classes are much more
common than others, hence it is difficult to collect a dataset where all classes are
represented equally. For example, among retinal diseases, diabetic retinopathy is
more common than fundus pulverulentus and fundus albipunctatus [41]. In Fig-
ure 1, we show the histogram of the classes in the ISIC dataset, a dermatoscopic
dataset of common pigmented skin lesions, where few major classes have orders of
magnitude larger frequency than others. Neural networks trained on imbalanced
datasets tend to perform worse on the minority classes – a problem that is well-
known in machine learning and has been studied thoroughly in the last few years.
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Fig. 1: Histogram of the ISIC
dataset showing the major-
ity (left) and minority classes
(right). We also show a sample
from three classes. These look
very similar, yet should be clas-
sified differently.

Few recent works in the medical domain ap-
ply the common technique of resampling the
training data [44] or reweighting the loss
function to give more attention to minority
classes [2,44], hence improving their accuracy.
Despite the marginal success of these meth-
ods, a thorough analysis of the problem and
an effective approach towards a solution is still
missing. In addition to the imbalance prob-
lem, medical image classification typically fo-
cuses on subtle, fine-grained differences. In
Figure 1, we show three samples from differ-
ent classes which are hard to distinguish due
to their subtle differences.

In this paper, we address the above-
mentioned problems by explicitly separat-
ing the feature space into different clusters
by minimizing the distance between samples
from the same class (intra-class) and maximiz-
ing the distance between samples from differ-
ent classes (inter-class). We achieve this using
a contrastive loss on the learned feature space.
With this approach, the minority samples re-
ceive enough attention without negatively af-
fecting performance on majority classes.

In summary, we (1) emphasize the issue of
imbalanced datasets in the medical domain,
(2) propose a framework based on contrastive
learning to better arrange the feature space for minority and majority classes, (3)
show quantitatively on the challenging ISIC2018[7] and APTOS2019[1] datasets
that our approach outperforms or performs on parwith existing techniques on all
metrics, and (4) discuss the complementary of our method to existing techniques
(resampling).

2 Related Work

Classification in Medical Imaging. Disease diagnosis and disease grading are
major applications of computer-aided diagnosis that benefited from the flourish-
ing era of medical image analysis [9]. The recent improvement is mainly due to
the emergence of deep learning techniques at large scale as recent CAD meth-
ods are driven by learning-based classification methods employing neural net-
works [4]. Although adopting standard methods, such as finetuning pretrained
networks, using ensembles and heavy data augmentation, led to decent improve-
ment, more pronounced and domain specific issues have been tackled to gain
further quantitative improvement. For instance, fighting against hard exam-
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ples [14], inter-class correlation [42], and small inter-class differences [45], do-
main shift [13], catastrophic forgetting [29] and annotation scarcity [28,17] have
been deeply studied in the last year and several new methods based on semi-
supervised learning and meta-learning have been introduced. Unlike data for
common diseases, which is available in large amounts with typically clean labels,
it is hard to collect as much annotated data for rare diseases. As data for major-
ity classes is not supposed to be thrown away (a.k.a. undersampling), this leads
to a systematic data imbalance. Hence, training a neural network to classify all
diseases at comparable accuracy is challenging, and so far, has seen very little
attention in the medical imaging community. For instance, the winners of the
ISIC-2018 challenge handled the data imbalance with a simple loss reweighting
scheme [2,44]. The problem has been also implicitly tackled by splitting the data
into two subsets consisting of majority classes and minority classes [28]. After
training the network on the majority classes, it is finetuned to recognize the
minority classes as well.

Learning from imbalanced datasets. There is a long line of works ad-
dressing the task of learning from datasets with class-imbalance. The most com-
mon technique is to manipulate the training data distribution by oversampling
the data from minority classes [38,36] or undersampling the majority classes
[12,20]. To avoid potential overfitting on the minority, recent methods proposed
to generate new data from minority classes by simulation [5,18,33,26]. Instead
of changing the data distribution, other works proposed to introduce a weight
in the loss of samples based on their class frequency [22,8,31,39] or optimize a
loss that is not sensitive to the class imbalance [35,15]. Recently, Kang et al. [23]
proposed the two-stage approach of imbalanced feature learning and balanced
classifier learning. In the latter, they use the common oversampling technique [38]
for training the classifier. Others proposed to shape the feature space by explic-
itly designing a loss function to increase the inter-class distance while decreasing
the intra-class one [43,22]. Recent works follow up on this idea by explicitly en-
larging the margin for the minority to boost their performance [10,3,24,19]. We
compare to the most relevant of these recent methods in Section 4.4.

Contrastive Learning. The concept of contrastive learning was first pro-
posed to learn better feature representation in a self-supervised manner and was
referred to as noise-contrastive learning [16,6,34,11]. In particular, for any input
sample, a set of positives and negatives are constructed and the loss function is
optimized to separate them. The positives are noisy versions of the input sam-
ple (e.x, augmentation) and the negatives are the other samples in the batch.
Recently, [25] extended the positives to also include images from the same class
yielding impressive results in image classification on ImageNet [37]. Despite the
success of contrastive learning in both self-supervised and supervised settings,
we are the first to adapt this concept in the task of learning from imbalance
datasets.
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Fig. 2: Two-stages Framework. In the first stage, we learn the feature space via
the contrastive loss (orange) by projecting the feature vector using 2-layers MLP.
In the second stage, we through the projection head, freeze the backbone and
only learn the classification head (blue).

3 Supervised Representation Disentanglement via
Contrastive Learning.

Representation learning aims to disentangle the feature space, such that the
resulting embedding can be mapped well to classes. However, when datasets are
highly imbalanced, networks focus on the majority classes, as they dominate the
loss. In order to overcome this limitation, we propose to separate the minority
from the majority classes in feature space with contrastive learning. In particular,
for every sample xi in the batch, its positive samples, i.e., samples from the same
class in the batch, are pushed closer while the negatives ones, i.e. all samples
from different classes in the batch, are pushed away. Formally:

LCL
i = − 1

Nci − 1

∑
j∈ci

1i 6=j · log
exp(zi · zj/τ)∑N

k=1 1i6=k · exp(zi · zk/τ)
, (1)

where zi is the normalized feature vector of an image xi, ci is the positive set for
sample i and corresponds to all samples in the batch with the same class label
as i. 1cond is the indicator function that returns 1 if the condition cond returns
true and 0 otherwise. N is the total number of samples in the batch, and Nci the
size of the positive set of sample xi. τ > 0 is the temperature parameter, which
controls the balance between positives and negatives. In the standard setting,
cross-entropy is a function of the pseudo-probabilities generated by the Softmax
function and the labels for each input image separately. Thus the resulting gra-
dients for each single input depend solely on the considered image. Given the
data unbalance, the network will prioritize learning major classes. Using con-
trastive loss mitigates this effect by computing the pseudo-probabilities based
on the cosine similarity between feature embeddings of the full batch. Conse-
quently, gradients depend on the feature embedding of all batch elements and
minimizing the loss explicitly moves feature embeddings to form clusters.

After learning the feature space using the contrastive loss, a second stage is
needed to learn to map from the feature space to the target class labels. To this
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Accuracy F-score

CE 0.850 ± 0.7e− 3 0.716 ± 6e− 3
Focal Loss [31] 0.849 ± 4.5e− 3 0.728 ± 5e− 3
LDAM [3] 0.857 ± 9.0e− 3 0.734 ± 24e− 3
CL (ours) 0.865 ± 4.0e− 3 0.739 ± 13e− 3

CE + resample 0.861 ± 0.9e− 3 0.735 ± 6e− 3
CL (ours) + resample 0.868 ± 7.0e− 3 0.751 ± 16e− 3

OHEM [40] 0.818 † 0.660 †

MTL [30] 0.811 † 0.667 †

DANIL [14] 0.825 † 0.674 †

Table 1: Quantitative evaluation on the ISIC2018 dataset. Our method using
contrastive learning yields the best performance. Results denoted with † are
taken from the respective papers.

end, we use the common cross-entropy loss:

LCE
i = −

M∑
j=1

yi,j log pi,j , (2)

where M is the number of classes, yi,j is an indicator if j is the class label for
the sample i, and pi,j is the predicted probability that the sample i is classified
as class j. When training the second stage, we freeze the learned backbone and
only learn the classification head as illustrated in Figure 2. As the cross-entropy
loss is not sensitive to the class distribution, it is important to sample the classes
uniformly across batches as suggested by [23].

In Section 4.4, we compare and combine our approach with an oversampling
strategy during the backbone training. We follow a simple oversampling strategy
by extending the original data set with copies of samples from minority classes
so that the artificially balanced dataset has the exact same number of items per
class. For the second stage we always use artificially balanced data by following
this simple scheme.

4 Experiments

4.1 Experimental setup

We evaluate the proposed method on the ISIC2018 lesion diagnosis dataset [7]
which consists of 10015 skin lesion images and 7 predefined categories and AP-
TOS2019 [1] for diabetic retinopathy which has 5 classes and 3662 images. We
split images randomly to a train and test set with a ratio of 7:3 as in [14]. Beside
the average accuracy which is very sensitive to data imbalance, we report the
F-score (also known as Dice similarity coefficient) which is the average of the
classwise harmonic mean of precision and recall. Since the classwise F-score is
normalized, this metric is particularly sensitive to the performance on minor-
ity classes. To evaluate the stability of our method, we report the means and
standard deviations over 3 independent runs.
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Accuracy F-score

CE 0.812 ± 7e− 3 0.608 ± 18e− 3
Focal Loss [31] 0.815 ± 1e− 3 0.629 ± 8e− 3
LDAM [3] 0.813 ± 3e− 3 0.620 ± 5e− 3
CL (ours) 0.825 ± 1e− 3 0.652 ± 3e− 3

CE + resample 0.802 ± 23e− 3 0.583 ± 55e− 3
CL (ours) + resample 0.816 ± 1e− 3 0.608 ± 4e− 3

CANet [27] 0.813 † 0.631 †

OHEM [40] 0.813 † 0.632 †

DANIL [14] 0.825 † 0.660 †

Table 2: Quantitative evaluation on the APTOS2019 dataset. Contrastive learn-
ing clearly outperforms the CE baseline and is on-par with the state of the art
on this dataset. Results denoted with † are taken from the respective papers.

4.2 Baselines

We compare the proposed method to previous works that use the same ex-
perimental setup: OHEM[40]: a hard example mining method that samples
training images according to a non-uniform distribution based on their cur-
rent loss. MTL[30]: a deep multi-task learning framework that optimizes body
location classification along with the skin lesion classification. CANet[27]: a
CNN with an attention module to learn disease-specific features and a disease-
dependent attention module to learn internal relationships between pairs of dis-
eases. DANIL[14]: a method that synthesizes distractors in the feature space
to learn stronger features. We also compare to popular model-based methods
to learn from unbalanced data. Beside focal loss [31], a sophisticated way to
balance the loss depending on the class frequency, we consider LDAM[3], a
label-distribution-aware margin loss that applies stronger regularization to mi-
nority classes to improve the generalization of the model. We further investigate
the effect of Resampling, which ensures having the same number of images
per class per epoch by sampling images from the minority classes multiple times
within the same epoch. We apply this method in combination with both the
standard network training and with contrastive learning.

4.3 Implementation Details

Following the default data augmentation policy for training ResNet [21] on Im-
agenet [37], we use scaling, random flipping, color distortion, normalization and
random cropping in training. We use Resnet50 as backbone and append a 2-
layer perceptron of size 2048 and 128 respectively to apply the contrastive loss.
The network is trained with SGD optimizer where the learning rate is initialized
to 10−1 and decayed to 10−4 using the cosine schedule without restart[32]. The
weight decay is set to 10−4. For networks without data resampling and ISIC2018
datasets, we train the backbone for 1000 epochs. For sake of fairness, we train
networks with data resampling for 250 epochs only so that in both cases we run
roughly 40k updates. For APTOS2019, we double the number of epochs. It takes
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Fig. 3: F-score evaluation of our approach and the common cross-entropy baseline
across different classes. This shows that our contrastive-based approach yields
larger improvements on the minority (right) while the performance on the major
class is not affected.

about 8 hours to train the backbone on 4 NVIDIA TITAN RTX GPUs with a
batchsize of 192. Training the classification head follows the same settings except
the batch size which is set to 512 and the learning rate which decays from 1 to
10−4. This step takes less than an hour to train on a single GPU.

For testing, we resize the images to 256× 256 and then process the normal-
ized image. The code is implemented using PyTorch v1.5.1 and will be publicly
available upon acceptance.

4.4 Results & Discussion

Tables 1 and 2 summarize the quantitative evaluation of our approach and sev-
eral baselines. First we show a comparison of different model-based approaches
for addressing the imbalance classification (top part). Here we clearly show that
our approach based on contrastive learning is consistently superior to other tech-
niques due to the explicit disentanglement of the feature space on both datasets.
Next, we study the effect of the common data-based method (resampling) in
conjunction with contrastive learning (middle part) and find that when resam-
pling improves over standard cross-entropy, it is complementary to our approach
and further improves its performance as in Table 1. In case resampling harms
the performance, as in Table 2, contrastive learning helps stabilize the learn-
ing process and leads to clearly lower standard deviation. We think the drop
in performance on APTOS19 is mainly due to the small size of the dataset.
Thus, making copies from the very few samples results in overfitting to those.
Finally, we compare to the best existing methods (lower part) and show that
contrastive learning performance is on-par or even significantly better than those
works without using their special modifications to standard classification. The
gap in performance on ISIC shows that pretraining on ImageNet [37], used as
a common practice in existing methods, does not necessarily yield improvement
due to the large domain shift. Figure 3 shows a break-down of the performance
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Temperature Major Middle Minor

0.01 0.941 / 0.939 0.702 / 0.712 0.692 / 0.710
0.05 0.945 / 0.938 0.717 / 0.711 0.713 / 0.721
0.1 0.942 / 0.937 0.716 / 0.711 0.696 / 0.709
0.5 0.942 / 0.937 0.696 / 0.698 0.575 / 0.720
1.0 0.941 / 0.934 0.669 / 0.623 0.531 / 0.651

Table 3: Effect of contrastive loss temperature on the f-score of different classes
without/with resampling

of our method and the cross-entropy baseline across all classes. This shows that
the main source of improvement is due to better handling the minority while
not affecting the performance of the major classes.

4.5 Ablation Study

We ran experiments on ISIC data to study the effect of the temperature used
in contrastive loss without/with resampling. We let the temperature take values
in {0.01, 0.05, 0.1, 0.5, 1.0} for our experiments and report the averaged F-scores
for 3 groups of classes: the major class (≥6000 images), the 2 medium size
classes (∼ 1100 images) and the 4 minor classes (≤550 images). Recall that the
temperature controls the balance between positives and negatives and higher
temperatures put more attention to pushing positives close to each other while
lower temperatures focus more on pushing negatives away from each other which
should theoretically lead to better performance on minority classes for lower
temperatures and more stability using the resampling than without resampling.
Experimentally, we show in Table 3 that the performance on the major class
stays almost constant for different temperatures. We also notice a significant
drop in performance for both middle and minor classes for increasing temper-
atures, which matches the theoretical explanation. We find out that the choice
of the temperature for the contrastive loss with resampling is less critical as
we recorded non-significant fluctuations in all classes for all temperatures in
{0.01, 0.05, 0.1, 0.5} while setting the temperature to 0.05 gives a performance
boost for the plain contrastive learning. This fact aligns well with our expecta-
tion on the stability of both versions. Finally, we record a drop in performance
for contrastive learning in conjunction with the lowest temperature. This drop
can be explained by an excessive focus on pushing negatives away from each
other, which slows down the learning process.

5 Conclusion

In this paper we highlighted the importance of learning from imbalanced datasets
in medical image analysis. We proposed a new approach based on contrastive
learning to better separate minority from majority classes in feature space. The
approach consistently improved over the cross-entropy and oversampling base-
lines in our evaluation. Moreover, we showed that it is complementary to over-
sampling and sets a new state of the art for imbalanced datasets.
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