
IJCV VISI manuscript No.
(will be inserted by the editor)

DeepTAM: Deep Tracking and Mapping with Convolutional
Neural Networks

Huizhong Zhou*,1 Benjamin Ummenhofer*,2 Thomas Brox1

Received: 31 January 2019 / Accepted: 26 August 2019

Abstract We present a system for dense keyframe-

based camera tracking and depth map estimation that

is entirely learned. For tracking, we estimate small pose

increments between the current camera image and a

synthetic viewpoint. This formulation significantly simp-

lifies the learning problem and alleviates the dataset

bias for camera motions. Further, we show that generat-

ing a large number of pose hypotheses leads to more ac-

curate predictions. For mapping, we accumulate infor-

mation in a cost volume centered at the current depth

estimate. The mapping network then combines the cost

volume and the keyframe image to update the depth

prediction, thereby effectively making use of depth mea-

surements and image-based priors. Our approach yields

state-of-the-art results with few images and is robust

with respect to noisy camera poses.

We demonstrate that the performance of our 6 DOF

tracking competes with RGB-D tracking algorithms.We

compare favorably against strong classic and deep learn-

ing powered dense depth algorithms.

*Equal contribution.
This project was in large parts funded by the EU Horizon
2020 project Trimbot2020. We also thank the bwHPC initia-
tive for computing resources, Facebook for their P100 server
donation and gift funding.

Huizhong Zhou
zhouh@cs.uni-freiburg.de

Benjamin Ummenhofer
benjamin.ummenhofer@intel.com

Thomas Brox
brox@cs.uni-freiburg.de

1 University of Freiburg
2 Intel Labs

1 Introduction

In contrast to recognition, there is limited work on ap-

plying deep learning to camera tracking or 3D map-

ping tasks. This is because, in contrast to recognition,

the field of 3D mapping is already in possession of very

good solutions. Nonetheless, learning approaches have

much to offer for camera tracking and 3D mapping. On

the limited number of subtasks, where deep learning has

been applied, it has outperformed classical techniques:

on disparity estimation all leading approaches are based

on deep networks, and the first work on dense motion

stereo (Ummenhofer et al, 2017) immediately achieved

state-of-the-art performance on this task.

In this work, we extend the domain of learning-

based mapping approaches further towards full-scale

SLAM systems. We present a deep learning approach

for the two most important components in visual SLAM:

camera pose tracking, and dense mapping.

The main contribution of the paper is a learned

tracking network and a mapping network, which gener-

alize well to new datasets and outperform strong com-

peting algorithms. This is achieved by the following key

components:

– a tracking network architecture for incremental frame

to keyframe tracking designed to reduce the dataset

bias problem.

– a multiple hypothesis approach for camera poses

which leads to more accurate pose estimation.

– a mapping network architecture that combines depth

measurements with image-based priors, which is highly

robust and yields accurate depth maps.

– an efficient depth refinement strategy combining a

network with the narrow band technique.

2 Huizhong Zhou*,1 Benjamin Ummenhofer*,2 Thomas Brox1

The most related classical approach is DTAM (New-

combe et al, 2011), which stands for Dense Tracking

And Mapping. Conceptually we follow a very similar

approach, except that we formulate it as a learning

problem. Consequently, we call our approach DeepTAM.

For tracking, DeepTAM uses a neural network for

aligning the current camera image to a keyframe–color

and depth image–to infer the camera pose. To this end

we use a small and fast stack of networks which imple-

ment a coarse-to-fine approach. The network stack in-

crementally refines the estimated camera pose. In each

step we update a virtual keyframe, thereby improving

convergence of the predicted camera pose. This incre-

mental formulation significantly simplifies the learning

task and reduces the effects of dataset bias. In addition,

we show that generating a large number of hypotheses

improves the pose accuracy.

Our mapping network is built upon the plane sweep

stereo idea (Collins, 1996). We first accumulate infor-

mation from multiple images in a cost volume, then

extract the depth map using a deep network by com-

bining image-based priors with the accumulated depth

measurements. To further improve the depth predic-

tion we append a network, which iteratively refines the

prediction using a cost volume defined on a narrow

band around the previous surface estimate. The ob-

tained depth can be a valuable cue for many vision

tasks, e.g. object localization (Song and Chandraker,

2015; Dhiman et al, 2016), scene understanding (Gupta

et al, 2013, 2015), image dehazing (Fattal, 2008; Zhang

and Patel, 2018a,b).

As a learning approach, DeepTAM is very good at

integrating various cues and learning implicit priors

about the used camera. This is in contrast to classic

approaches which fundamentally rely on handcrafted

features like SIFT (Lowe, 2004) and photoconsistency

maximization. A well known problem of learning-based

approaches is overfitting, and we took special care in

the design of the architecture and the definition of the

learning problem so that the network cannot learn sim-

ple shortcuts that would not generalize.

As a consequence, DeepTAM generalizes well to new

datasets and is the first learned approach with full 6

DOF keyframe pose tracking and dense mapping. On

standard benchmarks, it compares favorably to state-

of-the-art RGB-D tracking, while using less data. Deep-

TAM employs dense mapping that can process arbi-

trary many frames and runs at interactive frame rates.

2 Related work

The most related work is DTAM (Newcombe et al,

2011). We build on the same generic idea: drift-free

camera pose tracking via a dense depth map towards

a keyframe and aggregation of depth over time. How-

ever, we use completely different technology to imple-

ment this concept. In particular, both the tracking and

the mapping are implemented by deep networks, which

solely learn the task from data.

Most related with regard to the learning methodol-

ogy is DeMoN (Ummenhofer et al, 2017), which imple-

ments 6 DOF egomotion and depth estimation for two

images as a learning problem. In contrast to DeMoN,

we process more than two images. We avoid drift by

the use of keyframes, and we can refine the depth map

as more frames are coming in.

A few more works based on deep learning have ap-

peared recently that have a weak connection to the

present work. Weerasekera et al (2018) and Weerasekera

et al (2017) present a dense monocular reconstruction

framework which uses convolutional neural networks to

extract visual features that are best suited for the re-

construction. Agrawal et al (2015) trains a neural net-

work to estimate the egomotion, which mainly serves as

a supervision for feature learning. Kendall and Cipolla

(2017) apply deep learning to the camera localization

task and Valada et al (2018) show that the visual local-

ization and odometry can be solved jointly within one

network. DeepVO (Wang et al, 2017) runs a deep net-

work for visual odometry, i.e., regressing the egomotion

between two frames. There is no mapping part, and the

egomotion estimation only works for environments seen

during training. Zhou et al (2017) and Zhan et al (2018)

presented a deep network for egomotion and depth es-

timation that can be trained with an unsupervised loss.

The approach uses two images for depth estimation dur-
ing training. However, it ignores the second image when

estimating the depth at runtime, hence ignoring the mo-

tion parallax. SfM-Net (Vijayanarasimhan et al, 2017),

too, uses unsupervised learning ideas, and (despite its

title) does not use the motion parallax for depth estima-

tion. UnDeepVO (Li et al, 2018) proposed egomotion

estimation and depth estimation again based on an un-

supervised loss. All these works are like DeMoN limited

to the joint processing of two frames and limited to the

motions present in the datasets.

Training and experiments in most of these previous

works (Zhou et al, 2017; Wang et al, 2017; Li et al,

2018) focus on the KITTI dataset (Geiger et al, 2012).

These driving scenarios mostly show 3 DOF motion in

a plane, which is induced by a 2 DOF action space (ac-

celerate/brake, steer left/steer right). In particular the

hard ambiguities between camera translation and rota-

tion do not exist, since the car cannot move sideward.

In contrast, the present work yields full 6 DOF pose

DeepTAM: Deep Tracking and Mapping with Convolutional Neural Networks 3

tracking, can handle these ambiguities, and we evalu-

ate on a 6 DOF benchmark.

We cannot cover the full literature on classical track-

ing and mapping techniques, but there are some related

works besides DTAM (Newcombe et al, 2011) that are

worth mentioning. LSD-SLAM (Engel et al, 2014) is a

state-of-the-art SLAM approach that uses direct mea-

sures for optimization. It provides a full SLAM pipeline

with loop closing. In contrast to DTAM and our ap-

proach, LSD-SLAM only yields sparse depth estimates.

Engel et al (2018) propose a sparse direct approach.

They show that integrating a sophisticated model of the

image formation process significantly improves the ac-

curacy. For our learning-based approach, accounting for

the characteristics of the imaging process is covered by

the training process. Similarly, Kerl et al (2013b) care-

fully model the noise distribution to improve robust-

ness. Again, this comes for free in a learning-based ap-

proach. CNN-SLAM (Tateno et al, 2017) extends LSD-

SLAM with single image depth maps. In contrast to

our approach, tracking and mapping are not coupled

in a dense manner. In particular, the tracking uses a

semi-dense subset of the depth map.

This paper is an extended version of the published

work (Zhou et al, 2018). We extend our previous work

by a thorough ablation study and cross-dataset evalu-

ation. We analyze the design of our tracking and map-

ping module in more detail. In addition, to validate

our generalization ability we perform a series of cross-

dataset experiments. We show that our system can achieve

state-of-the-art comparable performance by training only

on the synthetic datasets and we can achieve higher ac-

curacy with the help of real datasets. Besides, we evalu-

ate our methods on KITTI (Geiger et al, 2012) without

any finetuning.

3 System Overview

Similar as in existing SLAM methods like (Klein and

Murray, 2007; Newcombe et al, 2011; Engel et al, 2014),

we separate the tasks of tracking and mapping into two

components. Both components are mutually dependent

on each other and require the output of the respective

other component. The tracking component computes

the current camera pose with respect to a keyframe,

which is a part of the map, by aligning the current cam-

era image with the keyframe. The mapping component

consumes the current camera pose and camera image

to update the depth map associated with the keyframe.

This separation of tasks provides us with the flexibility

at runtime to run the two components at different up-

date rates, i.e. we can compute the camera pose for each

frame but collect data for the keyframe update over

multiple frames. Further, it allows to train networks for

both components in parallel. In the following we present

the design of both components and details about the

training procedure. We also release our source code at

https://github.com/lmb-freiburg/deeptam.

4 Tracking

Given the current camera image IC and a keyframe,

which consists of an image IK and an inverse depth

map DK , we want to estimate the 4×4 transformation

matrix TKC that maps a point in the keyframe coor-

dinate system to the coordinate system of the current

camera frame. The keyframe pose TK and the current

camera pose TC are related by

TC = TKTKC , with TC ,TK ,TKC ∈ SE(3). (1)

Learning to compute TKC is related to finding 2D-

3D correspondences between the current image IC and

the keyframe (IK ,DK). It is well known that the corre-

spondence problem can be solved more efficiently and

reliably if pixel displacements between image pairs are

small. Since we want to track the current camera pose

at interactive rates, we assume that a guess TV close

to TC is available. Similar to DTAM (Newcombe et al,

2011), we generate a virtual keyframe (IV ,DV) that

shows the content of the keyframe (IK ,DK) from a

viewpoint corresponding to TV . Instead of directly es-

timating TKC , we learn to predict the increment δT,

i.e., we write the current camera pose as

TC = TV δT. (2)

This effectively reduces the problem to learning the

function δT = f(IC , IV ,DV). We use a deep network

to learn f .

4.1 Network Architecture

We use the encoder-decoder-based architecture shown

in Fig. 1 for learning to estimate the 6 DOF pose be-

tween a keyframe (IK ,DK) and an image IC . A detailed

description of all network parameters can be found in

the supplementary material.

Since camera motion can only be estimated by re-

lating the keyframe to the current image, we make use

of optical flow as an auxiliary task. The predicted opti-

cal flow ensures that the network learns to exploit the

relationship between both frames. We demonstrate the

importance of the flow prediction in Tab. 1. We use the

features shared with the optical flow prediction task in

a second network branch for generating pose hypothe-

ses. As we show in the experiments (Tab. 1), generating

https://github.com/lmb-freiburg/deeptam

4 Huizhong Zhou*,1 Benjamin Ummenhofer*,2 Thomas Brox1

multiple hypotheses improves the accuracy of the pre-

dicted pose compared to direct prediction of the pose.

The last part of the pose generation consists of N =

64 branches of stacked fully connected layers sharing

their weights. We found that this configuration is more

stable and accurate than a single branch of fully con-

nected layers computing N poses. Each generated pose

hypothesis is a 6D pose vector δξi = (ri, ti)
>. The 3D

rotation vector ri is a minimal angle axis representa-

tion with the angle encoded as the magnitude of the

vector. The translation ti is encoded in 3D Cartesian

coordinates. For simplicity, and because δξi are small

rigid body motions, we compute the final pose estimate

δξ as the linear combination

δξ =
1

N

N=64∑
i=1

δξi. (3)

Coarse camera motions are already visible at small

image resolutions, while small motions require higher

image resolutions. Thus, we use a coarse-to-fine strat-

egy to efficiently track the camera in real time. We train

three distinct tracking networks as shown in Fig. 2,

which deal with the pose estimation problem at dif-

ferent resolutions and refine the prediction of the re-

spective previous resolution level.

4.2 Training

A major problem of learning-based approaches is the

strong dependency on suitable datasets. Datasets often

do not cover all important modes, which complicates

generalization to new data. An example is the KITTI

dataset for autonomous driving (Geiger et al, 2012),

which is limited to motion in a plane and does not cover

full 6 DOF motion. As a consequence, learning-based

methods easily overfit to this type of motion and do

not generalize. Artificial data can be used to alleviate

this problem, but it is not trivial to generate realistic

imagery with ground truth depth.

We tackle this problem in two ways. First by using

the incremental formulation in (2), i.e., we estimate a

small increment δT instead of the absolute motion be-

tween keyframe and current camera image. This reduces

the magnitude of motion and reduces the difficulty of

the task. Second, we use rendered images and depth

maps as a proxy for real keyframes. Given a keyframe

(IK ,DK), we sample the initial pose guess TV
0 from a

normal distribution centered at the ground truth pose

TC to generate the virtual frame (IV ,DV). This simu-

lates all possible 6 DOF motions and, thus, effectively

augments the data to overcome the limited set of mo-

tions in the dataset.

4.2.1 Datasets

We train on image pairs from the SUN3D dataset (Xiao

et al, 2013) and the SUNCG dataset (Song et al, 2017).

For SUN3D we sample image pairs with a baseline of up

to 40cm. For SUNCG we generate images with normally

distributed baselines with standard deviation 15cm and

rotation angles with standard deviation 0.15 radians.

When sampling an image pair we reject samples with

an image overlap of less than 50%. For keyframe depth

maps DK , we use the ground truth depth from the

datasets during training.

4.2.2 Training Objective

The objective function for the tracking network is

Ltracking = Lflow(w) + Lmotion(δξ) + Luncertainty(δξi).

(4)

The predicted optical flow w and the predicted poses

δξi are the network’s outputs.

The loss Lflow defines the auxiliary optical flow task.

We use the endpoint error

Lflow =
∑
i,j

‖w(i, j)−wgt(i, j)‖2 , (5)

which is a common error metric for optical flow.

The two losses Lmotion and Luncertainty for the gen-

eration of pose hypotheses are defined as:

Lmotion = α ‖r− rgt‖2 + ‖t− tgt‖2 , and (6)

Luncertainty =
1

2
log (|Σ|)− 2 log

(
x>Σ−1x

2

)
− log

(
Kv

(√
2x>Σ−1x

))
.

(7)

The vectors r and t are the rotation and translation

parts of the linear combination δξ defined in (3). We

use the parameter α = 3
2 to balance the importance of

both components. We combine this loss, which directly

acts on the predicted average motion, with Luncertainty,

which is the negative log-likelihood of the multivariate

Laplace distribution. We compute Σ from the predicted

pose samples as Σ = 1
N

∑N
i (δξi − δξ)(δξi − δξ)>, and

the vector x as x = δξ − δξgt. During optimization we

treat x as a constant and we regularize Σ by adding

a diagonal matrix εI, where ε takes the value of 0.1.

The function Kv is the modified Bessel function of the

second kind. We empirically found that a loss based

on the multivariate Laplace distribution yields better

results than the multivariate Normal distribution. The

uncertainty loss pushes the network to predict distinct

poses δξi.

DeepTAM: Deep Tracking and Mapping with Convolutional Neural Networks 5

Fig. 1 The tracking network uses an encoder-decoder type architecture with direct connections between the encoding and
decoding part. The decoder is used by two tasks, which are optical flow prediction and the generation of pose hypotheses. The
optical flow prediction is a small stack of two convolution layers and is only active during training to stimulate the generation
of motion features. The pose hypotheses generation part is a stack of downsampling convolution layers followed by a fully
connected layer whose output we split into N = 64 chunks, which are then processed by fully connected layers with shared
parameters to estimate the δξi. Along with the current camera image IC we provide a virtual keyframe (IV ,DV) as input for
the network, which is rendered using the active keyframe (IK ,DK) and the current pose estimate TV . We stack the depicted
network architecture three times with each instance operating at a different resolution as shown in Fig. 2.

Fig. 2 Overview of the tracking networks and the incremental pose estimation. We apply a coarse-to-fine approach to
efficiently estimate the current camera pose. We train three tracking networks each specialized for a distinct resolution level
corresponding to the input image dimensions (80× 60), (160× 120) and (320× 240). Each network computes a pose estimate
δTi with respect to a guess TV

i . The guess TV
0 is the camera pose from the previously tracked frame. Each of the tracking

networks uses the latest pose guess to generate a virtual keyframe at the respective resolution level and thereby indirectly
tracking the camera with respect to the original keyframe (IK ,DK). The final pose estimate T̂C is computed as the product
of all incremental pose updates δTi.

We optimize using Adam (Kingma and Ba, 2015)

with the learning rate schedule proposed in (Loshchilov

and Hutter, 2017). We implement and train the net-

works with Tensorflow (Abadi et al, 2015). Training the

tracking network takes less than a day on an NVIDIA

GTX1080Ti. We provide the detailed training parame-

ters in the supplementary material.

5 Mapping

We describe the geometry of a scene as a set of depth

maps, which we compute for every keyframe. To achieve

high quality depth maps we accumulate information

from multiple images in a cost volume. The depth map

is then extracted from the cost volume by means of a

convolutional neural network.

Let C be the cost volume and C(x, d) the photo-

consistency cost for a pixel x at depth label d ∈ Bfb.

We define the set of N depth labels for a fixed range

[dmin, dmax] as

Bfb = {bi|bi = dmin + i · dmax−dmin

N−1 , i = 0, 1, ..., N − 1}.
(8)

Given a sequence of m images I1, .., Im along with

their camera poses T1, ..,Tm, we compute the photo-

consistency costs as

C(x, d) =
∑

i∈{1,..,m}

ρi(x, d) · wi(x). (9)

The photoconsistency ρi(x, d) is the sum of absolute

differences (SAD) of 3×3 patches between the keyframe

image IK and the warped image Ĩi at point x for depth

d. We obtain Ĩi using a warping function

Ĩi =W(Ii,Ti(T
K)−1, d), (10)

6 Huizhong Zhou*,1 Benjamin Ummenhofer*,2 Thomas Brox1

which warps the image Ii to the keyframe using the

relative pose and the depth.

The weighting factor wi is then computed as

wi(x) = 1− 1

N − 1

∑
d∈Bfb\{d∗}

e−ν·(ρi(x,d)−ρi(x,d∗))2 .

(11)

wi describes the matching confidence and is close to 1

if there is a clear and unique minimum ρi(x, d
∗) with

d∗ = arg mind ρi(x, d). The scalar parameter ν is set to

10 in all experiments.

In classic methods the cost volume is taken as data

term and a depth map can be obtained by searching for

the minimum cost. However, due to noise in the cost

volume, various sophisticated regularization terms and

optimization techniques have been introduced (Hosni

et al, 2013; Hirschmüller, 2005; Felzenszwalb and Hut-

tenlocher, 2006) to extract the depth in a robust man-

ner. Instead, we train a network to use the matching

cost information in the cost volume and simultaneously

combine it with the image-based scene priors to obtain

more accurate and more robust depth estimates.

For cost-volume-based methods, accuracy is limited

by the number of depth labels N . Hence, we use an

adaptive narrow band strategy to increase the sampling

density while keeping the number of labels constant. We

define the narrow band of depth labels centered at the

previous depth estimate dprev as

Bnb = {bi|bi = dprev + i · σnb · dprev, i = −N2 , ...,
N−2

2 }.
(12)

σnb determines the narrow band width. We recompute

the cost volume for the narrow band for a small selec-

tion of frames and search again for a better depth esti-

mate. The narrow band allows us to recover more de-

tails in the depth map, but also requires a good initial-

ization and regularization to keep the band in the right

place. We address these tasks using multiple encoder-

decoder type networks. Fig. 3 shows an overview of the

mapping architecture with the fixed band and narrow

band stage.

5.1 Network Architecture

The network is trained to predict the keyframe inverse

depth DK from the keyframe image IK and the cost

volume C computed from a set of images I1, ..., Im and

camera poses T1, ...,Tm. DK is represented as inverse

depth, which enables a more precise representation with

closer distance. We apply a coarse-to-fine strategy along

the depth axis. Thus, the mapping is divided into a

fixed band module and a narrow band module. The

fixed band module builds the cost volume Cfb with

depth labels evenly spaced in the whole depth range,

while the narrow band cost volume Cnb centers at the

current depth estimation and accumulates information

in a small band close to the estimate.

The fixed band module regresses an interpolation

factor between the minimum and maximum depth label

as output. As a consequence, the network cannot reason

about the absolute scale of the scenes, which helps to

make the network more flexible and generalize better.

Unlike the fixed band, which contains a set of fronto-

parallel planes as depth labels, the discrete labels of

the narrow band are individual for each pixel. Predict-

ing interpolation factors is not appropriate, since the

network in the narrow band module has no knowledge

of the band’s shape. We intentionally do not provide

the narrow band network with the band shape (i.e. the

depth value for which each depth label stands), because

the network tends to overfit to this straight-forward

cue and ignores the cost information in the cost vol-

ume. However, the absence of the band shape makes

the depth regularization difficult which can be observed

in Fig. 4. Therefore we append another refine network,

which focuses on the problem of depth regularization.

Both networks together can be understood as solving

alternatingly the data and smoothness terms of a vari-

ational approach. The detailed architecture is shown in

Fig. 3.

5.2 Training

We train our mapping networks from scratch using Adam

(Kingma and Ba, 2015) and the Tensorflow framework

(Abadi et al, 2015). Our training procedure consists of

multiple stages. We first train the fixed band module

with subsampled video sequences of length 8. Then we

fix the parameters and sequentially add the two nar-

row band encoder-decoder pairs to the training. In the

last stage we unroll the narrow band network to sim-

ulate 3 iterations and train all parts jointly. Training

the mapping networks takes about 8 days in total on

an NVIDIA GTX 1080Ti.

5.2.1 Datasets

We train our mapping networks on various datasets to

avoid overfitting. SUN3D (Xiao et al, 2013) has a large

variety of indoor scenes. For ground truth we take the

improved Kinect depths with multi-frame TSDF fill-

ing. SUNCG (Song et al, 2017) is a synthetic dataset of

3D scenes with realistic scene scale. We render SUNCG

to obtain a sequence of data by randomly sampling

from SUN3D pose trajectories. In addition to SUNCG

DeepTAM: Deep Tracking and Mapping with Convolutional Neural Networks 7

Fig. 3 Mapping networks overview. Mapping consists of a fixed band module and a narrow band module, which is based on
an encoder-decoder architecture. Fixed band module: This module takes the keyframe image IK (320×240×3) and the cost
volume Cfb (320× 240× 32) generated with 32 depth labels equally spaced in the range [0.01, 2.5] as inputs and outputs an
interpolation factor sfb (320× 240× 1). The fixed band depth estimation is computed as Dfb = (1− sfb) · dmin + sfb · dmax.
Narrow band module: The narrow band module is run iteratively; in each iteration we build a cost volume Cnb from
a set of depth labels distributed around the current depth estimation with a band width σnb of 0.0125. It consists of two
encoder-decoder pairs. The first pair gets the cost volume Cnb (320× 240× 32) and the keyframe image IK (320× 240× 3) as
inputs and generates a learned cost volume Cnb learn (320× 240× 32). The depth map is then obtained using a differentiable
soft argmin operation (Kendall et al, 2017): Dnb1 =

∑
d∈Bnb

Bnb × softmax(−Cnb learn). The second encoder-decoder pair

gets the current depth estimation Dnb1 and the keyframe image IK and produces a refined depth Dnb2.

Keyframe w/o refine

w/ refine GT

Fig. 4 Effects of the narrow band refinement. We apply the
narrow band module for 15 iterations with and without refine-
ment. Without the refinement, the module lacks the knowl-
edge of the band shape and it can only make updates based
on the measurements in the cost volume. This can help in
capturing more details, but also causes strong artifacts. Ap-
pending a refinement network with previous depth estimation
as input allows for a better regularized and more stable depth
estimation.

and SUN3D, we generate a dataset–in the following

called MVS–with the COLMAP structure from motion

pipeline (Schönberger and Frahm, 2016; Schönberger

et al, 2016). MVS contains both indoor and outdoor

scenes and was captured at full image and temporal res-

olution (2704 × 1520@50Hz) with a wide-angle GoPro

camera. For training we downsample to (320×240) and

use every third frame. We manually remove sequences

where the reconstruction failed.

During training we use the (pseudo) ground truth

camera poses from the datasets to construct the cost

volume.

5.2.2 Training Objective

We use a simple L1 loss on the inverse depth maps

Ldepth = |D−Dgt| and the scale invariant gradient loss

proposed in (Ummenhofer et al, 2017):

Lsc-inv-grad =
∑

h∈{1,2,4}

∑
i,j

‖gh[D](i, j)− gh[Dgt](i, j)‖2 ,

(13)

where

gh[D](i, j) =
(

D(i+h,j)−D(i,j)
|D(i+h,j)|+|D(i,j)| ,

D(i,j+h)−D(i,j)
|D(i,j+h)|+|D(i,j)|

)>
.

(14)

gh[D](i, j) and gh[Dgt](i, j) are gradient images of the

predicted and the ground truth depth map that em-

phasize discontinuities. h is the step in the difference

operator gh.

6 Experiments

6.1 Tracking evaluation

Tab. 1 shows the performance of our tracking network

on the RGB-D benchmark (Sturm et al, 2012). The

benchmark provides images and depth maps with ac-

curate ground truth poses obtained from an external

multi-camera tracking system.

8 Huizhong Zhou*,1 Benjamin Ummenhofer*,2 Thomas Brox1

We use the depth maps from the dataset during

keyframe generation to measure the isolated tracking

performance of our approach (left part of Tab. 1). We

compare against the keyframe odometry component of

the RGB-D SLAM method of Kerl et al (2013a). Their

method uses the full color and depth information –for

both keyframe and current frame– to compute the pose,

while our method only uses the depth information from

the dataset for the keyframes. During testing we gener-

ate a new keyframe if the rotational distance exceeds a

threshold of 6 degrees or translational distance exceeds

a 15cm threshold. The number of generated keyframes

is similar to the number of keyframes reported in (Kerl

et al, 2013a) for RGB-D SLAM.

Tab. 1 shows that our learning-based approach out-

performs a state-of-the-art RGB-D method on most of

the sequences, despite using less information. The re-

sults show also the generalization capabilities as we did

not train or finetune on any sequences of the bench-

mark.

6.2 Mapping evaluation

For evaluating the mapping performance we use the

following error metrics:

sc-inv(D,Dgt) =

√
1
n

∑
i,j E(i, j)2 − 1

n2

(∑
i,j E(i, j)

)2

,

(15)

where E(i, j) = log D(i, j) − log Dgt(i, j) and n is the

number of pixels,

L1-rel(D,Dgt) = 1
n

∑
i
|D(i,j)−Dgt(i,j)|

Dgt(i,j)
and (16)

L1-inv(D,Dgt) = 1
n

∑
i

∣∣∣ 1
D(i,j) −

1
Dgt(i,j)

∣∣∣ . (17)

sc-inv is a scale invariant metric introduced in (Eigen

et al, 2014). The L1-rel metric normalizes the depth er-

ror with respect to the ground truth depth value. L1-inv

gives more importance to close depth values by com-

puting the absolute difference of the reciprocal of the

depth values. This metric also reflects the increasing

uncertainty in the depth computation with increasing

distance to the camera.

We evaluate our fixed band module and narrow band

module quantitatively in Tab. 2. The results show that

the fixed band module is able to exploit the accumu-

lated information from multiple frames leading to bet-

ter depth estimates. While this behaviour is taken for

granted for traditional methods, this is not necessarily

the case for learning-based methods. The same holds for

iterative processes like the narrow band module. Run-

ning the narrow band module iteratively improves the

depth estimates. We can show this quantitatively in

Tab. 2 and qualitatively in Fig. 5.

We also compare our mapping against the state-of-

the-art deep learning approach DeMoN (Ummenhofer

et al, 2017) and two strong classic dense mapping meth-

ods DTAM (Newcombe et al, 2011) and Semi-Global

Matching (SGM) (Hirschmüller, 2005). We use the pub-

licly available reimplementation OpenDTAM1 and our

own implementation of SGM with 16 directions. For

DTAM, SGM and DeepTAM we construct a cost vol-

ume with 32 labels at the resolution of 320 × 240. We

use SAD as photo-consistency measure and accumulate

the information of video sequences of length 10. We use

the same pseudo camera pose ground truth from the

datasets for a fair comparison. For DeMoN –which is

limited to two images– we give the first and last frame

from the sequence to provide enough motion parallax.

As shown in Tab. 2 our method achieves the best

performance on all metrics and test sets. All classic

methods tend to suffer from weakly-textured scenes which

occur quite often in the indoor datasets and synthetic

datasets. However, we are less affected by this prob-

lem by means of leveraging matching cost information

together with scene priors via a neural network. This

is again supported by the qualitative comparison in

Fig. 6. In addition, the mapping performance of all the

classic cost-volume-based methods is prone to noisy

camera pose while our method is more robust, which

is demonstrated in Fig. 7. More qualitative examples

can be found in the supplemental video.

In the right part of Tab. 1 we compare our combined

tracking and mapping against CNN-SLAM (Tateno et al,

2017) without pose graph optimization. CNN-SLAM

uses a semi-dense photoconsistency optimization ap-

proach for computing camera poses and uncertainty-

based depth update. We did not train on the RGB-D

benchmark datasets (Sturm et al, 2012). Our learned

dense tracking and mapping generalizes well and proves

to be more robust and accurate on the majority of se-

quences. While it performs clearly worse on fr1/plant

it seldomly fails and overall yields more reliable trajec-

tories.

6.3 Ablation study

We justify our design choices with the ablation studies

in Tab. 3, Tab. 4 and Fig. 9.

Tab. 3 shows results on the RGB-D benchmark for

different versions of the tracking network. We test the

network without the auxiliary optical flow task, with-

out generation of multiple hypotheses and with features

1 https://github.com/magican/OpenDTAM.git
SHA: 1f92a54334c233f9c4ce7d8cbaf9a81dee5e69a6

https://github.com/magican/OpenDTAM.git

DeepTAM: Deep Tracking and Mapping with Convolutional Neural Networks 9

Table 1 Evaluation of our tracking (left part) and the combined mapping and tracking (right part) on the validation sets of
RGB-D benchmark (Sturm et al, 2012).

Tracking Tracking and mapping

Sequence
RGB-D SLAM

Ours
CNN-SLAM*

Ours
Kerl et al (2013a) Tateno et al (2017)

fr1/360 0.125 0.054 0.500 0.116
fr1/desk 0.037 0.027 0.095 0.078
fr1/desk2 0.020 0.017 0.115 0.055
fr1/plant 0.062 0.057 0.150 0.165
fr1/room 0.042 0.039 0.445 0.084
fr1/rpy 0.082 0.065 0.261 0.052
fr1/xzy 0.051 0.019 0.206 0.054

average 0.060 0.040 0.253 0.086

The values describe the translational RMSE in [m/s]. Tracking: We compare the performance of our tracking network against
the RGB-D SLAM method of Kerl et al (2013a). Numbers for (Kerl et al, 2013a) correspond to the frame-to-keyframe odometry
evaluation and have been copied from their paper. Kerl et al (2013a) use the camera image and the depth stream for computing
the poses, while our approach uses the depth stream only for keyframes and is limited to photometric alignment. Ours uses
optical flow to learn motion features and predicts multiple pose hypotheses. We use the mean as the final pose estimate.
Tracking and mapping: We compare our tracking and mapping against CNN-SLAM by Tateno et al (2017). * For a fair
comparison CNN-SLAM is run without pose graph optimization. To avoid a bias in the initialization Ours uses the depth
prediction from CNN-SLAM for the first frame of each sequence and then switches to our combined tracking and mapping.

Table 2 Keyframe depth map errors on the test split of our training data sets.

Fixed band Narrow band Mapping comparison

2frames 6frames 10frames 1iter 3iters 5iters SGM DTAM DeMoN Ours

SUN3D
L1-inv 0.117 0.085 0.083 0.076 0.065 0.064 0.210 0.197 - 0.064
L1-rel 0.239 0.163 0.159 0.142 0.113 0.111 0.423 0.412 - 0.111
sc-inv 0.193 0.160 0.159 0.156 0.132 0.130 0.374 0.340 0.146 0.130

MVS
L1-inv 0.075 0.065 0.067 0.048 0.033 0.029 0.086 0.059 - 0.029
L1-rel 0.439 0.418 0.423 0.329 0.200 0.154 0.557 0.240 - 0.154
sc-inv 0.213 0.199 0.200 0.182 0.144 0.135 0.305 0.246 0.251 0.135

SUNCG
L1-inv 0.097 0.067 0.065 0.050 0.035 0.036 0.142 0.169 - 0.036
L1-rel 0.288 0.198 0.193 0.141 0.082 0.083 0.380 0.533 - 0.083
sc-inv 0.206 0.174 0.172 0.155 0.125 0.128 0.343 0.383 0.248 0.128

Fixed band: The influence of the number of frames used for computing the cost volume for the fixed band module. Accu-
mulating information from multiple frames improves the performance and saturates after adding six or more frames. Narrow
band: The effect of different number of iterations of the narrow band module. More iterations lead to more accurate depth
maps. Depth estimations converge after about three iterations and improve only slowly with more iterations. On SUN3D
results get slightly worse with more than three iterations. The narrow band width σnb is a constant number, which can be
replaced by a gradually decreasing strategy or optimally by the uncertainty of the depth estimation. Mapping comparison:
Quantitative comparison to other learning- and cost-volume-based dense mapping methods. We evaluate sequences of length
10 from our test sets and use the camera poses from the datasets to measure the isolated performance of our mapping. DeMoN
just uses two input images (first and last frame of each sequence) and does not use the pose as input. Since DeMoN predicts
the depth scaled with respect to its motion prediction, we compare only on the scale invariant metric sc-inv. SUNCG and
SUN3D feature a large number of indoor scenes with low texture, while MVS contains a mixture of indoor and outdoor scenes
and provides more texture. Our method outperforms the baselines on all datasets. The margin is especially large on the very
difficult indoor datasets (SUNCG, SUN3D).

from the bottleneck of the encoder-decoder for pose hy-

potheses generation. The results show that attaching

the pose generation branch near the end of the decoder

as shown in Fig. 1 yields more accurate poses compared

to features from the bottleneck and adding an auxiliary

optical flow task helps to learn useful features for pose

estimation. They also show that forcing the network

to predict multiple pose hypotheses further reduces the

translational drift on most sequences. We further exam-

ine the covariance matrix from the multiple hypotheses

at different training steps in Fig. 8.

We examine the influence of the inputs to the map-

ping module and show the results in Tab. 4. To identify

the importance of each input we feed zeros instead of

10 Huizhong Zhou*,1 Benjamin Ummenhofer*,2 Thomas Brox1

Fixed band Narrow band

Keyframe 2 frames 6 frames 10 frames 1 iter 3 iters 5 iters GT

Fig. 5 Qualitative comparison of the depth prediction of the fixed band and narrow band module. We evaluate the effect of
different numbers of frames used in the fixed band module and iterations used in the narrow band module. The fixed band
gains in performance with more frames. The largest improvement can be observed between using only 2 frames (including
keyframe) and 6 frames. The performance saturates with more frames. To further improve the quality of the depth map we
use the iterative narrow band module on the 10 frames result of the fixed band. Using a narrow band around the previous
depth estimation allows us to capture finer details and achieve higher accuracy.

Keyframe SGM DTAM DeMoN Ours GT

S
U

N
3
D

S
U

N
C

G
M

V
S

Fig. 6 Qualitative depth prediction comparison for sequences with 10 frames. DTAM has problems with short sequences and
textureless scenes. SGM shares the same problems but works reasonably well if enough texture is present. DeMoN work well
even in homogeneous image regions but misses many details. Our method can produce high quality depth maps using a small
number of frames and captures more details compared to the other methods.

the respective input to the module and run the test for

sequences of length 10 with ground truth poses. The re-

sults show that our architecture combines information

from both inputs (keyframe image and cost volume).

While the cost volume allows to measure depth, the

keyframe image provides scene priors that improve the

regularization. We show qualitative examples in Fig. 9.

6.4 Cross-dataset evaluation

We evaluate the effects of training our system on differ-

ent datasets in Tab. 5 and Tab. 7. We also compare gen-

eralization performance to KITTI (Geiger et al, 2012)

in Tab. 6 and Fig. 10.

Tab. 5 shows the results from a series of tracking

cross-dataset experiments to assess the effects of train-

ing with and without synthetic data. Purely training on

the synthetic dataset already allows us to outperform

a classical baseline. By combining synthetic and real

datasets, we can achieve even better performance. For

the mapping module we show results of generalization

from synthetic to real data in Tab. 7. We compare the

fixed band module, which computes the initial depth

estimate, with a single image baselinea and show that

making use of multiple frames improves generalization.

In Tab. 6 we show cross-dataset evaluations on KITTI

for the mapping module. We also show a qualitative

comparison in Fig. 10 and a failure example in Fig. 11.

Although KITTI is significantly different from SUN3D

DeepTAM: Deep Tracking and Mapping with Convolutional Neural Networks 11

S
G

M
D

T
A

M
O

u
rs

pose noise

Fig. 7 Qualitative depth prediction comparison of DeepTAM, SGM, DTAM against increasing pose noise. We carefully select
a well textured video sequence with 10 frames and enough motion parallax. For SGM and DTAM we use a cost volume with
64 labels, while we use 32 labels for DeepTAM. We found that using 64 instead 32 labels improves the results for both baseline
methods. We apply the same normal-distributed noise vectors for all methods to the camera poses and increase the standard
deviation from 0 (leftmost) to 0.6|ξ| (rightmost). SGM and DTAM are highly sensitive to noise and their performance degrades
quickly. Our predicted depth preserves the important scene structures even under large amounts of noise. This behaviour is
advantageous during tracking and improves the robustness of the overall system.

Fig. 8 Visualization of the regularized pose covariance matrices Σ at different training steps (5k, 11k, 15k, 20k, 60k and 300k)
for tracking net 3. For the first 10k iterations, Σ mainly stays at its initialization state. After the network can give reasonable
poses, the Σ starts to adapt. With more training, the pose estimation gets better and the absolute values of the elements in
the covariance matrices become smaller. Although we use the normal distribution to sample poses for the virtual keyframe, the
pose hypotheses capture the typical confusions of egomotion estimation from images. For instance, the covariance values Σ1,5

and Σ2,4 indicate that a rotation about the x-axis can be confused with a translation in y-direction and a negative rotation
about the y-axis can be confused with a translation in x-direction, respectively. As a consequence Luncertainty (7) pushes the
network to improve the pose estimates accordingly.

Keyframe Endframe Ours (w/o CV) Ours (w/o Img) Ours GT

Fig. 9 Qualitative depth prediction comparison with different inputs. The first row shows an example from the SUN3D test
split, while the second row is a completely different recording which was taken outdoors by ourself. Ours (w/o CV) only
uses the keyframe image and therefore cannot measure the depth and must rely on learned priors. The depth estimation is
not accurate (e.g. the bed is estimated too close to the camera in the first example) or even completely fails when it comes to
unseen scenes as can be seen in the example in the second row. Ours (w/o Img) takes the cost volume as input but not the
keyframe image. It generalizes better but tends to produce blurry depth maps when the image quality is bad (see the strongly
blurred depth map for the first example). Ours combines the advantages of both inputs and gives a robust and accurate depth
estimation.

12 Huizhong Zhou*,1 Benjamin Ummenhofer*,2 Thomas Brox1

Table 3 Evaluation of different versions of out tracking net-
work on the validation sets of the RGB-D benchmark (Sturm
et al, 2012).

Tracking Architecture

Sequence
Ours Ours Ours Ours(

bottleneck
features

)
(w/o flow) (w/o hypotheses)

fr1/360 0.064 0.069 0.065 0.054
fr1/desk 0.038 0.042 0.031 0.027
fr1/desk2 0.022 0.025 0.020 0.017
fr1/plant 0.062 0.063 0.060 0.057
fr1/room 0.051 0.051 0.041 0.039
fr1/rpy 0.078 0.070 0.063 0.065
fr1/xzy 0.024 0.030 0.021 0.019

average 0.049 0.050 0.043 0.040

The values describe the translational RMSE in [m/s]. Ours
(bottleneck features) uses features from the bottleneck in-
stead of the end of the decoder for generating the motion
hypotheses. Ours (w/o flow) does not learn optical flow.
Ours (w/o hypotheses) is a network which just predicts a
single pose. Ours uses features from the decoder, uses opti-
cal flow to learn motion features and predicts multiple pose
hypotheses.

Table 4 Evaluation of the importance of our mapping mod-
ule’s inputs.

SUN3D MVS
L1-inv L1-rel sc-inv L1-inv L1-rel sc-inv

Ours 0.064 0.111 0.130 0.029 0.154 0.135
Ours (w/o Img) 0.076 0.135 0.158 0.038 0.219 0.172
Ours (w/o CV) 0.150 0.304 0.208 0.222 0.842 0.266

Ours takes both the cost volume and the keyframe image as
inputs and yields the best performance. In Ours (w/o Img),
the network is still able to measure the depth given only the
cost volume. A small decrease of performance can be observed
due to possible missing measurements in the cost volume and
the lack of the information from the keyframe image. Ours
(w/o CV) only makes use of the keyframe image and relies
on the learned scene priors. Without the cost volume it is
difficult to estimate the depth accurately, as a consequence
Ours(w/o CV) produces the largest error.

our mapping module generalizes well compared to other

learning and classical baselines.

7 Conclusions

We propose a novel deep learning architecture for real-

time dense mapping and tracking. For tracking we show

that generating synthetic viewpoints allows us to track

incrementally with respect to a keyframe. For mapping,

our methods can effectively exploit the cost volume in-

formation and image-based priors leading to accurate

and robust dense depth estimations. We demonstrate

that our methods outperform strong classic and deep

Table 5 Evaluation of the influence of synthetic training
data for our tracking on the RGB-D benchmark (Sturm et al,
2012).

Sequence
RGB-D SLAM Ours Ours

Kerl SUNCG SUNCG+SUN3D

fr1/360 0.119 0.072 0.061
fr1/desk 0.030 0.042 0.038
fr1/desk2 0.055 0.052 0.051
fr1/floor 0.090 0.103 0.079
fr1/plant 0.036 0.031 0.027
fr1/room 0.048 0.045 0.044
fr1/rpy 0.043 0.060 0.058
fr1/teddy 0.067 0.074 0.062
fr1/xzy 0.024 0.018 0.016

average 0.057 0.052 0.048

The values describe the translational RMSE in [m/s]. We
compare the performance of our tracking network with differ-
ent combinations of training data against the RGB-D SLAM
method of Kerl et al (2013a). Results of RGB-D SLAM are
taken from their paper. Ours (SUNCG) is the model that
we train only with the synthetic dataset SUNCG (Song et al,
2017), while for Ours (SUNCG + SUN3D) we use a com-
bination of the synthetic dataset SUNCG and the real dataset
SUN3D (Xiao et al, 2013).

Table 6 Cross-dataset evaluation of the depth estimation.

SUN3D → KITTI

Sequence 0 Sequence 10
L1-inv L1-rel sc-inv L1-inv L1-rel sc-inv

Single 0.387 7.612 0.603 0.425 7.940 0.635
SGM 0.027 0.282 0.695 0.034 0.320 0.740

DeMoN - - 0.441 - - 0.513
Ours 0.019 0.265 0.376 0.028 0.339 0.452

All methods are tested on KITTI without finetuning. We ran-
domly choose sequence 0 and 10 for evaluation. Single is a
basic encoder-decoder-based network which predicts depth
from just a single image. For a fair comparison, this base-
line is also trained on SUN3D as Ours. SGM and Ours use
a sequence of 5 frames with ground truth poses, while De-
MoN only uses the first and last frame. KITTI is an urban
scene dataset where the depth values are on average a lot
larger than on the SUN3D indoor dataset. The single image
baseline does not adapt to the different depth range, which
results in very large errors for the L1-inv and L1-rel metrics.
Our mapping generalizes much better from SUN3D to KITTI.

learning algorithms. In future work, we plan to extend

the presented components to build a full SLAM system.

References

Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z,

Citro C, Corrado GS, Davis A, Dean J, Devin M,

Ghemawat S, Goodfellow I, Harp A, Irving G, Isard

M, Jia Y, Jozefowicz R, Kaiser L, Kudlur M, Leven-

berg J, Mané D, Monga R, Moore S, Murray D, Olah

DeepTAM: Deep Tracking and Mapping with Convolutional Neural Networks 13

Image Single SGM

DeMoN Ours GT

Fig. 10 Generalization experiment on KITTI (Geiger et al, 2012). SGM, DTAM and Ours use a sequence of 5 frames from
the left color camera, while for DeMoN we only use the first and last frame of each sequence. Single is an encoder-decoder-
based network that only gets single image as input and is trained on the same datasets as Ours. We show pseudo GT as a
reference, which was obtained by computing the disparity of the corresponding rectified and synchronized stereo pairs. KITTI
is an urban scene dataset captured with a wide-angle camera, which differs from our training data significantly. Further, due
to the dominant forward motion pattern of the dataset the epipole is within the visible image borders, which makes depth
estimation especially difficult. Without finetuning our method generalizes well to this dataset. More examples can be found in
the supplementary material.

First image Last image Ours GT

Fig. 11 Failure example on KITTI. Ours uses a sequence of 5 frames from the left color camera; the first and last frame
are shown above. Our cost-volume-based approach suffers from the moving object (the silver bus in this example) and the
occlusion (trees occluded by the bus).

Table 7 Evaluation of the generalization ability of the fixed
band mapping module from synthetic to real data.

SUN3D → SUN3D SUNCG → SUN3D Err. inc.
L1-inv L1-rel sc-inv L1-inv L1-rel sc-inv Avg

Single 0.109 0.221 0.143 0.158 0.301 0.261 54.5%
Ours(fb) 0.083 0.158 0.159 0.096 0.171 0.201 16.7%

Single is a depth estimation network using just a single im-
age. Ours(fb) is the fixed band module of our mapping part,
which generates the initial depth estimates in our system. It is
comparable in size to the model of the single image network.
We evaluate both on the test split of the SUN3D dataset.
We compare the depth estimation errors of both approaches
trained on different data. Using only the synthetic SUNCG
dataset for training obviously decreases the performance for
both methods. However, the performance drop of Ours(fb) is
significantly smaller than for the single image approach (see
the average increase of the error in the last column). This
demonstrates the robustness and generalization ability of the
architecture of our fixed band module.

C, Schuster M, Shlens J, Steiner B, Sutskever I, Tal-

war K, Tucker P, Vanhoucke V, Vasudevan V, Viégas

F, Vinyals O, Warden P, Wattenberg M, Wicke M,

Yu Y, Zheng X (2015) TensorFlow: Large-Scale Ma-

chine Learning on Heterogeneous Systems. Software

available from tensorflow.org 5, 6

Agrawal P, Carreira J, Malik J (2015) Learning to

See by Moving. In: 2015 IEEE International Confer-

ence on Computer Vision (ICCV), pp 37–45, DOI

10.1109/ICCV.2015.13 2

Collins RT (1996) A space-sweep approach to true

multi-image matching. In: Proceedings CVPR IEEE

Computer Society Conference on Computer Vision

and Pattern Recognition, IEEE, pp 358–363, DOI

10.1109/CVPR.1996.517097 2

Dhiman V, Tran QH, Corso JJ, Chandraker M (2016)

A Continuous Occlusion Model for Road Scene Un-

derstanding. In: 2016 IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), pp 4331–

4339, DOI 10.1109/CVPR.2016.469 2

Eigen D, Puhrsch C, Fergus R (2014) Depth Map Pre-

diction from a Single Image using a Multi-Scale Deep

Network. In: Ghahramani Z, Welling M, Cortes C,

Lawrence ND, Weinberger KQ (eds) Advances in

Neural Information Processing Systems 27, Curran

Associates, Inc., pp 2366–2374 8

Engel J, Schöps T, Cremers D (2014) LSD-SLAM:

Large-scale direct monocular SLAM. In: European

Conference on Computer Vision, Springer, pp 834–

849 3

Engel J, Koltun V, Cremers D (2018) Direct Sparse

Odometry. IEEE Transactions on Pattern Analy-

sis and Machine Intelligence 40(3):611–625, DOI

10.1109/TPAMI.2017.2658577 3

Fattal R (2008) Single image dehazing. In: ACM

SIGGRAPH 2008 Papers, ACM, New York, NY,

USA, SIGGRAPH ’08, pp 72:1–72:9, DOI 10.1145/

1399504.1360671 2

Felzenszwalb PF, Huttenlocher DP (2006) Efficient Be-

lief Propagation for Early Vision. International Jour-

nal of Computer Vision 70(1):41–54, DOI 10.1007/

s11263-006-7899-4 6

14 Huizhong Zhou*,1 Benjamin Ummenhofer*,2 Thomas Brox1

Geiger A, Lenz P, Urtasun R (2012) Are we ready

for autonomous driving? the kitti vision benchmark

suite. In: Computer Vision and Pattern Recognition

(CVPR), 2012 IEEE Conference On, IEEE, pp 3354–

3361 2, 3, 4, 10, 13

Gupta S, Arbelez P, Malik J (2013) Perceptual orga-

nization and recognition of indoor scenes from rgb-

d images. In: 2013 IEEE Conference on Computer

Vision and Pattern Recognition, pp 564–571, DOI

10.1109/CVPR.2013.79 2

Gupta S, Arbeláez P, Girshick R, Malik J (2015) Indoor

scene understanding with rgb-d images: Bottom-up

segmentation, object detection and semantic segmen-

tation. Int J Comput Vision 112(2):133–149, DOI

10.1007/s11263-014-0777-6 2

Hirschmüller H (2005) Accurate and efficient stereo

processing by semi-global matching and mutual in-

formation. In: 2005 IEEE Computer Society Con-

ference on Computer Vision and Pattern Recogni-

tion (CVPR’05), vol 2, pp 807–814 vol. 2, DOI

10.1109/CVPR.2005.56 6, 8

Hosni A, Rhemann C, Bleyer M, Rother C, Gelautz M

(2013) Fast Cost-Volume Filtering for Visual Corre-

spondence and Beyond. IEEE Transactions on Pat-

tern Analysis and Machine Intelligence 35(2):504–

511, DOI 10.1109/TPAMI.2012.156 6

Kendall A, Cipolla R (2017) Geometric loss functions

for camera pose regression with deep learning. Pro-

ceedings of the IEEE Conference on Computer Vision

and Pattern Recognition 2

Kendall A, Martirosyan H, Dasgupta S, Henry P (2017)

End-to-End Learning of Geometry and Context for

Deep Stereo Regression. In: 2017 IEEE International

Conference on Computer Vision (ICCV), pp 66–75,

DOI 10.1109/ICCV.2017.17 7

Kerl C, Sturm J, Cremers D (2013a) Dense visual

SLAM for RGB-D cameras. In: 2013 IEEE/RSJ In-

ternational Conference on Intelligent Robots and

Systems, pp 2100–2106, DOI 10.1109/IROS.2013.

6696650 8, 9, 12

Kerl C, Sturm J, Cremers D (2013b) Robust odometry

estimation for RGB-D cameras. In: 2013 IEEE Inter-

national Conference on Robotics and Automation, pp

3748–3754, DOI 10.1109/ICRA.2013.6631104 3

Kingma DP, Ba J (2015) Adam: A Method for Stochas-

tic Optimization. In: Bengio Y, LeCun Y (eds) 3rd

International Conference on Learning Representa-

tions, ICLR 2015, San Diego, CA, USA, May 7-9,

2015, Conference Track Proceedings 5, 6

Klein G, Murray D (2007) Parallel Tracking and Map-

ping for Small {AR} Workspaces. In: Proc. Sixth

IEEE and ACM International Symposium on Mixed

and Augmented Reality (ISMAR’07) 3

Li R, Wang S, Long Z, Gu D (2018) UnDeepVO:

Monocular Visual Odometry Through Unsupervised

Deep Learning. In: 2018 IEEE International Confer-

ence on Robotics and Automation (ICRA), pp 7286–

7291, DOI 10.1109/ICRA.2018.8461251 2

Loshchilov I, Hutter F (2017) SGDR: Stochastic Gra-

dient Descent with Warm Restarts. In: 5th Inter-

national Conference on Learning Representations,

ICLR 2017, Toulon, France, April 24-26, 2017, Con-

ference Track Proceedings, OpenReview.net 5

Lowe DG (2004) Distinctive Image Features from

Scale-Invariant Keypoints. International Journal of

Computer Vision 60(2):91–110, DOI 10.1023/B:VISI.

0000029664.99615.94 2

Newcombe RA, Lovegrove S, Davison A (2011) DTAM:

Dense tracking and mapping in real-time. In: 2011

IEEE International Conference on Computer Vision

(ICCV), pp 2320–2327, DOI 10.1109/ICCV.2011.

6126513 2, 3, 8

Schönberger JL, Frahm JM (2016) Structure-from-

Motion Revisited. In: 2016 IEEE Conference on Com-

puter Vision and Pattern Recognition (CVPR), pp

4104–4113, DOI 10.1109/CVPR.2016.445 7

Schönberger JL, Zheng E, Frahm JM, Pollefeys M

(2016) Pixelwise View Selection for Unstructured

Multi-View Stereo. In: Computer Vision – ECCV

2016, Springer International Publishing, pp 501–518,

DOI 10.1007/978-3-319-46487-9\ 31 7

Song S, Chandraker M (2015) Joint SFM and detection

cues for monocular 3D localization in road scenes.

In: 2015 IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), pp 3734–3742, DOI

10.1109/CVPR.2015.7298997 2

Song S, Yu F, Zeng A, Chang AX, Savva M, Funkhouser

T (2017) Semantic Scene Completion from a Single

Depth Image. In: 2017 IEEE Conference on Com-

puter Vision and Pattern Recognition (CVPR), pp

190–198, DOI 10.1109/CVPR.2017.28 4, 6, 12

Sturm J, Engelhard N, Endres F, Burgard W, Cremers

D (2012) A benchmark for the evaluation of RGB-

D SLAM systems. In: 2012 IEEE/RSJ International

Conference on Intelligent Robots and Systems, pp

573–580, DOI 10.1109/IROS.2012.6385773 7, 8, 9,

12

Tateno K, Tombari F, Laina I, Navab N (2017) CNN-

SLAM: Real-Time Dense Monocular SLAM with

Learned Depth Prediction. In: 2017 IEEE Confer-

ence on Computer Vision and Pattern Recognition

(CVPR), pp 6565–6574, DOI 10.1109/CVPR.2017.

695 3, 8, 9

Ummenhofer B, Zhou H, Uhrig J, Mayer N, Ilg E, Doso-

vitskiy A, Brox T (2017) DeMoN: Depth and Motion

Network for Learning Monocular Stereo. In: IEEE

DeepTAM: Deep Tracking and Mapping with Convolutional Neural Networks 15

Conference on Computer Vision and Pattern Recog-

nition (CVPR) 1, 2, 7, 8

Valada A, Radwan N, Burgard W (2018) Deep Aux-

iliary Learning for Visual Localization and Odom-

etry. In: 2018 IEEE International Conference on

Robotics and Automation (ICRA), pp 6939–6946,

DOI 10.1109/ICRA.2018.8462979 2

Vijayanarasimhan S, Ricco S, Schmid C, Sukthankar R,

Fragkiadaki K (2017) SfM-Net: Learning of Structure

and Motion from Video. arXiv:170407804 [cs] 1704.

07804 2

Wang S, Clark R, Wen H, Trigoni N (2017) DeepVO:

Towards end-to-end visual odometry with deep Re-

current Convolutional Neural Networks. In: 2017

IEEE International Conference on Robotics and

Automation (ICRA), pp 2043–2050, DOI 10.1109/

ICRA.2017.7989236 2

Weerasekera CS, Latif Y, Garg R, Reid I (2017) Dense

monocular reconstruction using surface normals. In:

2017 IEEE International Conference on Robotics and

Automation (ICRA), pp 2524–2531, DOI 10.1109/

ICRA.2017.7989293 2

Weerasekera CS, Garg R, Latif Y, Reid I (2018) Learn-

ing Deeply Supervised Good Features to Match for

Dense Monocular Reconstruction. In: Computer Vi-

sion – ACCV 2018, Springer, Cham, pp 609–624,

DOI 10.1007/978-3-030-20873-8 39 2

Xiao J, Owens A, Torralba A (2013) SUN3D: A

Database of Big Spaces Reconstructed Using SfM

and Object Labels. In: 2013 IEEE International Con-

ference on Computer Vision (ICCV), pp 1625–1632,

DOI 10.1109/ICCV.2013.458 4, 6, 12

Zhan H, Garg R, Saroj Weerasekera C, Li K, Agarwal

H, Reid I (2018) Unsupervised learning of monocu-

lar depth estimation and visual odometry with deep

feature reconstruction. In: The IEEE Conference on

Computer Vision and Pattern Recognition (CVPR)

2

Zhang H, Patel VM (2018a) Densely connected pyramid

dehazing network. In: CVPR 2

Zhang H, Patel VM (2018b) Density-aware single image

de-raining using a multi-stream dense network. In:

CVPR 2

Zhou H, Ummenhofer B, Brox T (2018) Deeptam: Deep

tracking and mapping. In: European Conference on

Computer Vision (ECCV) 3

Zhou T, Brown M, Snavely N, Lowe DG (2017) Un-

supervised Learning of Depth and Ego-Motion from

Video. In: 2017 IEEE Conference on Computer Vi-

sion and Pattern Recognition (CVPR), pp 6612–

6619, DOI 10.1109/CVPR.2017.700 2

1704.07804
1704.07804

