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Abstract—Models for computer vision are commonly defined either w.r.t. low-level concepts such as pixels that are to be grouped, or

w.r.t. high-level concepts such as semantic objects that are to be detected and tracked. Combining bottom-up grouping with top-down

detection and tracking, although highly desirable, is a challenging problem. We state this joint problem as a co-clustering problem that

is principled and tractable by existing algorithms. We demonstrate the effectiveness of this approach by combining bottom-up motion

segmentation by grouping of point trajectories with high-level multiple object tracking by clustering of bounding boxes. We show that

solving the joint problem is beneficial at the low-level, in terms of the FBMS59 motion segmentation benchmark, and at the high-level, in

terms of the Multiple Object Tracking benchmarks MOT15, MOT16, and the MOT17 challenge, and is state-of-the-art in some metrics.

Index Terms—Computer vision, video analysis, motion, segmentation, tracking, correlation clustering
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1 INTRODUCTION

COMPUTER vision methods commonly fall into one of two
categories. Bottom-up methods are centered around

low-level concepts such as pixels that are to be grouped.
Top-down methods are centered around high-level con-
cepts such as semantic objects that are to be detected or
tracked. These concepts are usually learned from datasets.
Combinations of bottom-up and top-down methods are
highly desirable, as their advantages are complementary in
practice [11], [19], [28], [29], [30].

In this paper, we combine bottom-up motion segmenta-
tion with top-down multiple object tracking. Specifically,
we combine bottom-up motion segmentation by grouping
of point trajectories with top-down multiple object tracking
by clustering of bounding boxes. Point trajectories are enti-
ties which represent single points over time. Motion seg-
mentation can be achieved as a spatial grouping of point
trajectory based on motion cues. Object detections represent
sets of points which belong to object instances at one point
in time. Object tracking can be achieved by associating
detections over time.

Both individual grouping problems have been addressed
most successfully by correlation clustering approaches, also
referred to as minimum cost multicuts [39], [40], [45], [67],
[68], [69].

However, point trajectories and bounding boxes form
complementary cues to the solution of both problems: Point
trajectories, on the one hand, can help to cluster bounding
box detections of the same object across partial occlusions, a
key challenge of bounding box tracking alone (see Fig. 1). In
conventional, purely high-level methods, such occlusions
can easily lead to identity switches or lost tracks. However,
low-level points on specific, well-structured regions might
be easy to track over a long period of time and thus avoid
identity switches. If sufficiently many such trajectories can
be found on an object of interest, the tracking problem
becomes trivial even if the frame-wise object detection fails.

Bounding boxes, on the other hand, can help to group
point trajectories in the presence of articulated motion, a
key challenge of motion segmentation with point trajecto-
ries alone.

Ideally, employing such pairwise information between
detections may replace higher-order terms on trajectories as
proposed in [53] or [39]. While it is impossible to tell two
rotational or scaling motions apart when only considering
pairs of trajectories, pairs of detection bounding boxes con-
tain enough points to distinguish their motion. With suffi-
ciently complex detection models, even articulated motion
can be disambiguated.

This motivates the combination of bottom-up motion
segmentation by grouping of point trajectories with top-
down multiple object tracking by clustering of bounding
boxes.

Feature trajectories have been used for multiple object
tracking before, for example in [29], [30], [34], [43]. These pre-
vious approaches face the challenge to combine possibly
contradictive information on the two different levels of gra-
nularity. This makes the optimization using, for example,
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spectral clustering or conditional random fields hard. In
contrast to these previous works, we formulate a joint optimi-
zation problem that can intrisically handle conflicting informa-
tion by the means of contraints. We contribute a correlation
co-clustering problemwhose feasible solutions define

1) a feasible solution w.r.t. the bottom-up motion seg-
mentation problem,

2) a feasible solution w.r.t. the top-down tracking prob-
lem, and

3) an association between bottom-up concepts (point tra-
jectories) and top-down concepts (bounding boxes).

This association is depicted in Fig. 1 by colors. The exis-
tence of such an association, which we postulate, establishes
non-trivial dependencies between the feasible solutions of
the bottom-up and top-down problem and, thus, to a con-
solidation of their respective costs.

This formulation for combining possibly conflicting cues
in a clean an flexible way is beneficial at the low-level, as
we show in terms of the FBMS59 motion segmentation
benchmark [54], where we can report state-of-the-art perfor-
mance. Particularly strong improvements can be achieved
w.r.t. the number of correctly segmented objects. It is
equally beneficial at the high-level, as we show in terms of
the multiple object tracking benchmarks [44], [50], where it
yields state-of-the-art results in some metrics and, in partic-
ular, shows the ability to reduce the number of ID switches.
It is the winning entry of the MOT17 challenge for multiple
object tracking [44], [50], proving that it is easily applicable
and results do not dependent on tedious parameter tuning.

2 RELATED WORK

The combination of high-level and low-level cues is an estab-
lished idea in computer vision research. Its advantages have
been demonstrated for image segmentation [11] as well as

for motion segmentation in conjunction with tracking [19],
[28], [29]. Similar to points trajectories, head detections have
been used as additional features formultiple-person tracking
for example in [9], [15], [32]. However, our proposedmethod
is substantially different in that we provide a unified graph
structure whose partitioning both solves the low level prob-
lem, here, the motion segmentation task, and the high-level
problem, i.e., the multi target tracking task, at the same time
and thus have a dual objective, formulated in a single optimi-
zation problem. Closest in spirit to our approach is the
approach by Fragkiadaki et al. [30], where detectlets, small
tracks of detections, are classified in a graphical model that,
at the same time, performs trajectory clustering based on a
spectral clustering formulation.

Like our work, Fragkiadaki et al. [30] define a graph
whose nodes are point trajectories or (sets of) bounding
boxes. Conflicting information on both levels of granularity
is handled by a mediation step, i.e., the approach solves a
sequence of constrained spectral clustering problems. In con-
trast, we solve a single correlation clustering problem, where
the consolidation between high-level and low-level informa-
tion is handled intrinsically and directly via constraints. This
has clear advantages regarding optimality.

In Milan et al. [49], tracking and video segmentation are
also formulated as a joint problem. However, their approach
employs conditional random fields instead of correlation
clustering, is built upon temporal superpixels [14] instead of
point trajectories and strongly relies on unary terms learned
on these superpixels.

The correlation clustering problem [6] is also known as
the minimum cost multicut or graph partition problem [20].
Despite its APX-hardness [22], it is used as a mathematical
abstraction for a variety of computer vision tasks, including
image segmentation [1], [38], [41], [42], [78], multiple object
tracking [67], [68] and human body pose estimation [36],
[60]. Unlike clustering problems with non-negative costs,
the correlation clustering problem does not define a con-
straint or cost on the number or size of clusters. Instead,
these properties are defined by the solutions. Practical algo-
rithms for correlation clustering include local search heuris-
tics [7], [8], [41], [45] for finding feasible solutions, as well as
cutting plane algorithms [2], [38], [66] and a column genera-
tion algorithm [78] for computing lower bounds. We resort
to the local search algorithm [41] for which C++ code is
publicly available.

Motion segmentation by grouping of point trajectories is
studied in [12], [18], [37], [39], [40], [46], [48], [53], [54], [61],
[64]. The approaches of [12], [18], [37], [39], [40], [46], [48],
[53], [54], [61], [64] base their segmentations on pairwise
affinities while [25], [39], [53], [82] model higher order
motions by varying means. In [39], [53] third order terms
are employed to explain not only translational motion but
also in-plane rotation and scaling. Zografos et al. [82] model
even more general 3D motion using group invariants.
Elhamifar and Vidal [25] model higher order motion subspa-
ces. The actual grouping in these methods is done using spec-
tral clustering with the exception of Rahmati et al. [61] who
employ multi-label graph cuts, Keuper [39] who employ
higher-order minimum cost multicuts, and Ji et al. [37] who
optimize an unbalanced energy that models the motion seg-
mentation at the same time as the point matching and solve

Fig. 1. Left: Frames 100, 110, and 120 of the sequence MOT16-08 [50].
Right: Segmentation and tracking result are depicted as color-labeled
point trajectories and bounding boxes, respectively. Formulating bottom-
up motion segmentation and top-down multiple object tracking as a joint
co-clustering problem, combines advantages of both approaches and is
tolerant even to strong partial occlusion, indicated by the black arrow. It
establishes links between low-level concepts (point trajectories) and
high-level concepts (bounding boxes).
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it via the AlternatingDirectionMethod ofMultiplier, i.e., they
do not rely on any previous method to define point trajecto-
ries. Similarly, the approach by Bideau and Learned-
Miller [57] works directly on the optical flow between pairs of
frames and uses information from the angle field to derive a
probabilistic model for objectmotion.

In Fragkiadaki et al. [29] motion trajectory grouping in a
setup similar to [12] is used to perform tracking. Although
the grouping in [29] is computed using spectral clustering,
repulsive weights can be applied based on the findings of Yu
and Shi [79]. Resulsive terms are computed from the segmen-
tation topology. In contrast, we compute both, attractive and
repulsiveweights, frommotion cues and object detections.

In our approach, we build on [40] where the grouping of
point trajectories is cast as a correlation clustering problem
in terms of pairwise potentials. Algorithms for turning
groups of point trajectories into a segmentation on the pixel
grid were defined in [51], [52].

Multiple object tracking by linking bounding box detec-
tions (tracking by detection) was studied, e.g., in [4], [5], [30],
[32], [33], [33], [35], [58], [70], [80]. Therein, the combinato-
rial problem of linking detection proposals over time is
solved via integer linear programming [65], [72], maximum
a posteriori probability (MAP) estimation [58], conditional
random fields [43], dominant sets [71], or continuous opti-
mization [5]. To make the optimization in these approaches
tractable, non-maximum suppression or pre-grouping of
detections into tracklets is very common [4], [30], [33], [35],
[70], [75], [76], [80]. Andriluka et al. [4] use a hidden Markov
model (HMM) to build tracklets that cover the detections
during a small number of frames. Huang et al. [35] propose
to use the Hungarian algorithm in a three-level hierarchical
association framework to gradually increase the length of
the tracklets. Zamir et al. [80] use generalized minimum cli-
que graphs to model the data association problem both for
the tracklet generation and the final trajectory generation.
Non-maximum suppression is also a crucial component in
disjoint path formulations, such as [15], [59], [73]. [15] pro-
pose a pairwise overlap cost in their objective function to
avoid multiple objects occupying the same spatial location.
Similarly [73] propose spatial exclusion constraints to pre-
vent overlapping cuboids in the 3D space.

We build on the prior work from Tang et al. [67], [68],
where the combination of bounding boxes is cast as a corre-
lation clustering problem.

3 CORRELATION CO-CLUSTERING

3.1 Optimization Problem

In this section, we state the low-level grouping of point tra-
jectories and the high-level clustering of bounding boxes in
the form of a single correlation co-clustering problem. In
this, we build on [41] which states the low-level problem as a
correlation clustering problem, and on [67] which states the
high-level problem as a correlation clustering problem. Our
joint co-clustering problem differs from [41], [67] in that it
introduces dependencies between the two sub-problems.

At the low level, we define a graph Glow ¼ ðV low; ElowÞ
whose nodes are point trajectories and whose edges connect
point trajectories that potentially belong to the same group.
Such edges are depicted in Fig. 2b in black. At the high level,
we define a graph Ghigh ¼ ðV high; EhighÞ whose nodes are
bounding boxes and whose edges connect bounding boxes
that potentially belong to the same object. Such edges are
depicted in Fig. 2b in cyan. Between these levels, we define
a set Elh of additional edges fu; vg 2 Elh that connect a low-
level point trajectory u 2 V low with a high-level bounding
box v 2 V high, indicating that both potentially belong to the
same object. Such edges are depicted in Fig. 2b in magenta.

For the entire graph G ¼ ðV;EÞ with V :¼ V low [ V high

and E :¼ Elow [Ehigh [ Elh and for any edge fu;wg 2 E, we
define a cost cuv 2 R that is positive, i.e., attractive, if u and
v are likely to belong to the same object and negative, i.e.,
repulsive, if v and w are unlikely to belong to the same
object. The estimation of these costs from image data is
described in detail below.

Also for every edge fu; vg 2 E, we introduce a binary
variable yuv 2 f0; 1g that indicates by yuv ¼ 0 that u and v
belong to the same object and by yuv ¼ 1 that u and v belong
to distinct objects. In order to ensure that the 01-labeling
y 2 f0; 1gE of all edges is consistent and well-defines a
decomposition of the graph G into clusters, we impose on y
the well-known cycle constraints (2) [20]. Overall, we con-
sider the correlation co-clustering problem (1) and (2)

min
y2f0;1gEX

ehigh2Ehigh

cehighyehigh þ
X

elow2Elow

celowyelow þ
X

ehl2Elh

celhyelh
(1)

subject to 8C 2 cyclesðGÞ 8e 2 C : ye �
X

f2Cnfeg
yf : (2)

Fig. 2. Here, we visualize an exemplary graph G built on a two-frame video sequence showing two walking pedestrians. (a) At a high level, bounding
boxes describe feasible detections of humans. At a low level, trajectories describe feasible motions of points. (b) Both are represented here by nodes
in a graph. Nodes drawn as rectangles represent bounding boxes, nodes drawn as circles represent point trajectories. (c) An optimal decomposition
of the graph defines, first, a grouping of point trajectories, second, a clustering of bounding boxes, and third, an assignment of point trajectories to
bounding boxes.
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Specifically, the cycle contraints (2) impose, for all cycles in
G, that, if one edge in the cycle is cut, so is at least one other.
Thus, intuitively, if any path between to nodes is cut, there
can not be a connection between these nodes via another
path in G. Thus, the feasible solutions to the optimization
problem from Eqs. (1) and (2) are exactly all partitionings of
the graph G. Given any sequence of images, we construct an
instance of this problem by defining the graph G ¼ ðV;EÞ
and costs c 2 RE . In the ideal case, each partition describes

either the entire background or exactly one object throughout

the whole video at two levels of granularity: the tracked

bounding boxes of this object and the point trajectories of all

points on the object. On the one hand, if an object is only
detected in few video frames and missed in others, the con-

nection between these detections can still be established in

the graph via point trajectories. On the other hand, false

detections usually do not move consistently with point tra-

jectories and therefore tend to end up as isolated nodes.

Thus, they can easily be removed in a postprocessing step. A

proposed solution to the Correlation Co-Clustering problem

on the graph in Fig. 2b is shown in Fig. 2c. It contains four
clusters: one for each pedestrian tracked over time, and two

background clusters in which no detections are contained.
Below, we first describe the definition of the low-level

subgraph Glow ¼ ðV low; ElowÞ whose nodes are point traj-
ectories, then the definition of the high-level subgraph
Ghigh ¼ ðV high; EhighÞ whose nodes are bounding boxes, and
finally the definition of inter-level edges Elh that connect
low-level point trajectories with high-level bounding boxes.

3.2 Low-Level Graph of Point Trajectories

At the low level, we define the graph Glow ¼ ðV low; ElowÞ
whose nodes are point trajectories and whose edges connect
point trajectories that potentially belong to the same group.
In addition, we define, for every edge elow :¼ fu; vg 2 Elow, a
cost celow 2 R to be payed for any feasible solution that
assigns the point trajectories u and v to distinct groups.

A point trajectory u 2 V low is a spatio-temporal curve that
describes the long-term motion of its starting point. We
compute point trajectories from the image sequence by the
algorithm of [54]. For this, we track by large displacement
optical flow [13] all points sampled for the first image at a
certain sampling rate for which the image has sufficient
structure. A point trajectory is ended if the consistency
between forward and backward optical flow is large, indi-
cating that the point is occluded or lost. Whenever the tra-
jectory density is lower than intended and the current
image has sufficient structure, we start a new trajectories
in order to maintain the desired sampling rate. For edges
elow 2 Elow, we define the costs celow 2 R exactly as
Keuper et al. [40]. That is, we compute the maximum
motion difference dmðu; vÞ between the trajectories u and v
connected by elow during their shared time interval, as pro-
posed by Ochs, Malik and Brox [54] as

dmðu; vÞ ¼ max
t

k@tu� @tvk
vart

; (3)

where @tu and @tv are the partial derivatives of trajectories u
and v with respect to the time dimension and vart is the
variation of the optical flow in this frame. Intuitively, the

normalization by vart accounts for the fact that a small
motion difference between two trajectories is more impor-
tant in a frame with hardly any motion than in a frame with
generally strong, possibly higher order motion (compare
[54] for more details). In addition, we compute a color dis-
tance dcðu; vÞ and a spatial distance dspðu; vÞ between each
pair of trajectories that share at least one image, and spatial
distances also for trajectories without temporal overlap. We
combine these distances non-linearly according to cuv :¼
maxfu0 þ u1d

mþ u2d
c þ u3d

sp; u4 þ u1d
mg. Ideally, the param-

eters u 2 R5 would be learned from training data. In reality,
training data for motion segmentation is scarce. Thus, we set
u as defined and validated on training data in [40].

3.3 High-Level Graph of Bounding Boxes

At the high level, we construct a graph Ghigh ¼ ðV high; EhighÞ
whose nodes are bounding boxes and whose edges connect
bounding boxes that potentially belong to the same object.

In addition, we define, for every edge ehigh :¼ fu; vg 2 Ehigh,
a costs cehigh 2 R to be payed for any feasible solution that
assigns the bounding boxes u and v to distinct objects.

For the two experiments we conduct and describe in
Section 4, the one with the FBMS59 motion segmentation
benchmark and the other with the MOT tracking bench-
mark, the construction of the graph and edge costs is differ-
ent. For example, we define a faster R-CNN [62] bounding
box object detector for the FBMS59 motion segmentation
benchmark while we adhere to bounding boxes that are
given for the MOT tracking benchmark, as required to eval-
uate on this benchmark. In both cases, the underlying object
model allows to produce a tentative frame-wise object seg-
mentation or template Tv of the detected object v 2 V high.
Such a segmentation template can provide far more infor-
mation than the bounding box alone. Potentially, a template
indicates uncertainties and enables to find regions within
each bounding box, where points most likely belong to the
detected object.

Further commonalities between the two constructions
are described here. Differences are described in detail in
Section 4.

We consider between every pair of bounding boxes their
intersection over union (IoU). As the plain bounding
box IoU is less informative for larger temporal distance,
we additionally compute the distance proposed by Tang
et al. [68] based on Deep Matching [74]. For every pair of
frames ta and tb and every detection u in ta, Deep Matching
generates a set of matched keypoints Mu;tb inside the detec-
tion. For every pair of detections u in ta and v in tb with
ta 6¼ tb, we can compute the intersection as MIuv ¼ jMu;tb\
Mv;taj and the union as MUuv ¼ jMu;tb [Mv;ta j. Then, the
Deep Matching based IoU can be computed as

IoUDM
uv ¼ MIuv

MUuv
: (4)

IoUDM can be understood as a robust IoU measure. It is
especially needed when bounding boxes in non-neighboring
frames are to be compared. In these cases, the traditional IoU
does not provide a reliable signal because objects or the
camera might have moved significantly. Compare [68] for a
thorough analysis.
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If the IoU between two bounding boxes is zero, we need
to measure their spatial difference. To this end, we consider,
for every bounding box u, its spatio-temporal center ru ¼
ðxu; yu; tuÞ> and size ðwu; huÞ>. For every edge fu; vg 2 Ehigh

between bounding boxes u and v, we compute the normal-
ized distance between u and v

dspðu; vÞ ¼ 2
ðxu � xvÞ=ðwu þ wvÞ
ðyu � yvÞ=ðhu þ hvÞ

� �����
����; (5)

where k:k denotes the ‘2-norm and the factor 2 accounts for
the normalization of the distance between the bounding box
centers by the average of their widths and heights. Intui-
tively, small, non-overlapping bounding boxes whose cen-
ters are far away from each other are less likely to belong
tho the same objects than large bounding boxes at the same
distance.

Both dsp (5) and IoU are used for computing the edge
weights cuv for fu; vg 2 Ehigh. However, the exact computa-
tion depends on the task and dataset, where different infor-
mation is available. For the multiple object tracking task, all
detected objects are pedestrians and can thus share a com-
mon template T while the object categorie is unknown for
the motion segmentation task. On the MOT datasets, detec-
tions are provided after non-maximum suppression and
thus might be missing in some frames. Thus, robust longer
distance connections might be necessary. In contrast, on
motion segmentation, we ran our own detector and thus
have access to overlapping and low-scoring detections. We
will discuss these details in our experiments.

3.4 Inter-Level Edges

For every image t, every bounding box v detected in this
image and every point trajectory u intersecting this image,
we consider the size ðwv; hvÞ and center ðxv; yvÞ> of the
bounding box. We compare the center of the bounding box

with the point ðxu; yuÞ> in which the trajectory intersects
with the image by the metric

dsp2ðu; vÞ ¼ 2
ðxu � xvÞ=wv

ðyu � yvÞ=hv

� �����
����; (6)

where the factor 2 corrects for the fact that we divide the
distance between point trajectory and bounding box center
by the full width and height. Thus, the normalized distance
dsp2 is 1 along an ellipse with shape parameters wv=2 and
hv=2. For dsp2 >

ffiffiffi
2

p
, the bounding box is fully contained

within the ellipse. As the probability that a bounding box
v 2 V high and a point trajectory u 2 V low relate to the same
object visible in the image depends more specifically on the
relative location of both, we encode by Tvðx; yÞ 2 ð0; 1Þ the
probability that the point ðx; yÞ in the image plane is covered
by the shape of the object represented by the bounding box
v. See Fig. 3 for an illustration. For every detection v, the
template Tv is evaluated at the spatial location of every tra-
jectory u 2 V low. An edge with an attractive cost clhe is intro-
duced if u intersects with Tv in a location of high object
probability. If u misses the template Tv and the distance
dsp2ðu; vÞ to the center of Tv is larger than a threshold s, an
edge with repulsive edge cost is introduced. If u intersects
with Tv in a location of low object probability and the dis-
tance is smaller than s, no edge is introduced.

Specifically, we define a probability puv 2 ½0; 1� of the
bounding box v 2 V high and the point trajectory u 2 V low

belonging to distinct objects as

puv :¼
1� Tvðxu; yuÞ if Tvðxu; yuÞ > 1

2
1 if dsp2ðu; vÞ > s
1
2 otherwise:

8<
: (7)

The parameter s 2 Rþ depends on the application. It has to
be chosen sufficiently large such that it does not conflict
with the first case in (7). Intuitively, its choice depends, on
the one hand, on the localization accuracy of bounding
boxes, on the other hand on the density of objects that need
to be distinguished. A small s allows the insertion of repul-
sive terms to trajectories on nearby objects. However, if the
localization is inaccurate, small s values can lead to
oversegmentation.

W.r.t. the probability puv, we define the cost cuv :¼
logitðpuvÞ ¼ log puv

1�puv
.

3.5 Search for Feasible Solution

In order to find feasible solutions of low cost to the instances
of the NP-hard correlation co-clustering problem that we
construct from image data as described above, we employ
the efficient primal feasible local search heuristic of [41].

4 EXPERIMENTS

In this section, we apply the proposed correlation co-
clustering problem to the task of motion segmentation and
multiple object tracking and show the following evaluations:

� We show results for the FBMS59 [54] motion seg-
mentation dataset containing sequences with various
object categories and motion patterns (Section 4.1).

� We show results for the 2D MOT 2015 bench-
mark [44], the MOT 2016 benchmark [50] and the
MOT 2017 benchmark [44], [50] for multiple object
tracking (Section 4.2).

Fig. 3. Edges elh between high and low level nodes. For every detection
v, the template Tv is evaluated at the spatial location of every trajectory
u 2 V low. An edge with an attractive cost clhe is introduced if u intersects
with Tv in a location of high object probability (green edges). If u misses
the template Tv and the distance dsp2ðu; vÞ to the center of Tv is larger
than a threshold s (indicated by the gray circle), an edge with repulsive
edge cost is introduced (red). If u intersects with Tv in a location of low
object probability and the distance is smaller than s, no edge is
introduced.
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� We compare our segmentations on two of these
sequences to the previous approach to joint segmen-
tation and tracking by Milan et al. [49] (Section 4.3).

� We report results for the tracking performance of our
model on three standard multiple object tracking
sequences of [3], [80]. The evaluation on these sequen-
ces allows a comparison to Fragkiadaki et al. [30] and
Tang et al. [67] (Section 4.4).

4.1 Motion Segmentation

The FBMS59 [54] motion segmentation dataset consists of 59
sequences split into a training set of 29 and a test set of 30
sequences. The videos are of varying length (19 to about 500
frames) and show diverse types of moving objects such as
cars, persons and different types of animals. The results are
evaluated in terms of segmentation precision and recall, the
aggregate f-measure and the number of segmented objects
with f-measure � 0:75 for different levels of trajectory sam-
pling rates as well as for densified segmentations using the
variational method from Ochs et al. [52]. Among these
measures, the f-measure is the most representative since it
reflects the trade-off between precision and recall.

4.1.1 Implementation Details

To apply the correlation co-clustering problem to this data,
the very first question is how to obtain reliable detections in a
video sequence without knowing the category of the object of
interest. To this end, we use detections from the Faster
R-CNN [62] detector, trained on the PASCALVOC2012 dataset.

Faster R-CNN is an object detector that integrates a
region proposal network with the Fast R-CNN [31] network.
In our experiments, we compute detections using the code
and model published with their paper. We only use the
most confident detections, i.e., those with detection scores
above a threshold of 0.97, on a scale between 0 and 1. This
yields a sparse set of detections with high precision but
potentially low recall.

From these detections, we generate segmentation pro-
posals using DeepLab [17], [55]. These tentative segmenta-
tions serve as templates for the computation of pairwise
costs between detections and trajectories. Examples of
detections and corresponding templates per frame are
shown in Fig. 4. These examples show the localization qual-
ity of the detections.

Since occlusion does not play a significant role in this
dataset, we compute pairwise terms between detections
only within the same frame and in directly neighboring
frames. This way, we can use the standard intersection over
union (IoU) definition computed directly on the templates.
From the IoU and the pairwise distance dsp from (5), we
compute the pseudo cut probability between two bounding
boxes u; v 2 V high as

puv ¼
expð�qÞ

1þexpð�qÞ if IoUðu; vÞ > 0:7
1

1þexpð�q0Þ if dspðu; vÞ > 1:2
1
2 otherwise:

8><
>: (8)

Here, q :¼ �20 � ð0:7� IoUðu; vÞÞ and q0 :¼ �5 � ð1:2� dspðu;
vÞÞ. Note that an IoU > 0:7 implies a distance dsp < 1:2. We
have chosen these parameters so as to yield reasonable
results on the FBMS59 training set.

The cost cuv is computed from the probability puv accord-
ing to (7) with s ¼ 2. This large threshold accounts for the
uncertainty in the bounding box localizations.

4.1.2 Baseline Experiments

As a baseline that helps assessing the impact of the segmen-
tation templates from DeepLab [17], [55] , we experiment
with a trivial template, i.e., an ellipsoid placed in the center
of each bounding box with shape parameters 0.5 times
the bounding boxes width and height, respectively. This
template’s link probability decreases linearly with the nor-
malized distance from the bounding box center, being 1 for
dsp2 ¼ 0 and 0.5 for dsp2 ¼ 0:5.

To further assess the impact of erroneous detections and
segmentation templates on the optimization, we ran an ora-
cle experiment using the provided sparse ground truth seg-
mentations and their bounding boxes as high-level cues. We
evaluate the impact of the available sparse ground truth on
the trajectory level segmentation quality.

To assess the impact of the joint model components, we
evaluate, for 8 pixel trajectory sampling, not only the full
model but also its performance if costs between detection
nodes are omitted (CCC - Ehigh).

4.1.3 Results

The quantitative evaluation of results on the FBMS59 bench-
mark is shown in Table 1 in terms of precision and recall, the
aggregate f-measure and the number of segmented objects
with f-measure � 0:75. The motion segmentation considering
only the trajectory information from [40] performs alreadywell
on the FBMS59 benchmark. When the high-level information
from object detections and DeepLab templates is added to this
model (CCC - Eh), the f-measure improves by 2 percent. Our
full model CCC yields a further improvement by 1 percent, for
8 pixel point sampling. Note that we outperform the baseline
method [40] by a significant margin on the test set. We outper-
form also the higher-order spectral clustering method [53] as
well as the higher-ordermulticutmodel from [39].

To assess the importance of the informative templates
from DeepLab, we evaluate our ellipse-shaped baseline
template. The according results are denoted by CCC BBX-
baseline. It can be observed that this un-informed template
still yields an improvement of about 1 percent in f-measure

Fig. 4. Examples of the faster R-CNN object detections on images from
FBMS59 sequences [54]. The first row shows the best 20 detections.
The second row shows three exemplary templates T generated with
DeepLab [17], [55] on these detections.
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and an increase in the number of detected objects on both
datasets over the baseline method [40].

From the experiment on the sparsely available oracle
detections and segmentations (sparse oracle in Table 1), we
can also observe an improvement over the baseline [40]
without such information. However, since the ground truth
is only provided for every 20th frame, the oracle results are
poorer than the ones obtained using fasterRCNN detections
and DeepLab segmentations. The additional, noisy informa-
tion on all frames leads to an improvement over only
sparsely available ground truth information.

For denser sampling rate with 4 pixel distance, we only
compare our full model to the baseline method [40]. The
behavior is similar. The densified version of our segmenta-
tions improves over those from [40] by more than 3 percent
on both datasets. A visualization of densified results is
shown in Fig. 5.

Qualitative results of the motion segmentation as well as
the tracking are shown in Figs. 6 and 7. Due to the detection
information, static objects like the car in themarple6 sequence
(yellow cluster) can be segmented. The man approaching the
camera in the same sequence can be tracked and segmented
(green cluster) throughout the sequence despite the scaling
motion. Similarly, in the horses06 sequence, all three moving
objects can be tracked and segmented through strong partial
occlusions. As the ground truth annotations of FBMS59 are
sparse and only describe moving objects, we cannot assess
themultiple object tracking performance for this data set.

4.2 Multi-Target Tracking on MOT

We now apply the proposed correlation co-clustering prob-
lem to the task of multiple object tracking and show the ben-
efit of this joint approach in terms of the 2D MOT 2015 [44]
(MOT15), MOT 2016 [50] (MOT16) and MOT 2017 (MOT17)
benchmarks. These benchmarks contain videos from static
and moving camera recorded in unconstrained environ-
ments. MOT15 contains 11 training and 11 test sequences,
MOT16 and MOT17 consist of 7 sequences each in training
and test. While the sequences in MOT16 and MOT17 are
identical, the datasets differ (1) in the ground truth annota-
tions, which have presumably been improved from MOT16
to MOT17, and (2) in the given pedestrian detections. In all
three benchmarks, detections for all sequences are provided
and allow for direct comparison to other tracking methods.
While the detections in MOT15 are computed using the
Aggregate Channel Features pedestrian detector [23], DMP
v5 [27] detections are provided for MOT16. MOT17 pro-
vides three different sets of detections [26], [62], [77] for
each sequence in order to encourage tracking approaches
that generalize well over different object detectors.

The tracking performance on the official MOT15 [44],
MOT16 [50], and MOT17 [44], [50] benchmarks is evalu-
ated in terms of the CLEAR MOT evaluation metrics [10].
We report the ID F1 score, i. e. the ratio of correctly
identified detections over the average number of
ground-truth and computed detections (IDF1), the num-
ber of mostly tracked (MT) and mostly lost (ML) objects,
the fragmentation (FM) and MOTA (multiple object
tracking accuracy), which is a cumulative measure com-
bining missed targets (FN), false alarms (FP), and iden-
tity switches (IDs).

4.2.1 Implementation Details

We connect every bounding box u to every other bounding
box vwithin a distance of 3 frames in MOT15 and MOT16, 5
frames in MOT17. To compute pairwise costs cuv between
bounding boxes u and v, we consider the detection scores
su; sv 2 R, their minimum suv :¼ minfsu; svg and the Deep
Matching distance IoUDM

uv as defined in Eq. (4). As
Tang et al. [68], we define the feature vector fuv as

TABLE 1
Results for the FBMS-59 Training and Test Set

Algorithm Sampling Training set Test set

Precision Recall f-measure # Objects Precision Recall f-measure # Objects
SC [54] 8 85.10% 62.40% 72.0% 17/65 79.61% 60.91% 69.02% 24/69
SC+HO [53] 81.55% 59.33% 68.68% 16/65 82.11% 64.67% 72.35% 27/69
Lifted HOMC [39] 86.83% 77.79% 82.06% 32/65 87.77% 71.96% 79.08% 25/69
MCe [40] 86.73% 73.08% 79.32% 31/65 87.88% 67.7 % 76.48% 25/69
CCC BBX-baseline 86.92% 75.73% 80.94% 34/65 82.77% 72.36% 77.22% 31/69
CCC - Ehigh 83.46% 79.46% 81.41% 35/65 84.06% 76.89% 80.30% 35/69
CCC 84.85% 80.17% 82.44% 35/65 84.52% 77.36% 80.78% 35/69
sparse oracle 90.04% 76.19% 82.25% 34/65 86.53% 69.82% 77.14% 27/69

MCe [40] 4 86.79% 73.36% 79.51% 28/69 86.81% 67.96% 76.24% 25/69
CCC 83.81% 78.16% 80.89% 32/69 84.61% 77.28% 80.78% 37/69

treeDL [56] dense - - - - 78.41% 65.52% 72.33% -
MCe [40] 85.31% 68.70% 76.11% 24/65 85.95% 65.07% 74.07% 23/69
CCC 84.28% 75.15% 79.66% 29/65 83.17% 74.65% 78.68% 32/69

For both trajectory sampling rates as well as for densified segmentations, the proposed model CCC improves over the state of the art.

Fig. 5. Examples of CCC segmentation results densified by the varia-
tional method of Ochs et al. [52] on three sequences of the FBMS59 [54]
benchmark.
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fuv :¼ ðIoUDM
uv ; suv; IoU

DM
uv � suv; ðIoUDM

uv Þ2; s2uvÞ; (9)

and learn the costs cuv from fuv by logistic regression.
Pairwise costs between a bounding box u 2 V high and a

point trajectory v 2 V low are computed according to (7),
with s ¼ 1:5. The template Tu is computed as the average
pedestrian shape from the shape prior training data pro-
vided in [21] and its horizontally flipped analogon. This
template is depicted Fig. 8. It is identical for all bounding
boxes up to scaling.

Fig. 6. Comparison of the proposed CCC model and the trajectory multicut (MCe) [40] on the marple6 sequence of FBMS59. While MCe cannot
properly segment the persons, the tracking information from the bounding box subgraph helps our joint model to segment the two men throughout
the sequence despite scaling and rotational motion. Additionally, static, consistently detected objects like the car in the first part of the sequence are
segmented as well. As these are not annotated, this causes over-segmentation penalty on the FBMS59 metrics.

Fig. 7. Segmentation and tracking results of the proposed CCC model and the trajectory multicut (MCe) [40] on the horses06 sequence of FBMS59.
MCe cannot segment the person and the horse next to him due to the difficult motion and strong partial occlusions.

Fig. 8. The average pedestrian shape template used for the computation
of pairwise terms between pedestrian detections and trajectories.

KEUPER ET AL.: MOTION SEGMENTATION & MULTIPLE OBJECT TRACKING BY CORRELATION CO-CLUSTERING 147



As the bounding boxes that come with the data set are
relatively sparse (due to non-maximum suppression), the
statistics of the graph are altered. To compensate for this
fact, we apply a simple heuristic. Assuming that about 20
bounding boxes have been suppressed for every true
detection in 2D MOT 2015 and about 4 bounding boxes
have been suppressed for every true detection in MOT
2016, we weight the links between trajectory and detection
nodes by factor 20 and 4 respectively. We are aware that
this is a crude heuristic. Better options would be to learn
this factor per sequence type or (better) to use the detec-
tions before non-maximum suppression which are unfor-
tunately not provided. The conversion from clusters to
tracks is done as in [68]. Specifically, in each frame, we
obtain object locations by averaging all detections belong-
ing to the same cluster, weighted by their detection score.
A track is computed by connecting these averages of every
cluster over time. Due to the detection scores included in
the pairwise terms between bounding boxes, false detec-
tions tend to end up as isolated nodes. As [68], we elimi-
nate all clusters of size less than 5 in all experiments.
Missing detections within a track are hallucinated by bilin-
ear interpolation. On the MOT15 data, we additionally hal-
lucinate missing detections in up to three neighboring
frames to a resulting track by following the point trajecto-
ries associated with this track if available.

4.2.2 Results

Here, we evaluate the tracking performance on the official
MOT15 [44], MOT16 [50], and MOT17 [44], [50] benchmarks
in terms of the CLEAR MOT evaluation metrics [10]. Results
for theMOT15 benchmark are shown in Table 2.We compare
to the state-of-the-art multi-target tracking method on
MOT15 [19], and the very recent methods from [16], [63],
which employ convolutional neural network based appear-
ance features, Sadeghian et al. [63] in conjunctionwith LSTMs
to establish long-term dependencies. Our results are competi-
tive in MOTA and improve over methods which are, as ours,
based on weak appearance terms [19]. In comparison, we
observe a decrease in the number of false negativeswhile false
positives increase. In fact, the large amount of false positives
our method produces might be due to the hallucinated detec-
tions, which therefore seems to have a rather negative impact
on the overall MOTA score. We show a clear improvement
over the performance of the previously proposed method for
joint tracking and segmentation [49].

Results for the MOT16 benchmark are shown in Table 3.
Here, we first compare to the MOT 2016 Challenge winning
approach by Tang et al. [68], as well as to the approach by
Levinkov et al. [45], which is also based on correlation clus-
tering. While [68] solve a correlation clustering problem on
a bounding box graph with advanced features, [45] solve a
node labeling minimum cost multicut problem that allows

TABLE 2
Multi-Target Tracking Results on the 2D MOT 2015 Benchmark

IDF1 MT ML FP FN IDs FM MOTA

Long et al. [16] 47.1 8.7% 37.4% 4,005 33,203 586 1,263 38.5
Sadeghian et al. [63] 46.0 15.8% 26.8% 7,933 29,397 1,026 2,024 37.6
Choi [19] 44.6 12.2% 44% 7,762 32,547 442 823 33.7
Milan et al. [49] 31.5 5.8% 63.9% 7,890 39,020 697 737 22.5
CCC 45.1 23.2% 39.3% 10,580 28,508 457 969 35.6

On the aggregate measure MOTA, we improve over [19] and [49], as well as in the important metrics MT (mostly tracked objects) and FN (the
number of false negatives).

TABLE 3
Multi-Target Tracking Results on the MOT16 Benchmark

IDF1 MT ML FP FN IDs FM MOTA

Choi [19] 53.3 18.3% 41.4% 9,753 87,565 359 504 46.4
Tang et al. [68] 46.3 15.5% 39.7% 6,373 90,914 657 1.114 46.3
Tang et al. [69] 51.3 18.2% 40.1% 6,654 86,245 481 595 48.8
Henschel et al. [32] 44.3 19.1% 38.2% 8,886 85,487 852 1,534 47.8
Levinkov et al. [45] 47.3 18,2% 40.4% 5,844 89,093 629 768 48.4
CCC 52.3 20,4% 46.9% 6,703 89,368 370 598 47.1

Here, we improve over the state of the art in the metric MT (mostly tracked objects), while all top methods are very close in the MOTA. Again, our
CCC model yields a low number of ID switches.

TABLE 4
Multi-Target Tracking Results on the MOT17 Challenge

FAF MT ML FP FN IDs FM MOTA

Henschel et al. [32] 1.3 21.2% 36.3% 22,732 250,179 2,583 4,141 51.2
Kim et al. [47] 1.3 20.8% 36.9% 22,875 252,889 2,314 2,865 50.7
CCC 1.4 20.7% 37.4% 24,986 248,328 1,851 2,991 51.2

Instead of the ID F1 score, the false alarm frequency (FAF) was reported in the challenge. Our CCC model yields the lowest number of ID switches
while performing on par with Henschel et al. in terms of MOTA, outperforming all other challenge submissions.
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to discard unreliable bounding boxes. Our joint model can
improve over [68] by reducing the number of identity
switches and fragmentations while keeping the number of
false alarms low, resulting in a better MOTA. Compared to
[45] our CCC model is slightly worse in MOTA because of
the higher number of false positives. However, we outper-
form [45] in terms of mostly tracked objects and ID switches.
As for MOT15, our method is outperformed by a deep
learning based approach, which establishes long term con-
nections by a strong, learned appearance term. Such infor-
mation could be included in our approach.

Results for theMOT17 challenge are shown in Table 4. Fol-
lowing the general tendency of the results on MOT15 and
MOT16, the proposed approach achieves a low number of
ID switches and a good MOTA score. Together with
Henschel et al. [32], the proposed approach won the MOT17
challenge1 This indicates good performance without exten-
sive parameter optimization. After the MOT17 challenge,
Henschel et al. [32] updated their results on the MOT17
benchmark and improved the MOTA by 0.1 on this data.
Unlike our approach, their method is not only based on the
provided object detections but employs a specifically trained
head detector to provide an additional high-level cue.

4.3 Segmentation Evaluation on Tracking
Sequences

In order to assess the quality of the resultingmotion segmenta-
tions in the tracking scenario, we evaluate our sparse segmen-
tations on the pedestrian tracking sequence tud-crossing from
theMOT15 benchmark. For this sequence, segmentation anno-
tations in every 10th frame have been published in [24]. The
pedestrian motion segmentation is evaluated with the metrics
precision (P), recall (R), f-measure (F) and number of retrieved
objects (O) as proposed for the FBMS59 benchmark [54].

To assess the importance of the model parts, we consider
two baseline experiments. Specifically, we not only evaluate
the full CCC model but also the performance without costs
between trajectories (CCC - Elow) as well as the performance
when omitting the pairwise terms between tracklet nodes
(CCC - Ehigh).

A qualitative result is shown in Fig. 9. The bounding boxes
overlayed on the image sequence are, for every frame and
cluster, the ones with the highest detection score. These were
also used for the tracking evaluation. The second row visual-
izes the trajectory segmentation. Both detection and trajectory
clusters look satisfying. Thanks to the segmentation, better
localizations for the tracked pedestrians can be provided.

Quantitative results and a comparison with the motion
segmentation methods [40], [54] are shown in Table 5.
The comparison between the full model CCC and its parts
CCC - Elow and CCC - Ehigh confirms that the full, joint CCC
model performs best. On the important f-measure, CCC
improves over the previous state-of-the-art in motion seg-
mentation on this sequence.

We want to compare our motion segmentation results on
tracking sequences to those fromMilan et al. [49]. Therefore,
we densify our sparse segmentation results using [51] and
recompute the segmentation from [49] using their code with
the default parameters. The results are given in Table 6. At
a similar precision, our segmentations show a higher recall
and consequently, a better f-measure.

For further comparison to Milan et al. [49], we also evalu-
ate our densified segmentations on the PETS-S2L2 sequence
used in their paper for evaluation. Here we evaluate on the
same standard segmentation measures as [49]. The results
are given in Table 7. While the clustering error is lower
for [49], the proposed CCC model outperforms [49] in all
other metrics.

Fig. 9. Results of the proposed correlation co-clustering model on the tud-crossing sequence from MOT15.

TABLE 5
Motion Segmentation on the

Multi-Target Tracking Sequence Tud-Crossing

TUD-Crossing

Precision Recall f-measure O (� 75) O (� 60)

SC [54] 67.92% 20.16% 31.09% 0/15 1/15
MCe [40] 43.78% 38.53% 40.99% 1/15 1/15
CCC - Ehigh 62.05% 54.72% 58.15% 1/15 9/15
CCC - Elow 69.37% 48.88% 57.35% 2/15 9/15
CCC 67.22% 55.11% 60.57% 2/15 9/15

O is the number of extracted objects, with f �measure � 75% and with
f �measure � 60%, respectively. All results are computed for sparse trajec-
tory sampling at 8 pixel distance, leading to an average region density of
0.85 percent.

1. The MOT17 challenge was held during the 1st Joint BMTT-PETS
Workshop on Tracking and Surveillance in conjunction with the Con-
ference on Computer Vision and Pattern Recognition - CVPR 2017,
https://motchallenge.net/MOT17_results_2017_07_26.html
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4.4 Comparison to Related Tracking Methods

We evaluate the tracking and segmentation performance of
our Correlation Co-Clustering model on the publicly avail-
able sequences: TUD-Campus, TUD-Crossing [3] and Par-
kingLot [80]. These sequences have also been used to
evaluate the Subgraph Multicut method by Tang et al. [67]
and therefore allows for direct comparison to this method.
A direct comparison to the Two-Granularity-Trackingmethod
by Fragkiadaki et al. [30] is provided on the TUD-Crossing
sequence forwhich results are reported in [30].

4.4.1 Implementation Details

To allow for direct comparison to Tang et al. [67], we com-
pute all high-level information, i.e., the detection nodes
v 2 V high, edges e 2 Ehigh, and their costs ce exactly as
reported in [67] with only one difference: the Subgraph
Multicut models from [67] employs not only pairwise
but also unary terms which our proposed Correlation Co-
Clustering model does not require. We omit these terms.

In [67], DPM-based person detections [26] are used. To
add robustness and enable the computation of more specific
pairwise terms, these detections are grouped to small, over-
lapping tracklets of length 5 as in [3] without applying any
Non-Maximum Suppression. This is in accordance to [67]
and therefore beneficial for a direct comparison. Since track-
lets are computed in every frame, the same detections can
be part of several (at most 5) tracklets. In the experiments
on the MOT benchmarks in Section 4.2, this tracklet compu-
tation is not possible because detections are only provided
after non-maximum-suppression.

Pairwise terms between the tracklets are computed from
temporal distances, normalized scale differences, speed,
spatio-temporal locations and dColorSIFT features [81],
combined non-linearly as in [67].

The computation of pairwise terms cuv between nodes
u 2 V low and v 2 V high has to be adapted in this setup.
Unlike in our standard setup, a high level node v 2 V high

does not directly represent a detection bounding box but

rather a set of 5 boxes. We compute the average pedestrian
shape from the shape prior training data provided in [21]
(see Fig. 10a). For every detection v, Tv denotes the pedes-
trian template shifted and scaled to the kth bounding box
position and size. The tracklet information allows to deter-
mine the walking direction of the pedestrian, such that the
template can be flipped accordingly. For every detection uk
with k ¼ f1; . . . ; 5g of a tracklet v 2 V high, the cut probability
pukw to a trajectory node w 2 V low is computed according to
Eq. (7) with s ¼ 1:2. A trajectory node w 2 V low is linked to
a tracklet node v 2 V high coexisting in a common frame with
an edge cost cwv ¼

P5
k¼1 logitðpukwÞ: Fig. 10b visualizes the

edges between tracklets and point trajectories.

4.4.2 Results

Quantitative results on the pedestrian tracking task are
given in Table 8. Again, we evaluate the importance of the
model parts (denoted by CCC-Ehigh and CCC-Elow). Among
these, the proposed CCC model performs best on the
MOTA metric, showing that the joint approach works better
than any of its parts.

Compared to other methods, the proposed approach
shows the general tendency to reduce the number of false
negatives, while the number of false positives is higher than
in [67].

TABLE 6
Motion Segmentation on the

Tud-Crossing Sequence from MOT15

TUD-Crossing

Precision Recall f-measure

Milan et al. [49] 60.61% 19.25% 29.23%
dense CCC 61.01% 46.98% 53.08%

TABLE 7
Segmentation Evaluation on the

PETS-S2L2 Sequence from MOT15

PETS-S2L2

cl.err. per-reg.err. over-seg. extr. obj.

Milan et al. [49] 3.56 24.34 1.42 7
dense CCC 4.38 23.20 0.83 11

As Milan et al. [49], we report the clustering error (percentage of misclassified
pixels); the per-region error (average ratio of wrongly labeled pixels per ground
truth mask); the oversegmentation error (number of segments covering each
mask); and the number of extracted objects as those correctly segmented in at
least 90 percent of their area).

Fig. 10. The average pedestrian shape template and the trajectory-tracklet
edges used for the comparison to subgraphmulticut [67].

TABLE 8
Tracking Result on Multi-Target Tracking Sequences
TUD-Campus, TUD-Crossing [3], and ParkingLot [80]

GT MT ML FP FN IDs FM MOTA

TUD-Campus 8

Milan et al. [49] 1 4 25 242 0 1 25.6
Subgraph MC [67] 5 1 2 58 0 1 83.3
CCC - Elow 6 1 19 35 0 0 85.0
CCC - Ehigh 5 1 20 63 3 2 76.0
CCC 5 1 5 45 1 0 85.8

TUD-Crossing 13

Fragkiadaki et al. [30] - - - - 0 - 82.9
Milan et al. [49] 3 3 37 456 15 16 53.9
Subgraph MC [67] 8 2 11 198 1 1 80.9
CCC - Elow 9 0 22 161 5 11 82.9
CCC - Ehigh 12 0 204 83 14 5 72.7
CCC 9 0 22 160 2 9 83.3

ParkingLot 14

Subgraph MC [67] 13 0 113 95 5 18 91.4
CCC - Elow 13 0 164 85 9 13 89.5
CCC - Ehigh 13 0 307 79 6 15 84.1
CCC 13 0 129 85 6 15 91.1
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On the sequences TUD-Campus and TUD-Crossing, we also
compare toprevious approach to joint segmentation and track-
ing [49]. The results forTUD-Campuswere obtainedusing their
code, while the result for [49] on TUD-Crossing is taken from
the paper. For both sequences, our joint approachCCC outper-
forms this previous method. Fragkiadaki et al. [30] also
provide results for the TUD-crossing sequence. They achieve a
MOTA of 82.9 on this sequence. This result is close to but
below ours.

4.5 Discussion

The proposed Correlation Co-Clustering method jointly
deals with the related problems of trajectory-level motion
segmentation and multiple object tracking. The joint task is
achieved by phrasing a single and clean mathematical objec-
tive. The current setup has two limitations. First, the graph
construction itself depends on several parameter choices.
Currently, these parameters are manually set. Provided a
sufficient amount of training data, these parameters could
be learned or optimized by a grid search. Second, certified
optimal solutions to the large and hard instances of the apx-
hard problem we consider are out of our reach at the time
of writing.

Contributions to both of these issues will most likely lead
to a further improvement of results and will be subject to
future research.

5 CONCLUSION

We have proposed a correlation co-clustering model for
combining low-level grouping with high-level detection
and tracking. We have demonstrated the advantage of this
approach by combining bottom-up motion segmentation by
grouping of point trajectories with high-level multiple
object tracking by clustering of bounding boxes. We show
that solving the joint problem is beneficial at the low level,
in terms of the FBMS59 motion segmentation benchmark,
and at the high level, in terms of the MOT detection and
tracking benchmarks. Results of the proposed method are
state-of-the-art in motion segmentation and winning entry
of the MOT17 challenge for multiple object tracking.
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