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1. Video

We provide a supplemental video to present our results
better. Since the task inherits a temporal dependency, we
refer the reader to our video where the driving scenarios are
presented as they happen.

2. Egocentric Future Localization

For each dataset, we split the testing scenarios into chal-
lenging and very challenging categories based on their er-
rors when Kalman Filter is used for future prediction (see
more details in the main paper). Table 1 shows the quan-
titative comparison of our future localization framework
against all baselines on the nuScenes [2] testing dataset for
all scenarios, only the challenging ones, and only the very
challenging ones. We clearly show that our framework out-
performs all baselines in all difficulties. The benefit gained
from our methods is even larger as the difficulty of the sce-
narios increases.

To show zero-shot transfer to unseen datasets, we report
the same evaluation on the testing split of the Waymo Open
dataset [7] in Table 2. The ranking of the methods is pre-
served as in the evaluation on nuScenes dataset. This shows
that our framework using the reachability prior generalizes
well to unseen scenarios. Note we also report the size of the
testing dataset for each category where a significant drop
in the number of scenarios is observed when the difficulty
level increases.

To show robustness to datasets with noisy annotation, we
report the same evaluation on our FIT dataset in Table 3.
Similarly, our framework outperforms all baselines in all
difficulties. Note that this simulates the real world applica-
tions where accurate annotations (e.g, object detection and
tracking) are expensive to obtain.

3. Egocentric Emergence Prediction

We show two emergence prediction examples in Figure 1
for cars (1st row) and pedestrians (2nd row). In the first
scenario, a car can emerge from the left street, from far dis-

tance, or from the occluded area by the truck. In the second
scenario with a non-straight egomotion, a pedestrian can
emerge from different occluded areas by the left moving car,
the left parking cars, or the right truck. Note how the reach-
ability prior helps the emergence prediction framework to
cover more possible modes. Interestingly, the reachability
prior prediction is different from the emergence prediction
where close by objects (cars and pedestrians) are only part
of the reachability prior.

4. Failure Cases
Our method is mainly based on the sampling network

from Makansi et al. [4] and thus inherits its failures. The
sampling network is trained with the EWTA objective
which leads sometimes to generating few bad hypotheses
(outliers). Figure 2 shows few examples for this phenom-
ena. One promising direction in future work is finding
strategies for better sampling to overcome this limitation.



All (11k) Challenging (3.3k) Very Challenging (1.4k)
FDE ↓ IOU ↑ NLL ↓ FDE ↓ IOU ↑ NLL ↓ FDE ↓ IOU ↑ NLL ↓

Kalman [3] 45.02 0.31 − 114.50 0.03 − 179.92 0.01 −
DTP [6] 35.88 0.34 − 77.91 0.11 − 111.49 0.05 −
RNN-ED-XOE [8] 30.47 0.34 − 56.43 0.19 − 78.54 0.13 −
STED [5] 27.71 0.39 − 57.32 0.21 − 82.71 0.13 −
Baysian based on [1] 28.51 0.37 19.75 58.14 0.20 26.16 82.23 0.13 28.44
FLN w/o Reachability 15.91 0.54 19.46 32.36 0.38 24.62 47.15 0.29 26.85
FLN + Reachability 12.82 0.55 17.90 24.23 0.40 22.08 32.68 0.33 24.17

Table 1. Quantitative results of the future localization task on the nuScenes [2] dataset. The bottom three methods predict multimodal
distribution allowing the NLL evaluation. Three categories are shown with their sizes in parentheses.

All (47.2k) Challenging (13.9k) Very Challenging (7.1k)
FDE ↓ IOU ↑ NLL ↓ FDE ↓ IOU ↑ NLL ↓ FDE ↓ IOU ↑ NLL ↓

Kalman [3] 31.69 0.39 − 85.51 0.05 − 124.71 0.02 −
DTP [6] 28.31 0.38 − 62.29 0.14 − 82.64 0.10 −
RNN-ED-XOE [8] 25.23 0.36 − 47.09 0.21 − 59.23 0.18 −
STED [5] 20.73 0.42 − 44.03 0.24 − 58.14 0.20 −
Baysian based on [1] 23.75 0.38 18.80 48.66 0.21 25.06 64.67 0.17 27.54
FLN w/o Reachability 13.20 0.54 18.84 26.62 0.40 23.90 36.57 0.34 26.19
FLN + Reachability 10.35 0.58 16.63 20.73 0.42 21.26 27.15 0.37 22.95

Table 2. Quantitative results of the future localization on the Waymo Open dataset [7]. The bottom three methods predict multimodal
distribution allowing the NLL evaluation. Three categories are shown with their sizes in parentheses.
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All (1442) Challenging (404) Very Challenging (223)
FDE ↓ IOU ↑ NLL ↓ FDE ↓ IOU ↑ NLL ↓ FDE ↓ IOU ↑ NLL ↓

Kalman [3] 38.33 0.36 − 105.82 0.08 − 146.50 0.03 −
DTP [6] 34.99 0.37 − 86.13 0.14 − 118.36 0.09 −
RNN-ED-XOE [8] 35.74 0.36 − 69.30 0.21 − 88.58 0.17 −
STED [5] 31.80 0.35 − 67.00 0.20 − 86.58 0.16 −
Baysian based on [1] 32.64 0.38 20.56 67.40 0.20 26.77 87.63 0.16 28.83
FLN w/o Reachability 18.12 0.53 20.38 37.55 0.37 25.98 47.92 0.33 27.88
FLN + Reachability 15.41 0.54 19.08 26.99 0.42 23.42 32.14 0.39 24.73

Table 3. Quantitative results of the future localization on our FIT dataset. The bottom three methods predict multimodal distribution
allowing the NLL evaluation. Three categories are shown with their sizes in parentheses.

(a) Input t (b) Reachability t + ∆t (d) EPN w/o RPN t + ∆t (e) EPN w RPN t + ∆t

Figure 1. Emergence Prediction qualitative results on nuScenes [2]. For each row (scenario), we show (a) the observed image and the
planned ego-motion (red arrow) to the future, (b) the reachability prior resulted from our RTN in the future, (c-d) both variants of our
emergence prediction framework.

(a) Input t (b) EPN w RPN t + ∆t

Figure 2. Two examples from Waymo [7] dataset illustrating the outlier hypotheses generated by our method. In both examples, a pedestrian
is expected to jump into the middle of the street by changing his/her behavior. Note that our method assign almost zero likelihood for those
unlikely modes.


