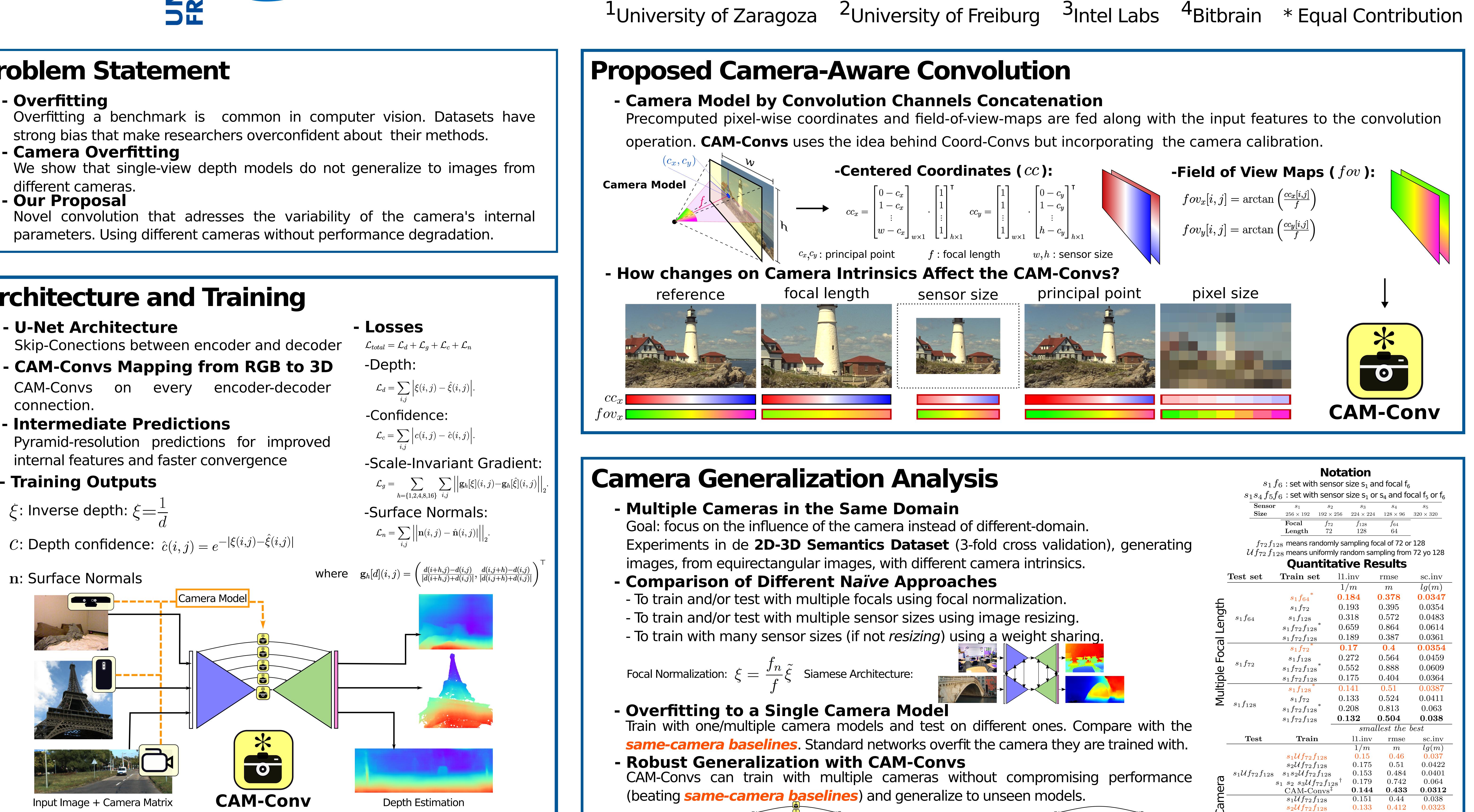


Problem Statement

- Overfitting strong bias that make researchers overconfident about their methods.
- Camera Overfitting different cameras.
- Our Proposal parameters. Using different cameras without performance degradation.

Architecture and Training

- U-Net Architecture
- CAM-Convs on every encoder-decoder connection.
- Intermediate Predictions Pyramid-resolution predictions for improved internal features and faster convergence


- Training Outputs

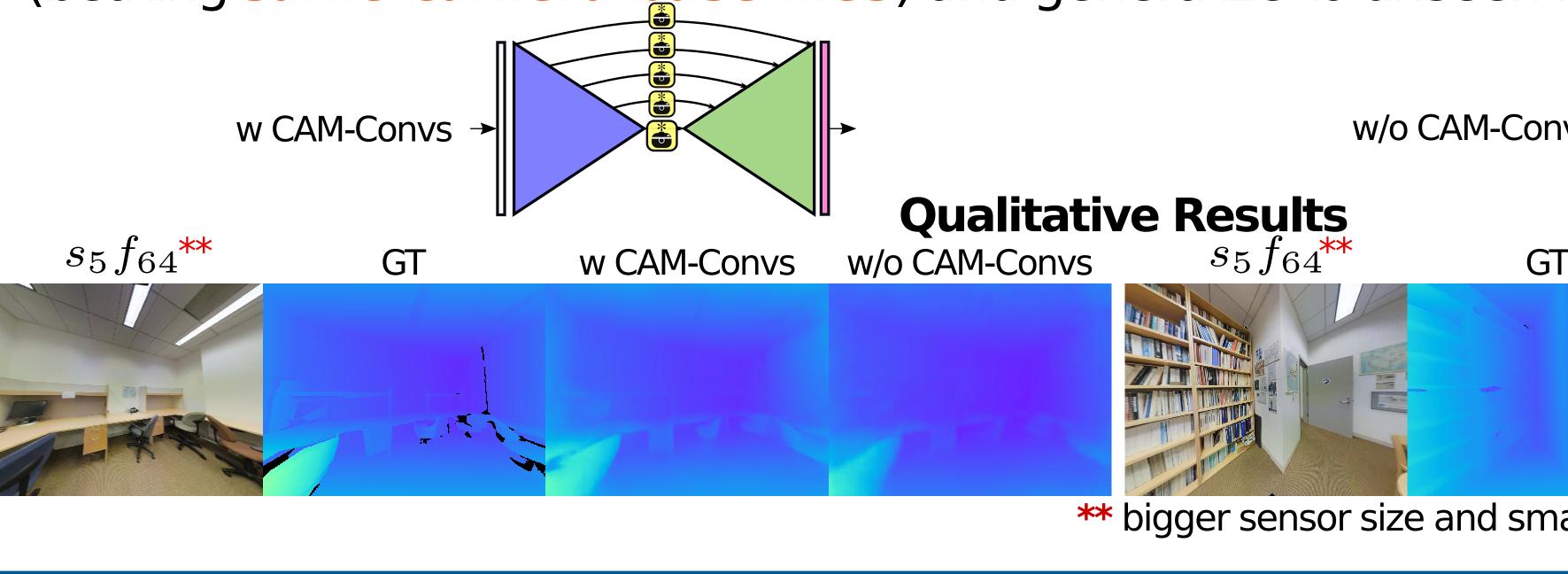
$$\xi$$
: Inverse depth: $\xi = \frac{1}{d}$

- *C*: Depth confidence: $\hat{c}(i, j) = e^{-|\xi(i,j) \hat{\xi}(i,j)|}$
- n: Surface Normals

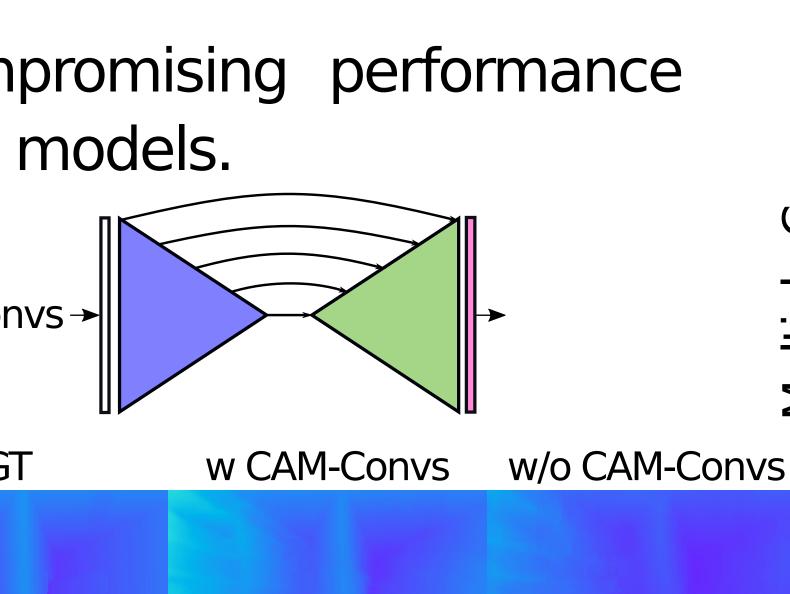
E Bithrain

Acknowledgement

This project was in part funded by the Spanish government, the EU Horizon 2020 project Trimbot2020, the Aragón government and Fundación CAI-Ibercaia. We also thank Facebook for their P100 server donation and gift funding; and Nvidia for their Titan X and Xp donation.

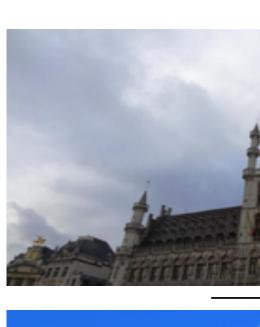


CAM-Convs: Camera-Aware Multi-Scale Convolutions for Single-View Depth CVPR


Jose M. Facil¹ Benjamin Ummenhofer ^{2,3} Huizhong Zhou² Luis Montesano^{1,4} Thomas Brox^{*2} Javier Civera^{*1}

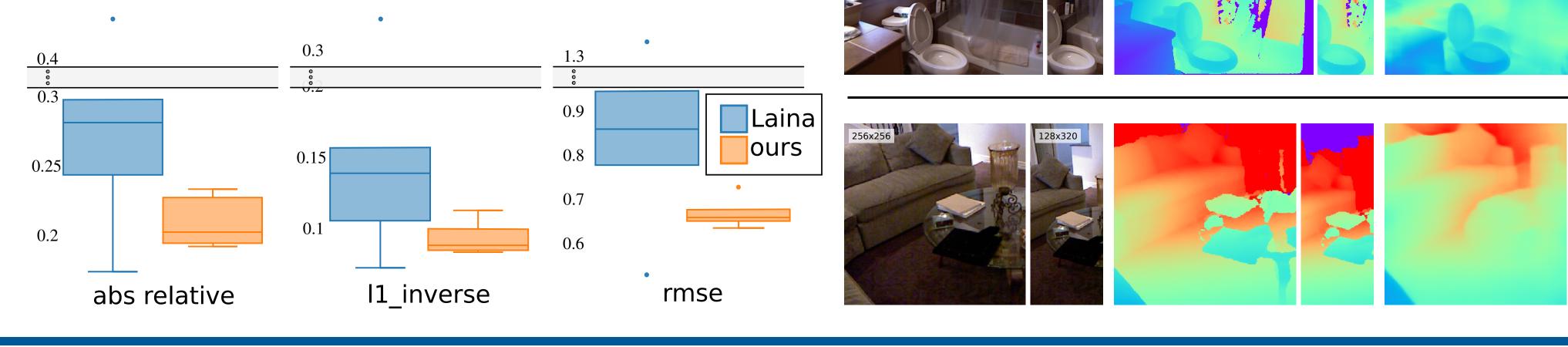
w/o CAM-Convs →

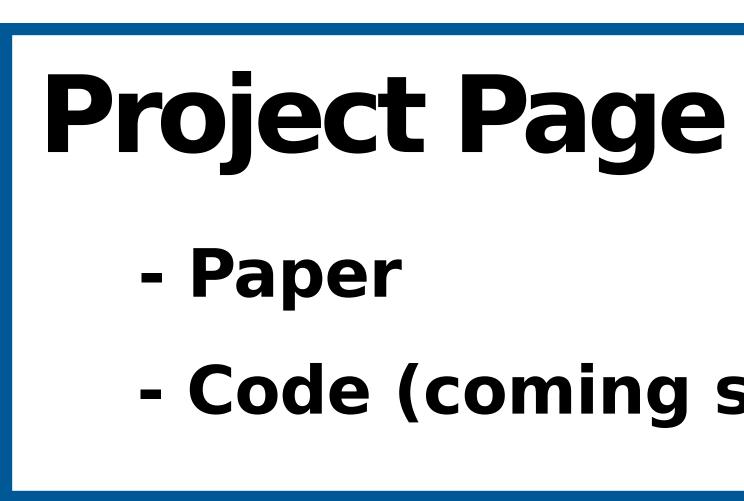
European Union funding for Research & Innovation


-domain.	
s validation),	generating
ntrinsics.	

aller focal length than	training examples

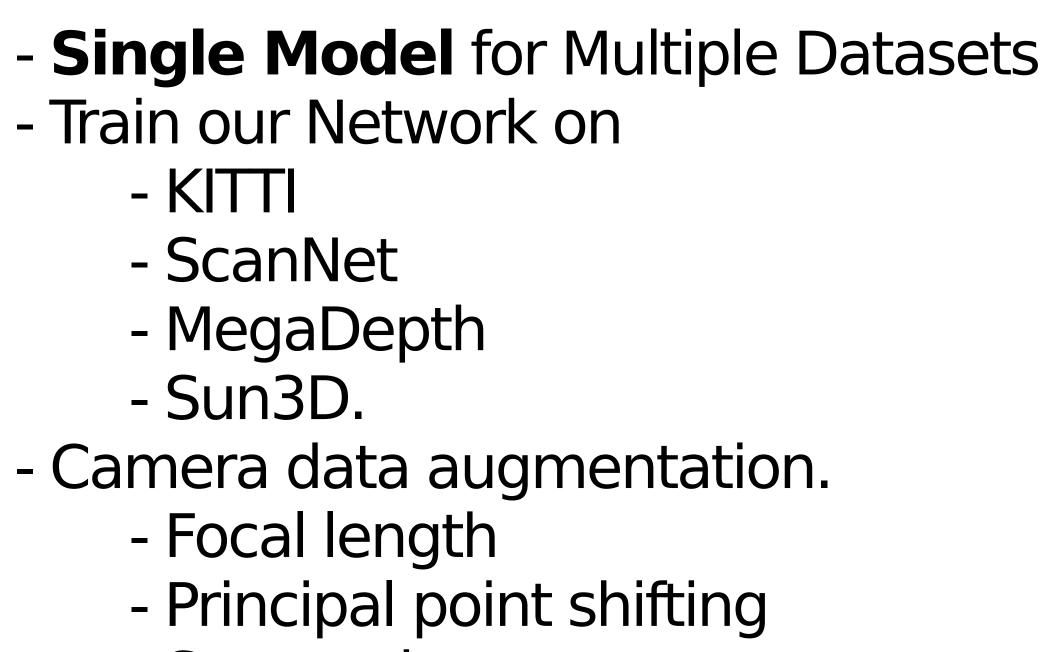
	Notation								
	s_1f_6 : set with sensor size s_1 and focal f_6								
	$s_1s_4f_5f_6$: set with sensor size s_1 or s_4 and focal f_5 or f_6								
	Sensor	$s_1 s_2$	s_3	s_4	s_5				
	Size	256×192 192 ×	$256 224 \times 224$	128×96	320×320				
		$\begin{array}{c c} \mathbf{Focal} & f_{72} \\ \mathbf{Length} & 72 \end{array}$	Ŭ	$\begin{array}{c} f_{64} \\ 64 \end{array}$	-				
	$f_{72}f_{1}$	28 means random	nly sampling fo	ocal of 72 o	r 128				
	$\mathcal{U}f_{72}f_{128}$ means uniformly random sampling from 72 yo 128								
	Quantitative Results								
	Test set	Train set	l1.inv	rmse	sc.inv				
			$\frac{11.111}{1/m}$	$\frac{1 \text{ mbc}}{m}$	$\frac{lg(m)}{lg(m)}$				
		$e_1 f_2 $	0.184	0.378	0.0347				
		${s_1 f_{64}}^* \ s_1 f_{72}$	0.104 0.193	0.395	0.0354				
j	o f		$\begin{array}{c} 0.133 \\ 0.318 \end{array}$	0.533 0.572	0.0354 0.0483				
Focal Leng	$s_1 f_{64}$	$s_1 f_{128}$	$0.518 \\ 0.659$	0.372 0.864	0.0483 0.0614				
		$s_1 f_{72} f_{128}$							
		$\frac{s_1 f_{72} f_{128}}{*}$	0.189	0.387	0.0361				
\mathbf{O}		$s_{1}f_{72}^{*}$	0.17	0.4	0.0354				
Ц	$s_{1}f_{72}$	$s_1 f_{128}$ *	0.272	0.564	0.0459				
Ð	1012	$s_1 f_{72} f_{128}^*$	0.552	0.888	0.0609				
Multiple F		$s_1 f_{72} f_{128}$	0.175	0.404	0.0364				
lt		$s_1 f_{128}$,	0.141	0.51	0.0387				
Ž	$e_1 f_{1,2,2}$	$s_1 f_{72}$	0.133	0.524	0.0411				
		$s_1 f_{72} f_{128}^{\ *}$	0.208	0.813	0.063				
		$s_1 f_{72} f_{128}$	0.132	0.504	0.038				
		-	smallest the best						
	\mathbf{Test}	Train	l1.inv	rmse	sc.inv				
			1/m	m	lg(m)				
		$s_1\mathcal{U}f_{72}f_{128}$	$\begin{array}{c} 0.15 \\ 0.175 \end{array}$	0.46	0.037				
	$a \cdot 1/f - f \cdot a$	$s_2 \mathcal{U} f_{72} f_{128}$	$\begin{array}{c} 0.175\\ 0.153\end{array}$	$\begin{array}{c} 0.51 \\ 0.484 \end{array}$	$\begin{array}{c} 0.0422\\ 0.0401\end{array}$				
ש	$s_1 \mathcal{U} f_{72} f_{128}$	$s_1s_2\mathcal{U}f_{72}f_{128}\ s_1\ s_2\ s_3\mathcal{U}f_{72}f_{12}$		$0.484 \\ 0.742$	0.0401 0.064				
Ъ		$CAM-Convs^{\ddagger}$	20	0.433	0.0312				
Ē		$s_1 \mathcal{U} f_{72} f_{128}$	0.151	0.44	0.038				
Ca	$s_2 \mathcal{U} f_{72} f_{128} = s_1 s_2 s_1 s_2$	$s_2\mathcal{U}f_{72}f_{128}$	0.133	0.412	0.0323				
Multiple ($s_1 s_2 \mathcal{U} f_{72} f_{128}$	0.139	0.436	0.0352				
		$s_1 s_2 s_3 \mathcal{U} f_{72} f_{12}$		0.622 0.39	0.0514 0.0265				
Ţ		$\frac{\text{CAM-Convs}^{\ddagger}}{s_{3}\mathcal{U}f_{72}f_{128}}$	0.131	$\frac{0.39}{0.425}$	0.0203 0.0336				
lu	$s_3 \mathcal{U} f_{72} f_{128} = s_2 \mathcal{U}$	$s_3 \mathcal{U} f_{72} f_{128}$ $s_1 \mathcal{U} f_{72} f_{128}$	0.143	0.44	0.0357				
\geq		$s_2 \mathcal{U} f_{72} f_{128}$	0.145	0.435	0.0356				
Ś		$s_1 s_2 \mathcal{U} f_{72} f_{128}$	0.143	0.451	0.0365				
J _		CAM-Convs [‡]		0.402	0.0283				
		$s_5 f_{64}$	0.227	0.309	0.0356				
		$s_1 f_{64}$	0.292	0.337	0.0598 0.0427				
		$s_1s_2\mathcal{U}f_{72}f_{128}\ \mathrm{CAM} ext{-}\mathrm{Convs}^\ddagger$	$0.369 \\ 0.236$		$\begin{array}{c} 0.0427\\ 0.0362\end{array}$				
		$\bigcirc AWI-\bigcirc OHVS^+$		$\frac{0.289}{nallest \ th}$					
		* trained without							
		$^{\dagger}_{\star}$ images resized to	0	0					
es	[‡] trained with in sensor sizes s_1 , s_2 and $\mathcal{U}f_{72}f_{128}$.								


Experiments on Multiple Datasets



- Testing Dataset

simulating



LONG BEACH CALIFORNIA June 16-20, 2019

- Train Multiple Datasets

Qualitative Results KITTI

- Sensor size

Qualitative Results MegaDepth Ours

Input

Test on NYU and compare with Laina et al 3DV 2016, trained exclusively on NYU. We test more extra cameras on the same test split measure to order generalization across cameras.

Error Distribution NYU

- Code (coming soon)

- Poster

- Contact

Laina

Qualitative Results NYU

Ours