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Abstract

Single-view 3D object reconstruction has seen much
progress, yet methods still struggle generalizing to novel
shapes unseen during training. Common approaches pre-
dominantly rely on learned global shape priors and, hence,
disregard detailed local observations. In this work, we ad-
dress this issue by learning a hierarchy of priors at different
levels of locality from ground truth input depth maps. We Input depth Ground truth
argue that exploiting local priors allows our method to ef-
ciently use input observations, thus improving generaliza-
tion in visible areas of novel shapes. At the same time, the
combination of local and global priors enables meaningful
hallucination of unobserved parts resulting in consistent 3D
shapes. We show that the hierarchical approach generalizes
much better than the global approach. It generalizes not
only between different instances of a class but also across
classes and to unseen arrangements of objects. Global prior (ONet) Hierarchical prior (HPN, ours)

Figure 1. We employ a hierarchical shape prior to enable recom-
bination of partial shapes observed during training. This signif-
icantly improves generalization compared to conventional global
The usual problem setting of single-view 3D reconstruc- Shape priors.
tion assumes an input image with a single dominant object,
where the geometry of both the visible and the invisible
part of this object shall be reconstructed. For the invisi- already given as input. This re ects the argument that an in-
ble parts, reconstruction must rely on shape priors, whichtermediate depth map helps generalization [35] and should
can be based on the object class, symmetry, or smoothneségnake the reconstruction of the visible parts almost trivial.
The geometry of the visible parts can be obtained, at least Surprisingly, however, existing approaches fail to gen-
partially, from sensing data (e.g., depth, texture, shading). eralize even in the visible areas, despite the perfect input.
Most existing approaches are encoder-decoder net-Consider the example in Fig. 1: ONet [19] trained on sin-
works [7, 10, 12, 19, 27, 30, 34] and have been shown togle chairs uses its learned prior to reconstruct the shape for
barely generalize to novel shape categories [38]. Only few an input with two chairs. Although the required shape prior
works have targeted generalization explicitly [3, 32, 38]. (chairs) has been seen during training, the approach cannot
They argue that, for better generalization, the problem use this knowledge to explain the clean observation of two
should be split into two parts: (1) prediction of a geometric chairs (Fig. 1 top left), which leads to an unresolved com-
representation of the visible parts from a single RGB image petition between observation and prior (Fig. 1 bottom left).
and (2) prediction of the nal shape from the geometric rep- This reveals a general problem of existing approaches: not
resentation. In this paper, we focus on the prediction of the only do they not generalize to new object classes, they even
object shape and assume the ground truth depth map to beo not generalize to new combinations of the same training

1. Introduction



classes. Even if we would train these networks on pairs of tent vector and a 3D decoder which regresses the output 3D
chairs, they must see all possible con gurations of pairs — a representation from it.

combinatorial explosion. 3D parts. Multiple works reconstruct the output shape

In this paper, we propose to foster the recombination of 35 a collection of 3D parts which can come in form of
previously seen partial shapes by a hierarchical approach. licyboids [17, 21, 33, 40], superquadrics [22, 23], convex
consists of two main building blocks: (1) a local reconstruc- elements [9] or actual semantic parts [14, 36]. All these
tion module that reconstructs the Shape at a certain level Ofapproaches use parts SOler as an alternative 3D representa-
locality (Fig. 2), and (2) fusion of the beliefs from various tion and do not provide a mechanism for attending to local
levels of locality (Fig. 3). The reconstruction module is ef- patches of the input image. This is different for our method:
fectively animplicit surface network (e.g. ONet) which per- e directly consider the relationship between local input
forms shape estimation from patches of the input image. If patches and their 3D counterparts. Note also that we do
the patCh size covers the whole image, it comes down tOnot make any assumptions about Shape parts being seman-
the original global surface network. Intuitively, instead of tically meaningful, which makes our approach general and

reconstructing the full shape with a single prediction effort, prevents the need for having semantic annotations similar
local versions of the network learn to estimate geometry of to [20)].

individual object parts and put those together to obtain the
whole shape. Since similar shape parts are likely to repea
between different categories, this strategy offers effective
recombination of parts from various training samples and
hence, much better generalization potential.

Generalization. Only few methods explicitly touch the
tnatter of generalization to shape categories unseen during
training. Shinet al. [29] and Tatarchenket al. [31] ana-

' lyze the conventional setup and conclude that working in

Si local patches h limited Vi  th I the viewer-centered mode is a necessary (though not suf -
Ince focal palches have a imited view of the overa cient) condition for generalization. Zharmg al. [38], Wu

shape, the reconstructed global shape may not look conszis-et al. [35] and Thaiet al. [32] propose to predict intermedi-

te.”t' esp(_amally n Iarge oc_cludeq areas. Therefore, we COM-ate geometric representations in the pipeline and show that
bine multiple patch sizes (including the global one based on

he full i f hi hy of h local K this improves generalization. In our work, we use a simi-
the full image}) to form a hierarchy of such local networ S Jar setting but further simplify it by starting from a ground

The combination is possible by simple averaging of the logit truth depth map. Surprisingly, we nd that even then the

outputs. s . actual generalization achieved by existing methods is still
We demonstrate the intriguing effect of the new hier- o~ Thajet al [32] show that using three-degree-of-

archical reconstruction concept on various generalizationfreedom camera poses and SDFs as a 3D representation

tasks derived fr_om_ the ShapeNet [ ].dat‘?‘set- This Ir|C|u(.jeswhile keeping the architecture from [19], helps generalize
tasks that require inter-class generalization and generahzai0 a new dataset

tion from single to multiple objects. The results show . -

the huge effect of the ability to recombine parts, which is !_ocal encoding. Several eX'S“F‘g works. prqposed to
missing in all previous learning-based reconstruction ap-'nC|Ude local gncodlng modules into the p|pe!|ne. HU.
proaches. This ability also improves the data ef ciency: al. _[ ] C(_)mbme local and global fegtures with the am
in contrast to existing global methods, the performance of of improving the reconstruction details. However, their

our local networks does not noticeably degrade even When.meth.Od. IS npt forc_ed to use local mformgt!on and could
training on as little as 1% of the original data. Since the in principle ignore it, plus they never explicitly target the

choice of the base reconstruction module is exible, the hi- generalization setting. For a special case of reconstructing

erarchy of local networks acts as a working principle that huma_n fIfOthmg’ Salt;et aII. t[) I] Eropose to a“%n Iocall_
can be applied to enhance the generalization of effectivelyPE-PIXel features to the global shape context, thus explic-

any method based on implicit functions. We refer to this as itly Ieyeragmg the 2D-3D r.elatlonsmp.. Peru;. al [25]
Hierarchical Prior Network (HPN). combine a local encoder with an implicit function decoder

for a task of point-cloud-based surface reconstruction.
2 Related Work Similarly, multiple works [1, 13, 4] target a setting where
surfaces are locally reconstructed from sparse multi-view
3D representations. A large portion of single-view 3D  observations. Similar in spirit to our approach, Chibahe
reconstruction research has dealt with developing meth-al. [6] propose to extract a hierarchy of features for solving
ods that operate on different 3D representations. Thoseseveral 3D-to-3D tasks. Bautistd al. [3] locally assign
include voxels [7], octrees [30], patch-based [12] or de- features and 3D points in order to get a more expressive
formable [34] meshes, point clouds [10], nested depth intermediate shape representation. Most similar to ours
maps [27] and implicit functions [19, 11]. All these is the work from Genoveet al. [11]. Local Gaussian
pipelines effectively follow the same design: a 2D encoder regions of the input depth map are encoded and decoded
which compresses the input image into a single global la- independently. The global 3D shape results from the sum of
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Figure 2. The proposed local reconstruction module independently reconstructs the shapes of individual patches of the input in a sliding
window fashion. The resulting overlapping 3D parts are aggregated with Gaussian-weighted averaging into the nal shape estimate.

the deep local implicit functions. However, the module that across the inpudl using a stride ofst,am pixels. For each
distributes the Gaussian regions requires a global contexlpl there is a corresponding 3D volum,e ., centered at
and can break if major dataset priors, like that of having a posmon(x y; z) in the ground-truth 3D model In the gen-
single object, are violated. eral case, the shape lqgﬁy;z is a frustum determined by the
internal camera parameters, and the 3D position z de-
pends on the patch locatiéyj and the camera model. For
3. Method simplicity, we assume an orthographic camera model which
results inr,.,., being a cuboid withk = y = M 2 (0;1)

The core idea of our approach is based on two Obser'andz = 1. However, the whole setup could be extended to

vations: (1) e_ffective generalization to new classes ?‘ndsupport perspective cameras.
new con gurations reqires the recombination of partial Our local reconstruction module is an implicit function
shapes seen during training; (2) recombination of such par-, -
tial shapes requires (local) support regions of different sizes]c for example an Occupancy Networil;(ONet) which
in the input image. takes asinput a patth and some pointS iNTyy,
Although the regular encoder-decoder networks considerand outputs 3D predictions fat,,, in form of an occu-
a hierarchy of multiple receptive eld sizes when observing Pancy logit or signed distance value for every input point.
the input, they do not learn locptiors during training. This ~ ONet could be replaced by any other network that imple-
is because their loss function only considers the whole ob-MeNts animplicit function in 3D.
ject reconstruction, for which all of the input image and all ~ We extract a mesh from the occupancy logits by us-
of the ground truth shape is observed. While all the infor- iNg Marching Cubes [18] with an empirically determined
mation for recombination is available, there is nothing in the threshold as described in Occupancy Networks. We use
training procedure that requires and fosters recombination. the same procedure if the backbone network predicts SDF
For this reason, we combine multiple local reconstruc- Values, but determine a new threshold.
tion networks that only observe a cut-out part of the im- At training time, each 3D part is effectively treated as
age and the corresponding cut-out part of the ground truthan independent sample, i.e. the only difference to the orig-
shape during training. The different levels of locality yield inal ONet is in the training data. Therefore we normalize
networks that have learned more specialized (global) or lesgthe training points from the 3D part.,., to lie within
specialized (local) priors. In their combination, they enable [ 0:5;0:5] in all three dimensions. Similar to Occupancy
part recombination at all locality levels and consistency of Networks, during training, we only provide a randomly
the global shape at the same time. sampled subset of training points to the network.
During inference, the network is applied in a sliding win-
dow fashion with a 2D strids,,, such that each 3D re-
Consider a single-channel input depth nthg RW *H gion of the prediction gets updated by multiple parts. This
of width W and heightH pixels, and its corresponding €nables smoother transitions between adjacent parts. We
ground truth 3D modeD represented as a mesh with ver- fuse predictions from multiple parts together by Gaussian-
ticesVp and face$p . Following the conventional setup in  Weighted averaging of the outputs of all contributing parts
literature, we assume thBt is normalized such that it ts  in the overlapping regions.

3.1. Local Reconstruction

into a unit cube. Since we assume that the camera model is known, there
For the-th hierarchy level, we denote with 2 N the is a deterministic assignment between the predicted 3D
width and height in pixels of a square pafgh d cen- parts and their absolute locations within the unit cube of the

tered at pixel positiorfi;j ). These patches are positioned full shape. We use it to assemble a full reconstructed shape



4. Experiments

Existing approaches generalize to a certain degree to
novel instances of a category seen during training. We tar-
get the more dif cult generalization to novel categories and
novel object assemblies.

4.1. Datasets

We train our method on two different subsets of the

. . . . ShapeNet dataset [5]. (1) We report on the train split from
Figure 3. We use a hierarchy of networks operating on input 7panget al, [38] referred to asnulti-class where networks

patches of different resolutions (including the global one) to pro- are trained on planes, cars, and chairs. (2) We train on

d.uce multiple .shape reconstruction variants.. Those are fused bysha es from only a single categd(single class) These
simple averaging to yield the nal reconstruction. p .y g 9asing
training categories arehair or lamp.
We evaluate our method on individual shape categories
as suggested by Zhareg al. [38], both on the ones seen
from individual predicted parts. An example of such a re- during training, corresponding to generalization across in-
construction for patches of si2¢ = 32 and strides = 16 stances, and on those not seen during training, correspond-
is shown in Fig. 2. ing to generalization across classes.
In addition, we propose a new test set referred 0@ -
position which allows us to explicitly evaluate generaliza-
3.2. Hierarchical fusion tion to novel object arrangements. We create it by plac-
ing up to three objects into one image. We exclusively use
We train multiple local reconstruction networks, each shape instances from the ShapeNet test set. For each com-
operating on different patch sizék (includingN = W = positional image, we randomly select the shape categories.
H = 256, i.e. the full image case). In case of non- Then, we pick objects of the selected categories and modify
square input images we suggest to use zero-padding in orelevation and azimuth of their pose. Before rendering the
der to convert them into a square shape. Together the loimage with PyTorch3D [26], we shift the objects along the
cal reconstruction networks form a hierarchykoindepen-  x-axis to reduce their overlap.
dent predictions relying on priors of different locality levels 4.2 Models
* 2 f1;:::;Kgwhich we then fuse into a single nal pre-
diction. ONet. We train the original occupancy network [19] on the
ground truth depth images.
GenRe. GenRe [38] is the pioneer work for generalization
to novel categories. The GenRe network architecture con-
sists of two parts. The rst one estimates a depth map for
a given RGB image. The second one reconstructs the 3D
shape, given the depth image. We report the Chamfer dis-
Mance from their paper for reconstructions from ground truth
depth maps. For a comparison of all 13 test classes please
see the supplemental.
LDIF. LDIF [11] represents 3D shapes as multiple local im-
plicit functions and improves over ONet and GenRe, thus
being the state-of-the-art method. We use their custom data
preprocessing pipeline to train LDIF networks on single-
view perspective depth images.
ONet-SDF. We use the same training points as for Occu-
pancy Networks, but replace the binary occupancy label
with the signed distance (SDF) of each point to the mesh
More sophisticated (learned) averaging schemes are consurface. Points within the mesh have a negative distance.
ceivable, but come with the risk of over tting to the train- This also changes the training of the network from binary
ing con gurations. As we show in the experiments, already classi cation to regression. Instead of using the binary cross
simple averaging leads to consistent shapes and is free fronentropy as loss, we now use the loss. In order to ex-
a bias to the training set. tract a mesh from the SDF-values predicted by the network,

Similarly to averaging softmax outputs of overlapping
parts in the previous section, we combine predictions from
different hierarchy levels by averaging their corresponding
softmax outputs. Since individual output values correspond
to pseudo-probabilities that a certain 3D region is occupied,
averaging them already provides an automatic mechanis
to weigh the contribution of each level onto the nal fused
reconstruction. For example, in areas of the shape which
are visible in the input image where the local reconstruction
is usually more con dent, local occupancy scores dominate
those of the global one, and vice versa for invisible shape
regions. The fusion of hierarchy levels is illustrated in Fig. 3
where three hierarchy levels of differing local patch sizes
are fused to produce a single reconstruction. We call this
combination of networks acting at multiple levels of locality
Hierarchical Prior Network (HPN).
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Figure 4. Reconstruction results for unseen classes in the different generalization segfihgdetworks trained in thenulti-classsetting
(on planes, cars and chair§ight: Networks trained on lamps. More examples are provided in the Appendix.

Chair Lamp Speaker Sofa Table || Mean (unseen)| Composition
F CD# F CD# F' CD# F' CD# F CD#| F CD# F'  CD#
ONet [19] 40.8° 41 188 9.3 384 6.0 432 47 352 53 | 293 6.8 18.3 | 8.7
ONet-SDF[19] 359 46 199 85 376 58 383 51 330 56 || 286 6.6 19.3 8.0
GenRe [38] - - - 6.0* - 7.7* - 5.9* 5.7* 5.7* -

LDIFsyim 14 [11] 62.1] 0.9 208 94 229/ 52 527/ 1.3 330 33 | 321 S5 16.4 | 10.9

HPN (ours) 443 3.8 384 48 497 4.8 46.6 45 437 44 || 429 4.9 30.2 | 5.7/
HPN-SDF (ours) 53.6 3.3 565 35 494 50 544 39 531 3.7 | 482 4.6 42.4 | 3.9

ONet [19] 36.2 46 16.6 10.3 342 65 353 54 316/ 59 || 243 7.9 16.5| 9.3
LDIFsyim 14 [11] 59.2] 1.0 178 106 216/ 56 444 14 314 39 | 27.7 4.2 149 13.0

plane,car,chair

._‘CE HPN (ours) 43.0 39 402 46 48,6 4.8 444 46 442 43 || 431 4.7 312 53
°  HPN-SDF (ours) 41.2 42 436 43 488 50 438 50 442 45 | 453 4.7 317 5.2

ONet [19] 204 81 420 47 378 56 242 72 291 7.1 | 268 6.8 181 8.5
o LDIFgim1q[11] 124122 481 25 216 51 118 74 171 105 21.1 5.6 125 14.0
% HPN (ours) 424 47 503 36 532 46 452 50 471 4.7 || 471 4.7 358 5.0

HPN-SDF (ours) 41.1 4.8 484 36 515 4.6 447 50 448 48 | 46.1 4.8 339 5.2

Table 1. Comparison of the hierarchical prior network (HPN) to the state of the art in terms of generalization. The top part of the table
shows training in thenulti-classsetting, the lower part shows training on a single class. We report two metrics: F-score (F, shown in %)

and Chamfer distance (CD, multiplied by 100 for better readability). * denotes results taken from the original papdrddenotes

[11]'s data generation - a single perspective ground truth depth map. Results on categories seen during training are markdeam blue.
(unseenkhows the average of per-class scores over all 13 unseen cateGanegositiorshows results on the composition of two objects

per image. On compositions, HPN is more than twice as accurate as the state of the art and generally better on unseen classes, while LDIF
is better on seen classes. See the supplemental for more results. Best viewed in color.

we empirically determine the new thresholg = 0:02 local variants as Local@N whel¢ is the width and height
Therefore, we pick ¢ from the interval[ 1;1] with a of a local patch in pixelss.g, Local@64 for patches of size
stepsize of:1 and a smaller stepsize 6f01 in the inter- 64 64 pixels. HPN is the fused version of Global@256,
val[ 0:1;0:1]. Local@64 and Local@32. HPN-SDF is the fused version of

) ) . Global@256-SDF, Local@64 and Local@32, i.e. the SDF
HPN and Local@N.As described in Sec. 3 we design local o esentation is used for the global but not for the local
variants of the ONet and a fused variant for which different networks.

hierarchy levels are combined. In general, we refer to the
fused variant as hierarchical prior networks (HPN) and to its



4.3. Setup the mean distance. Interestingly, LDIF represents the train-
ing classes better than all other methods but completely fails
on compositional shapes. This indicates that LDIF is capa-
ble of nicely tting the training data which is not useful
when generalization is required. The use of signed distance
functions yields more detailed reconstructions in conjunc-
tion with our hierarchical prior network (HPN-SDF), lead-
ing to best scores in thaulti-classsetting.

All approaches achieve consistently better scores on
the unseen categories than on the new compositional test
Sqataset. We conclude that the compositional setting is more
dif cult. One reason might be that one shape occludes the
other, which requires to reconstruct the front side of the oc-
cluding shape (bookshelf), and the backside of the occluded
shape (chair); see Fig. 4.

Training. All networks were trained using the ADAM op-
timizer [15] with the same optimization settings as used for
the Occupancy Network [19]. We trained all networks until
convergence. Similar to Occupancy Networks, during train-
ing, we only provide a randomly sampled subsetl5600
training points to our local networks.
Evaluation metrics. We report quantitative results for two
widely used 3D reconstruction metrics: F-score [16] and
Chamfer distance (CD) [2]. The two scores highlight dif-
ferent aspects of the reconstruction, as the F-score is robu
to outliers (large deviations) and CD is not. We further dis-
cuss this point in Sec. 4.5. For completeness, we list the
loU values in the supplemental.

As part of our analysis, we additionally report F-score
and Chamfer distance for the parts of the 3D shape that areq 5. Analysis
visible from the input image and the parts that are invisi-
ble (self occluded) from the input image. In order to deter- 4.5.1  Different hierarchy levels
mine the visibility label, we project a set of points from the \yq jnestigated the reconstruction by individual local net-
ground truth mesh into the depth image and check, whether, o s and how they contribute to the full hierarchical re-
they coincide with the respective depth value (visible) or are construction. Fig. 5 shows an example and Tbl. 2 reports
larger than the respective depth value (invisible). We do thistest set scores on the full shape, as well as the visible and
for all test shapes, s.t. during evaluation we can look up the isiple parts of it. All models are trained on chairs and
visibility label and compute the metrics separately. evaluated on the other categories. In visible areas, the lo-
Implementation. All the networks are implemented in Py- 5 hatworks reconstruct details much better than the global
Torch [24]. For visualizing qualitative examples, we used network, which highlights the problem that global priors in-
the Open3D [39] framework. terfere with the measurements in these areas. Local net-
4.4. Results works with the smallest patch size (16 and 32) are particu-

larly noisy in the invisible areas. Surprisingly, local models

Fig. 4 shows the drastically improved generalization t0 ith |arger patch size also perform a bit better (on average)
new shape classes and shape con gurations compared t¢, the invisible areas. This supports our recombination idea
the state of the art. None of the networks has seen suchyng indicates that explaining even the invisible shape re-

categories during training, but thanks to the ability to exi- gions with a collection of local priors may have advantages
bly recombine training parts, the hierarchical prior can also gyer ysing a single global one.

reconstruct completely new shapes in a reasonable quality.

This also includes the composition of two objects, which = Visible Invisible
was never observed during training. In contrast, the plain F* CD# F' | CD# F' |CD#
ONet model is bound to the most similar global shapes dur- Global@256 (ONet) 235 7.7 286 64 227 7.7
ing training, which is insuf cient in all these examples. Re- _ Local@128 8.5 575 N 271
) . . . . 5 Local@64 420 49 673 22 273 64
membering the nice-looking reconstrucnonsfrom I|t_erature, 5 Local@32 375 58 547 29 281 74
one should be aware that these were obtained via largely  Loca@16 36.6 6.7 57.8 32 245 87
overlapping training and test sets. HPN@(256+32) 357l 40.5 Rl 26.3 QR
o _ HPN@(256+64) 382 49 567 28 274 6.1

Although the effect of the local recombination prInCIpIe HPN@(256+64+32) 397 47 576 26 298 57

is already evident and indisputable from just the visual im- HPN@(256+128+64+32+16) 42 44 617 24 304 56

pression, Tbl. 1 also quanti es this effect. In all train-test

con gurations HPN outperforms the baselines and the pre- tiple hierarchy levels trained on the category chair and evaluated

vious state of the art in generalization. ,The performance on all unseen categories. We report the F-score and the CD for the
almost doubles on unseen classes, both in terms of F-Scorg) shape (Full), the visible and the invisible parts of it.

and Chamfer distance, in comparison to ONet. It also sig-

ni cantly improves over LDIF in terms of F-Score. For

Chamfer distance, LDIF is competitive with HPN. We hy- The best reconstruction scores are achieved when
pothesize that this happens because for some shapes our l@ombining all available sources of information:
cal networks produce outliers which have a large impact onHPN@(256+128+64+32+16) works better than any

Table 2. Mean F-score (F) ar Chamfer distance (CD) for mul-
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