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ABSTRACT
Deep learning has enabled automated segmentation in a

large variety of cases. Instance segmentation of touching and
overlapping objects remains an open challenge. We present
an end-to-end approach that focuses object detections and fea-
tures to local regions in an encoder stage and derives accurate
instance masks in a decoder. We avoid heavy pre- or post-
processing, such as lifting or non-maximum suppression. The
approach compares favorably to the current state-of-the-art on
three challenging biological datasets.

Index Terms— deep learning, detection, classification,
instance segmentation, touching objects, overlapping objects.

1. INTRODUCTION

Instance segmentation is an essential tool for image analysis.
In contrast to semantic segmentation which can be covered
well by a simple and elegant encoder-decoder approach [1],
instance segmentation is less mature. Literature contains a
variety of comparatively complex processing pipelines which
typically contain critical hyper-parameters.

The currently most popular approach is Mask R-CNN [2]
which first solves a bounding-box detection problem to later
compute an instance mask for each bounding box. The in-
termediate bounding box representation is an artificial con-
struct and suboptimal for elongated objects. Rather than to
a set of bounding boxes, we decode the image into a fea-
ture representation on a regular grid, which focuses the large-
scale information of detected objects to local disks (“gate-
ways”). From these gateways, together with their locations,
a U-Net [1] decodes detailed segmentation masks using skip-
connections which contain high-resolution information.

The object representation via spatially isolated gateways
in the image domain allows us to derive an object ordering
from their connected components. This resolves touching
and overlapping objects without a need for lifting into higher-
dimensional space, as in ISOO(v2) [3,4] and TensorMask [5].
The instance ordering via connected components also avoids
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Fig. 1. Visual results on test datasets: LSC (left), OSC-ISBI
(middle) and C.Elegans (right). Contours represent instance
masks with corresponding object disks (shown in the same
color).

the use of recurrent networks to focus attention on one object,
as in [6]. Feed-forward networks typically train better than
recurrent networks which gives our approach an advantage.

2. METHOD

An overview of our method is shown in Fig. 2. We use two
stacked networks to process an image I : Ω ⊂ N2 → R. En-
coNet encodes an objectOk and its location in I into an object
feature pool fk which we call local pool. DecoNet decodes
fk to the corresponding instance mask m̂k : Ω → {0, 1}.
Skip-connections transport image features from EncoNet to
DecoNet. We denote predicted variables with a hat (ˆ).

The local pools are represented by a dense feature map
F : Ψ ⊂ Ω × {1, . . . ,CF} → R, where CF is the number
of channels. This is the first output of EncoNet. We control
access to local pools via gateways, by opening and closing
them during inference and training. We construct gateways
using a second output of EncoNet, p̂k ∈ Ω, which explicitly
describes the position of a specific fk in F .

2.1. Reference points and gateways

Reference points An object’s reference point pk [4] is a
keypoint that can be placed at any reasonable position in the
image with reference to this object. We assume that there
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Fig. 2. Composite architecture with two encoder-decoder networks (EncoNet and DecoNet) at inference time (see Sec. 2.2).

is exactly one reference point per object and that its position
stays unchanged (relative to the object) over training. Devi-
ations from this assumption (e.g. noisy data annotation) are
treated as variation of the input. As in [4], we couple every
object reference point with a disk of a certain radius r̂k. These
disks, denoted as Θ̂ in Fig. 2, are predicted in the form of log-
its by EncoNet. The ground truth disk radius rk is adaptive: it
shrinks in the immediate vicinity of another reference point.
We use adaptive disks and not just points, because this miti-
gates the class imbalance problem: it is harder for the network
to predict sparse positions than a dense set. Moreover, the
disk defines a local region on which object information from
the encoder can be focused. Focusing to a single point would
be more difficult. The adaptive size still keeps the disks spa-
tially isolated which is important for data with closely located
reference points (e.g. overlapping or small objects).

Gateways Similar to RoIAlign [2], we extract features from
a feature map F and forward them to later convolution layers.
RoIAlign pools the features from differently sized objects’
RoIs to a small unified feature map (a pool). In our case,
EncoNet creates the pool from its entire input image. Dis-
carding RoIs from the pipeline has advantages. First, the fk
receptive field is not restricted by a RoI: fk sees a much larger
area, which comprises not only the corresponding object Ok

but also its surroundings. Second, we do not need RoI-related
operations like non-maximum suppression which can fail in
case of densely overlapping objects of similar size.

EncoNet is trained to focus Ok’s local pool into a com-
pact disk with coordinates Dk := {x ∈ Ω : ‖x−pk‖2 < r2k}
centered at pk. We call a set of 3D coordinates Gk := Dk ×
{1, . . . ,CF} on Dk a gateway for Ok. Gateways are bottle-
necks which control information flow between the networks.
Opening a gateway Gk forwards Ok’s local pool fk to De-
coNet where it is decoded into a segmentation mask for Ok.
Closing Gk stops this information flow and only zeroes are
forwarded to DecoNet. We use gateways to control the output
of DecoNet, forcing it to predict only one instance mask at
a time during inference. The gateways allow us to separate
touching and overlapping objects. Leaving both gateways of

two overlapping objects open produces a combined (binary)
mask for those objects, whereas opening only a single ob-
ject’s gateway produces an individual instance mask. Since
the position of Gk stays unchanged relative to the object po-
sition, the composite network can unambiguously map from
the source I to the target domain mk.

2.2. Network architecture

DiskMask is a compositional network architecture consist-
ing of two fully convolutional encoder-decoder networks with
unpadded convolutions (Fig. 2). EncoNet predicts gateway
locations and encodes object-specific information. DecoNet
derives a segmentation mask with attention to a specific ob-
ject instance. The networks communicate via the gateways
and inter-net skip connections. A gateway’s content and po-
sition provide object-specific information. Skip-connections
between EncoNet and DecoNet propagate high-resolution in-
formation to DecoNet’s convolutional layers, helping them
recover high-resolution details after going through a bottle-
neck (gateway).

DecoNet is a modified U-Net [1] with half the number of
channels (e.g. C=512 at the lowest feature map resolution).
We replaced the first block that consists of two 3×3 convo-
lution operations (with ReLU activations) and a max-pooling
operation by a single 5×5 convolution operation with stride
2 and a C=64 output feature map. Moreover, we do not use
drop-out and use a pixel-wise sigmoid cross entropy loss for
training after applying a 1×1 reduction layer with one chan-
nel output. The network takes a feature map F of dimension
324×324×64 with activated object features and yields a seg-
mentation mask with dimensions 132×132×1.

EncoNet takes an image crop of size 508×508×3 as input
and yields two tensors of sizes 324×324×64 and 324×324×2 as
output. The architecture is as in DecoNet, but we remove the
intra-net skip connections, forcing the network to pass the sig-
nal through all layers. We increase the number of channels in
the expanding path, setting all convolution outputs to C=256,



except for the last block where we set C=64. We replicate
the last block, resulting in a network with two heads. The
first head ends in a 1×1 convolution layer that defines the di-
mensionality of a feature map F (we use CF = 64). The sec-
ond head ends in a 1×1 convolution layer mapping the output
to disk logits Θ̂ with the number of channels corresponding
to the maximum number of object classes in a dataset (here,
C=2). The network is trained with weighted soft-max cross
entropy loss [1] on the second head’s output.

Skip connections between EncoNet and DecoNet pull the
feature maps from every block’s end in the EncoNet contrac-
tion path to the DecoNet block’s beginning. As in U-Net [1],
we crop the EncoNet feature maps before their concatenation
in DecoNet. Cropping is necessary since we use unpadded
convolutions to reduce computational overhead. We process
images as overlapping tiles if the image size exceeds 132×132.

During inference (see Fig. 2 for step numbers), (1) a for-
ward pass with EncoNet yields a feature map F with object
features and object disk logits Θ̂. After binarizing the log-
its and applying a 3×3 median filter, we find disk positions
D{1,...,N̂} and the number of objects N̂ by extracting con-

nected components in Θ̂. (2) Θ̂ is replicated along its channel
dimension CF times. This results in 3D segmentation masks
Θ̂3D within gateway positions G{1,...,N̂}. (3) A single gate-

way Gi in Θ̂3D, with i ∈ {1, . . . , N̂} at a time is activated
while zeroing the others. (4) Multiplying the feature map F
and Θ̂3D with the active gateway yields the object local pool
fi. (5) DecoNet synthesizes the object segmentation mask m̂i

from fi and the inter-net skip connections. Steps 3–5 are re-
peated for all gateways.

Practically, we use an overlap-tile strategy [1]. An ob-
ject’s gateway is activated in multiple tiles if it is located in
the tiles’ overlap. In this case, the object’s mask may need
to be stitched together from multiple tile outputs, so gateways
must be assigned unique IDs. To achieve this, we first run En-
coNet (corresponding to step (1)) on tiles on the entire image,
extract disk positions and assign IDs via connected compo-
nents, then reprocess the image with the composite DiskMask
network.

2.3. Training

We train the composite network end-to-end for 600k iter-
ations with batch size 1 and the ADAM solver [7] (β1 =
0.9, β2 = 0.999). We start with a learning rate of 1e− 4 and
reduce to 1e− 5 after 300k iterations.

EncoNet is trained on a segmentation map Θ which con-
tains disk segments of radius rk. Similar to [1], we weight the
space between disks pixelwisely to ensure their spatial isola-
tion. To minimize the effect of disk shrinking on the loss, we
additionally weight the disk area by wk := rmax − rk + 1.

Fig. 3. Comparison to baselines, from left to right:
Mask R-CNN, ISOOv2 and DiskMask. On C.Elegans test
set. Colored contours and areas represent predicted and
ground truth masks respectively.

The maximal disk radius rmax is a hyperparameter which we
set to rmax = 9px in our experiments.

After the gateways are set up, we train DiskMask end-to-
end, passing the signal through them. Compared to inference,
we open not one but a subset A ⊂ {1, . . . ,N} of gateways
where each has a 50% chance of being selected. We exclude
the gateways from A if they lay outside or on the DecoNet’s
input borders. Activating multiple gateways accelerates the
training process and simultaneously solves the gateway-to-
instance assignment problem. The gateways are derived from
the ground truth object disks. To prevent DecoNet from over-
fitting to a certain gateway size, we randomly shrink the radii
by [0, rmax − 2] in each iteration. We train DecoNet on the
ground truth segmentation masks m2D of projected object sil-
houettes. We project them by taking the maximum value
of the active object masks m2D(x) = max({mi(x)}), with
i ∈ A. This results in a binary segmentation map (“active
instance masks” and “background”). Objects which do not fit
into the EncoNet’s input do not contribute to the training loss,
since their reference points might reside outside the input.

3. EXPERIMENTS

3.1. Datasets, baselines and metrics

We evaluate our method on three public datasets:
1. OSC-ISBI from “The Second Overlapping Cervical

Cytology Image Segmentation Challenge - ISBI 2015” [8]
(Fig. 1) contains densely overlapping objects of similar size.
We use the same data preprocessing, augmentation, and met-
rics as in [4]. We place reference points at the centers of cell
nuclei. We report the performance on the test set (with 9 im-
ages). Our method improves the state-of-the-art in detection
(measured by object-based false negative rate FNo) while
being on par in terms of segmentation (dice coefficient DC,
pixel-based true positive TPp and false positive FPp rates).
Compared to the second-best approach ISOOv2 [4], we



SBD↑ | DiC | ↓
Wageningen [9] 71.1±6.2 2.2±1.6
IPK [10] 74.4±4.3 2.2±1.3
Salvador et al. [11] 74.7±5.9 1.1±0.9
Brabandere et al. [12] 84.2 1.0
Ren et al. [6] 84.9±4.8 0.8±1.0
Ward et al. (real) [13] 87 −
Kuznichov et al. [14] 88.7 5.3
Ward et al. (synth) [13] 90.0 −
ours 91.7±4.1 1.0±1.1

Table 1. Results on the LSC test dataset (Mean ± SD). Num-
bers for [9] taken from [6].

achieve FNo=.221±.125 (vs. .290±.151), DC= .899±.082
(vs. .895±.079), TPp .904±.105 (vs. .901±.108) and FPp
.001±.001 (vs. .001±.001). The qualitative results are de-
picted in Fig. 1.

2. C. Elegans from the “Broad Biomedical Benchmark
collection” [15] consists of 100 bright-field microscopy im-
ages with objects of irregular shapes (Fig. 1, 3). We normal-
ize the data to the range [0, 1] and delete all loosely connected
components in segmentation masks whose area is smaller
than 4px (due to noisy groundtruth). We sample 50 images
for the training set. To prevent overfitting, we apply rotation,
flipping (horizontal and vertical) and cropping. As refer-
ence point positions we use the objects’ centers of mass. We
compare to two strong baselines:

– ISOOv2 [4] was trained with a fixed shear angle γ =
23◦ using the same training protocol as in our work. We omit
the low-IoU fallback to reference point backprojection [3] as
the bounding boxes do not describe the worms’ shapes well.

– We take a TensorFlow [16] implementation of Mask
R-CNN FPN-50 [17] and adapt some hyper-parameters to
the dataset. We set the nms-threshold to 0.5 and double the
lengths of square anchors at all 5 resolution levels. Simi-
lar to our method, we train it from scratch, we do not sub-
tract the mean intensity value and train the network on the
ground truth masks of original size. For comparison, we re-
port COCO evaluation statistics [18] including average pre-
cision (AP) on 10 IoU-thresholds from 0.5 to 0.95. To show
how accurate the predictions are, we also report single IoU-
thresholds (T): AP50, AP75 and AP90 standing for T=0.5,
T=0.75 and T=0.90 respectively. We also report AP for small
APS and middle-sized objects APM . In all three methods,
we evaluate the final performance on a test set with 25 images,
taking the best performing iteration on the validation set (with
the remaining 25 images). Tab. 2 summarizes the results: All
methods show good detection performance (T=0.5). Mask
R-CNN drops significantly after T=0.8, resulting in a poor
overall AP score. Fig. 3 shows a qualitative comparison.

We also report the inference times for this dataset, which
we compute using a NVIDIA GTX1080Ti GPU and the Caffe
framework [19] with a MATLAB wrapper. We need ca. 1.1s
to process an image of size 520×696×3 without objects, and
on average ca. 1.9s for an image with 14 objects.

3. LSC. To rank our method among others, we partici-

AP AP50 AP75 AP90 APS APM

MRCNN [17] .619 .948 .790 .019 .566 .687
ISOOv2 [4] .718 .919 .839 .412 .677 .772
ours .804 .947 .916 .592 .754 .863

Table 2. Results on the C.Elegans test dataset.

AP AP50 AP75 AP90 APS APM

w/o inter-net skip .622 .937 .763 .033 .582 .675
single rand pnt .779 .934 .894 .562 .733 .829
shallow DecoNet .786 .950 .906 .568 .750 .831
ours .804 .947 .916 .592 .754 .863

Table 3. Ablation experiments on the C.Elegans test dataset.

pate in the CVPPP’17 Leaf Segmentation Challenge (LSC)
[20–22]. We use the A1 subset which contains 128 images
with non-overlapping instance masks. We normalize the data
to the range [0, 1] and split it into training and validation sets
with 102 and 26 images, respectively. We train the network
from scratch with data augmentation (flipping, cropping, ro-
tation and scaling in the range [1,1.5]). After training, we
estimate the best performing training iteration using the val-
idation set. We report our performance (evaluated by [23])
on 33 test images using the challenge metrics: absolute dif-
ference in count (|DiC|) and symmetric best dice (SBD). Our
method outperforms [13] (see Tab. 1: “Ward et al. (synth)”),
where the authors train Mask R-CNN not only on real but
also synthetic data, which gives them a performance boost of
3 SBD-points. The qualitative results are depicted in Fig. 1.

3.2. Ablation experiments

We perform three experiments on C.Elegans (see Tab. 3):
1. “w/o inter-net skip”: we remove inter-net skip connec-
tions. Without them, all information for an object mask must
be passed through the gateway bottleneck. This does not af-
fect detection performance (T=0.5) much, but for higher IoU
thresholds performance drops substantially: inter-net connec-
tions are important for detailed structures.
2. “single rand pnt”: we create fk from a single point which
is randomly sampled from within the predicted disk. This is
the extreme test for robustness against gateway size and lo-
cation. DecoNet is able to make a good segmentation mask
even when the location and size of the gateway strongly devi-
ates from the optimal one.
3. “shallow DecoNet”: we extremely reduce DecoNet’s ca-
pacity, dividing its overall number of channels by 16 (remain-
ing e.g. with C=32 at the lowest resolution): performance
drops but is still ahead of Mask-RCNN.

3.3. Conclusion

We presented a method for instance segmentation that com-
bines all processing in a unified encoder-decoder approach. It
achieves strong performance on all three datasets without pre-
training, domain adaptation, or modelling of synthetic data.
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