
Supplementary Material for:
Overcoming Limitations of Mixture Density Networks:

A Sampling and Fitting Framework for Multimodal Future Prediction

Osama Makansi, Eddy Ilg, Özgün Çiçek and Thomas Brox
University of Freiburg

makansio,ilge,cicek,brox@cs.uni-freiburg.de

1. CPI Dataset
For evaluating multimodal future predictions, we present

a simple toy dataset. The dataset consists of a car and a
pedestrian and we name it Car Pedestrian Interaction (CPI)
dataset. It is targeted to predicting the future conditioned
on this interaction. In the evaluation one can see whether
methods just predict independent possible futures for both
actors or if they actually constrain these predictions, taking
the interactions into account (visible in Figure 4 of the main
paper). We show more examples of the data in Figure 1.
The dataset and code to generate it will be made available
upon publication. We will now describe the policy used to
create the dataset.

Let xP,t, xC,t denote the locations of car and pedes-
trian at time t. For the car we define a bounding box of
size 40 × 40 pixels and for the pedestrian of size 20 × 20.
We denote the pixel regions covered by these boxes by rP
and rC respectively. We furthermore define the areas of the
scene shown in Figure 2. In the beginning of a sequence
(for t = 0), we use rejection sampling to sample valid po-
sitions for both actors (such that the pedestrian is contained
completely in RP ∪RS and the car contained completely in
RV ). We define a sets of possible displacements for pedes-
trian and car as:

αP = {v(0◦),v(45◦),v(90◦), ...,v(360◦)} and

αC = {v(0◦),v(90◦),v(180◦),v(270◦)} ,

where v(γ) = 10.0(sin(γ), cos(γ)). With adding a dis-
placement to a bounding box r, we indicate that the whole
box is shifted. We furthermore define a set of helper func-
tions given in Table 1. For pedestrian and car, we define the
following states:

sP,t ∈ {TC,SC,C,FC,AC} (see Table 2) and

sC,t ∈ {C,SC,FC,OC} (see Table 3),

and the world state as:

wt = (xP,t,xC,t, E) ,

Name Description
argmini(x) i-th smallest argument
argmaxi(x) i-th largest argument
dtc(x) distance of x to the closest corner

of the pedestrian area RP
ad(a1,a2) Angle difference between actions a1 and a2
ov(ax, R) Number of pixels overlapping from the

bounding box rx of actor x and region R,
after action a was taken

Table 1: Helper functions.

where E is the given environment (in this case the cross-
road). We define the history of states for pedestrian and car
as:

hP,t = (sP,0, ..., sP,t) and

hC,t = (sC,0, ..., sC,t) .

The current state of pedestrian and car are then determined
from their respective histories and the world state:

sP,t = FP (hP,t−1, wt) (see Table 4) and

sC,t = FC(hC,t−1, wt) (see Table 5).

Given the states, we then define distributions over possible
actions and sample from these to update locations:

aP,t ∼
∑
k

πkN (µk,σk), (πk,µk,σk) ∈ AP (sP,t, sC,t) ,

aC,t ∼
∑
k

πkN (µk,σk), (πk,µk,σk) ∈ AC(sP,t, sC,t) ,

xP,t+1 = xP,t + aP,t and

xC,t+1 = xC,t + aC,t ,

where AP (·) and AC(·) are the parameter mapping func-
tions described in Tables 6 and 7. We then use this policy to

1



State Description
TC Moving Towards Crossing
SC Start Crossing
C Crossing

FC Finish Crossing
AC Already Crossed

Table 2: List of possible pedestrian states.

State Description
SC Start Crossing
C Crossing

FC Finish Crossing
OC Out of Crossing

Table 3: List of possible car states.

FP (hP,t−1, wt) =

TC if ¬inter(rP,t, RS) and C /∈ hP,t
SC else if inter(rP,t, RS) and C /∈ hP,t
FC else if inter(rP,t, RP ) and C ∈ hP,t
C else if inter(rP,t, RS)

AC else if ¬inter(rP,t, RS) and C ∈ hP,t

Table 4: List of possible pedestrian states determined by the
history and world state. inter(A,B) = [A ∩ B 6= ∅]. For
region definitions (RS , RP ) see Figure 2.

FC(hC,t−1, wt) =

C if within(rC,t, RX) and C /∈ hC,t
SC else if inter(rC,t, RS) and C /∈ hC,t
FC else if inter(rC,t, RS) and C ∈ hC,t
OC else if ¬within(rC,t, RX)

Table 5: List of possible pedestrian states determined by
the history and world state. inter(A,B) = [A ∩ B 6= ∅].
within(A,B) = [A ∩ B = B]. For region definitions
(RX , RS) see Figure 2.

generate 20k sequences with three image frames. For each
sequence, we generate 10 different random futures resulting
in 200k samples for training in total.

sP,t, sC,t {(π1,µ1,σ1), ..., (πn,µn,σn)} = AP (sP,t, sC,t)

TC,* µ1 = argmin1
a∈αP

(dtc(xP,t + a))

µ2 = argmin2
a∈αP

(dtc(xP,t + a))

π = (0.7, 0.3)
σi = 2.0

SC,{SC,C,FC} µ1 = (0, 0)
π1 = 1.0
σ1 = 0

SC,OC µ1 = argmin1
a∈αP

(ad(a,aP,t−1)− ov(a, RS))

π1 = 1.0
σ1 = 2.0

C,* µ1 = argmin1
a∈αP

(2 ∗ ad(a,aP,t−1)− ov(a, RS))

π1 = 1.0
σ1 = 2.0

FC,* µ1 = argmin1
a∈αP

(ad(a,aP,t−1)− ov(a, RP ))

π1 = 1.0
σ1 = 2.0

AC,* µi = argmaxi
a∈αP

(dtc(xP,t + a)) for i = 1..4

π = (0.4, 0.2, 0.2, 0.2)
σi = 2.0

Table 6: State to distribution parameter mapping for the
pedestrian.

sP,t, sC,t {(π1,µ1,σ1), ..., (πn,µn,σn)} = AC(sP,t, sC,t)

{C, SC, FC}, * µ1 = (0, 0)
π1 = 1.0
σ1 = 0

*, C µi = argmini
a∈αC

(ad(a,aC,t−1)) for i = 1..3

πi = 1/3
σi = 2.0

*, {FC,SC} µ1 = argmin1
a∈αC

(ad(a,aC,t−1))

µ2 = (0, 0)
π = (0.7, 0.3)
σ = (2.0, 0)

*, {OC} µ1 = argmin1
a∈αC

(ad(a,aC,t−1))

µ2 = (0, 0)
π = (0.8, 0.3)
σ = (2.0, 0)

Table 7: State to distribution parameter mapping for the car.

2. Architecture

We base our architecture on the encoder of
FlowNetS [1]. Architecture details are given in Table 8.

2



(a) (b) (c)

Figure 1: Examples from our CPI dataset. Black rectangles denote the current and past locations of the pedestrian, while
black dots indicate its future locations (∆t = 20). Same applies to the car but colored in pink. (a) Pedestrian and car are
heading toward the crossing area. The pedestrian must stop at the corner if the car reaches the crossing before, otherwise he
can cross over one of the two crossing areas. The car must also stop before the crossing if the pedestrian is crossing or can
enter otherwise. (b) The car is leaving the crossing area and therefore only one direction is possible, while the pedestrian
does not need to wait and will cross from one of the two possible areas. (c) The pedestrian is in the middle of crossing and
the future is unimodal in the destination area. The car needs to wait for the pedestrian to finish crossing.

(a) Pavement area RP (b) Vehicle area RV (c) Shared area RS (d) Crossing area RX

Figure 2: Definition of regions of the CPI dataset.

Name Ch I/O InpRes OutRes Input
fc7 1024/1024 8× 8 1× 1 conv6a
fc8 1024/1024 1× 1 1× 1 fc7
fc9 1024/N1 1× 1 1× 1 fc8
fc10 NCH1/500 1× 1 1× 1 fc9
droup-out 500/500 1× 1 1× 1 fc10
fc11 500/N2 1× 1 1× 1 drop-out

Table 8: The top part of the table indicates our base architec-
ture used for MDNs and our first stage. Outputs N1 depend
on the number of possible output parameters. The bottom
part shows the proposed the Mixture Density Fitting (MDF)
stage. OutputsN2 depend on the number of possible output
parameters. Drop-out is performed with dropping probabil-
ity of 0.5.

3. Baselines

3.1. Kalman Filter

The Kalman filter is a linear filter for time series obser-
vations, which contains process and observation noise [2].
It aims to get better estimates of a dynamic process. It is
applied recursively. At each time step there are two phases:
predict and update.

In the predict phase, the future prediction for t+1 is cal-
culated given the previous prediction at t. For this purpose,
a model of the underlying process needs to be defined. We
define our process over the vector x of (location, velocity)
and uncertainties P. The equations integrating the predic-
tions are then:

x′t+1 = F · xt ,
P′t+1 = F · P′t · FT + Q ,

3



σNP EMD
1.0 2.39
3.0 2.35
4.0 3.32

10.0 5.07

Table 9: Comparison study on the kernel width of the non-
parametric baseline.

where F is defined as the matrix (1,∆t; 0, 1) and Q is the
process noise. We do not assume any control from outside
and assume constant motion. We compute this constant mo-
tion as the average of 2 velocities we get from our history
of locations.

In the update phase, the future prediction is computed
using the observation zt+1 as follows:

K = P′t+1 · (P′t+1 + Rt+1)−1 ,

xt+1 = x′t+1 + K · (zt+1 − x′t+1) ,

Pt+1 = P′t+1 −K · P′t+1 ,

where R is the observation noise.
For our task we can iterate predict and update only 3

times, since we are given 2 history and 1 current observa-
tion. However, since our task is future prediction at t + ∆t
and we assume to not have any more observations until (and
including) the last time point, we perform the predict phase
at the last iteration k times with the constant motion we
assumed. This can be seen as extrapolation by constant mo-
tion on top of Kalman filtered observations. In this manner
the Kalman filter is a robust linear extrapolation to the future
with an additional uncertainty estimate. In our experiments
the process and the observation noises are both set to 2.0.

3.2. Single Point

For the single point prediction, we apply the first stage
of the architecture from Table 8, but we only output a single
future position. We train this using the Euclidean Distance
loss lED (Equation (2) of the main paper).

3.3. Distribution Prediction

For the distribution prediction, we apply the first stage of
the architecture from Table 8, but we output only mean and
variance for a unimodal future distribution. We train this
using the NLL loss lNLL (Equation (3) of the main paper).

3.4. Non-parametric

In this variant we use the FlowNetS architecture [1]. The
possible future locations are discretized into pixels and a
probability qy for each pixel y is output through a softmax
from the encoder/decoder network.

Variant EMD-CPI NLL-SDD
EWTAP-MDF 1.70 9.56
EWTAD-MDF 1.57 9.33

Table 10: Comparison between the two proposed variants
of our sampling-fitting framework.

This transforms the problem into a classification prob-
lem, for which a one-hot encoding is usually used as ground
truth, assigning a probability of 1 to the true location and 0
to all other locations. However, in this case such an en-
coding is much too peaked and would only update a single
pixel. In practice we therefore blur the one-hot encoding
by a Gaussian with variance σNP (also referred to as soft-
classification [3]).

We then minimize the cross-entropy between the output
qy and the distribution φ(y|ŷ, σNP ) (proportional to the
KL-Divergence):

LNP = min[−
∑
y

φ(y|ŷ, σNP ) log(qy)] .

We try three different values for σNP as shown in Table 9
and use σNP = 3.0 in practice.

4. Training Details
Training details for our networks are given in Figure 3.

To stabilize the training, we also implement an upper bound
for σ by passing it through a scaled sigmoid function, the
slope in the center scaled to 1.

5. Ablation Studies
5.1. Variants of Sampling-Fitting Framework

We show a comparison between the two proposed vari-
ants of our framework namely EWTAP-MDF and EWTAD-
MDF. We observe that the latter leads to better results on
both CPI and SDD datasets (see Table 10). This shows that
using WTA with lNLL (Equation 3 of main paper) and using
the predicted uncertainties in the MDF stage is in general
better than WTA with lED (Equation 2 of the main paper).

5.2. Effect of History

We conduct an ablation study on the length of the his-
tory for the past h frames. Table 11 shows the evaluation
on both, SDD and CPI. Intuitively, observing longer history
into the past improves the accuracy of our proposed frame-
work on CPI. However, when testing on SDD, a significant
improvement is observed when switching from no history
(h = 0) to one history frame (h = 1), while only slight
difference is observed when using a longer history (h = 2).
This indicates that for SDD only observing one previous

4



1e-05
2e-05
3e-05
4e-05
5e-05
6e-05
7e-05
8e-05
9e-05
1e-04

Learning Rate

1

2

3

4 top-K

5
0

k

1
0

0
k

1
5

0
k

2
0

0
k

2
5

0
k

3
0

0
k

3
5

0
k

4
0

0
k

Iterat ion

0

50

100

150

200

250

300

350

400 m ax

EWTA MDN

Adding

(a) Training schedule for MDNs. We first train for 150k it-
erations using EWTA, optimizing only the means with lED

(Equation 2 of main paper). At 150k, we switch the loss and
optimize lNLL (Equation 3 of the main paper) to obtain also
variances. At 200k we switch from EWTA to the full mixture
density NLL loss. To stabilize the training we set an upper
bound on σ, which we increase during training.

1e-05
2e-05
3e-05
4e-05
5e-05
6e-05
7e-05
8e-05
9e-05
1e-04

Learning Rate

2
4
6
8

10
12
14
16
18
20

top-K

5
0

k

1
0

0
k

1
5

0
k

2
0

0
k

2
5

0
k

3
0

0
k

3
5

0
k

4
0

0
k

4
5

0
k

5
0

0
k

5
5

0
k

6
0

0
k

6
5

0
k

Iterat ion

0

50

100

150

200

250

300

350

400 m ax

First Stage (EWTA)
Second Stage

(MDF)
Joint

Adding

(b) Training schedule for EWTAD-MDF. We first train only
the first stage for 250k iterations using EWTA, optimizing only
the means with lED (Equation 2 of main paper). At 350k, we
add the second stage and train it with the first stage fixed until
550k iterations. After 550k, we remove the loss in the middle
and finetune both stages jointly. To stabilize the training we
set an upper bound on σ, which we increase during training.

Figure 3: Details of training schedules.

h EMD-CPI NLL-SDD
0.0 2.92 15.30
1.0 2.13 9.13
2.0 1.63 9.30

Table 11: Evaluation of different lengths of the history used
in our EWTAD-MDF.

frame is sufficient. While one past frame allows to estimate
velocity, two past frames allow also to estimate also accel-
eration. This does not seem to be of importance for SDD.

5.3. Effect of Time Horizon

We conduct an ablation study to analyze the effect of
different time horizons in predicting the future. Table 12
shows the evaluation on both CPI and SDD. Clearly pre-
dicting longer into the future is a more complex task and
therefore the error increases.

∆t (frames) EMD-CPI ∆t (sec) NLL-SDD
10 1.30 2.5 6.94
20 1.74 5 8.46
40 1.84 10 12.21

Table 12: Evaluation of different time horizons of the future
(∆t) on the proposed framework EWTAD-MDF.

5.4. Effect of Number of Hypotheses

We conduct an ablation study on the number of hypothe-
ses generated by our sampling network EWTAD. Table 13
shows the comparison on CPI and SDD. We observe that
generating more hypotheses by the sampling network usu-
ally leads to better predictions. However, increasing the
number of hypotheses is limited by the capacity of the fit-
ting network to fit a mixture modal distribution, thus ex-
plaining the slightly worse results for K = 80. A deeper
and more complex fitting network architecture can be in-
vestigated in the future to benefit from more hypotheses.

5



K EMD-CPI NLL-SDD
20 1.63 9.33
40 1.57 9.17
80 1.65 9.22

Table 13: Evaluation of different number of hypotheses
generated by our EWTAD sampling network on the pro-
posed framework EWTAD-MDF.

6. Qualitative WTA variant comparison
Following [4], we analyze our EWTA in a simulation to

see if our variant’s hypotheses result in a Voronoi Tessela-
tion. Results are shown in Figure 4. We see that WTA fails,
since it leaves many hypotheses untouched. RWTA simi-
larly leaves 8 hypotheses at the mean position. Our EWTA
not only gives hypotheses as close to Voronoi Tesselation as
possible, it also assigns equal number of hypotheses to each
cluster, which is relevant for distribution fitting.

7. Failure Cases
In Figure 5 we depict several failure cases that we found.

We show results for MDN (first row) and our EWTAD-
MDF (second row). In the first column we see that for a
scene that has never been seen during training, both mod-
els do not generalize well. Note that our predicted variance
is still more reasonable. In the second column, we see an-
other example of missing a mode. This failure is due to the
unbalanced training data, where turning right in this scene
happens very rarely. In the last column, the object of inter-
est is a car, which is an under-sampled class in SDD. The
probablity that there is a car in a scene is usually less than
1% and thus this is also a case rarely seen during training.

6



WTA RWTA

EWTA (Top 10) EWTA (Top 5) EWTA (Top 3) EWTA (Top 2) EWTA (Top 1)

WTA RWTA

EWTA (Top 10) EWTA (Top 5) EWTA (Top 3) EWTA (Top 2) EWTA (Top 1)

Figure 4: The simulation results from WTA, RWTA and EWTA. First 2 rows are for uniformly distributed samples over the
whole space, while the last 2 rows are uniformly distributed samples centered in upper left and bottom right boxes. 300
ground truth samples are shown as red dots and 10 hypotheses as black dots. EWTA produces hypotheses closer to Voronoi
Tessellation. Note that for the third row, 8 hypotheses are moved to the center and only 2 capture the ground-truth samples
and RWTA fails to produce a Voronoi Tessellation.

7



Figure 5: Failure cases for MDN (first row) and our EWTAD-MDF (second row) on SDD. Three past locations of the target
object are shown as red boxes, while the ground truth is shown as a magenta box. A heatmap overlay is used to show the
predicted distribution over future locations. For interpretation see text.

8



References
[1] A. Dosovitskiy, P. Fischer, E. Ilg, P. Häusser, C. Hazırbaş,

V. Golkov, P. v.d. Smagt, D. Cremers, and T. Brox. Flownet:
Learning optical flow with convolutional networks. In IEEE
International Conference on Computer Vision (ICCV), 2015.

[2] R. E. Kalman. A new approach to linear filtering and predic-
tion problems. ASME Journal of Basic Engineering, 1960.

[3] A. Kendall, H. Martirosyan, S. Dasgupta, P. Henry,
R. Kennedy, A. Bachrach, and A. Bry. End-to-end learning
of geometry and context for deep stereo regression. 03 2017.

[4] C. Rupprecht, I. Laina, R. DiPietro, M. Baust, F. Tombari,
N. Navab, and G. D. Hager. Learning in an uncertain world:
Representing ambiguity through multiple hypotheses. In In-
ternational Conference on Computer Vision (ICCV), 2017.

9


	. CPI Dataset
	. Architecture
	. Baselines
	. Kalman Filter
	. Single Point
	. Distribution Prediction
	. Non-parametric

	. Training Details
	. Ablation Studies
	. Variants of Sampling-Fitting Framework
	. Effect of History
	. Effect of Time Horizon
	. Effect of Number of Hypotheses

	. Qualitative WTA variant comparison
	. Failure Cases

