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Supplementary Note 1
U-Net software

Detailed installation instructions for the installa-
tion of the different parts of our software can be
found online on the U-Net project page https:
//lmb.informatik.uni-freiburg.de/
resources/opensource/unet. There we also
provide detailed screencast tutorials on using the U-Net
segmentation plugin for segmentation, detection and transfer
learning (finetuning).

SN 1.1 Custom caffe_unet backend
package

We provide pre-compiled versions of our custom caffe exten-
sion for Ubuntu 16.04 with and without GPU support (Sup-
plementary Files). Please pick the package suitable for your
system:

• caffe_unet_package_16.04_gpu_cuDNN.zip

• caffe_unet_package_16.04_gpu_no_cuDNN.zip

• caffe_unet_package_16.04_cpu.zip

Each zip-file contains:

• Caffe binaries and required libraries (except CUDA and
cuDNN for the GPU versions)

Note that for the GPU versions you need to have the appro-
priate CUDA libraries installed on your system.

SN 1.2 Memory and running time

We analyzed the running times and GPU memory consump-
tion of the 2D U-Net with and without cuDNN enabled given
different input image sizes (Fig. SN1.1). We iteratively in-
creased the input image size and measured the used GPU
memory. The measurements were obtained using an nVidia
GTX Titan X with 12GB of total memory and almost fit a lin-
ear function. Additionally we performed measurements with
GPUs with less total memory, but we always observed mea-
surements approximately lying on the curve. Measurements
were performed using the caffe MATLAB interface and the
nVidia nvidia-smi tool on a standard workstation run-
ning Ubuntu 16.04.

Use of cuDNN reduces the memory footprint dramatically,
therefore we highly recommend to use cuDNN if possible.
3D networks cannot be used without cuDNN. Even with
12GB and cuDNN enabled the maximum input tile shape
for a four-stage network with the same number of channels
per stage as in the 2D case would be around 1403px which
is below the minimum required tile shape of 1883px to pre-
dict a volume of only 43px! Our 3D model allows to train
with an input tile shape of 116×252×252px producing out-
put tiles with shape 28×68×68px. Processing a 10243px
volume with this model requires approximately four hours
pure GPU time.
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Figure SN1.1: U-Net running time and GPU memory consumption
with increasing input tile shape. Measurements were performed
on an nVidia GTX Titan X with 12GB DDR5 memory with cuDNN
enabled. Running time excludes data transfer between GPU and
host memory.

SN 1.3 The U-Net segmentation plugin

The ImageJ/Fiji plugin (Fig. SN1.2) allows intuitive applica-
tion of the U-Net for detection and segmentation tasks with
pre-trained models in standard lab environments within min-
utes. Any image format accessible through ImageJ or one of
its numerous extensions (e.g. contained in Fiji) can be pro-
cessed. Prerequisite for successful segmentation is correct
setup of the element size of the image via the ImageJ Cal-
ibration interface. The plugin then takes care of intensity and
scale normalization and calls the caffe backend.

U-Net detection and segmentation can be easily embedded
into automated image processing pipelines via Macro calls
that can be recorded using ImageJ’s macro recorder. Created
models and their trained parameters are persistently stored
to HDF5 files for re-use, refinement and distribution to other
labs.

Moreover, the plugin allows to adapt pre-trained models to
new datasets via transfer learning when selecting the "Fine-
tuning" task. Opened images with annotation overlays are
presented to the user as potential training samples. Training
samples can be left out from training and used as validation
images for monitoring model evolution during training by
means of loss, IoU and F-measure. Transfer learning can be
suspended at any time and continued from a saved snapshot.
If using a remote server the snapshot can be transferred to
another lab computer running the U-Net Segmentation plu-
gin.

The plugin’s "Create New Model" function allows more
advanced users to create custom U-Net models with vari-
able depth per dimension and number of initial feature
channels and train them from scratch on their own data.
Experts can also directly provide caffe protocol buffer
textfiles (prototxt) containing arbitrary encoder-decoder ar-
chitectures and corresponding solver settings and con-
vert them to plugin-compliant format using the python
script python/unet/createModeldefH5.py in the
caffe_unet packages.
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Figure SN1.2: The Fiji U-Net Segmentation plugin. Top left: U-Net Segmentation manager; Top right: Fiji interface; Center: U-Net Segmen-
tation parameters dialog; Bottom left: Raw data; Bottom right: segmentation result.

For installation simply check the "U-Net Segmentation" site
in the Fiji updater.
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Supplementary Note 2
Annotation guide

Proper image annotation is the key for learning algorithms to
produce expected results. Given a pre-trained model as e.g.
the 2D cell segmentation model, we showed that already very
few annotated objects or images allow to adapt the model
to a new dataset. But in which form do we have to provide
these annotations? There are two aspects of annotation: First,
what to annotate to obtain good results with only few data
and secondly, how to generate and provide the annotations
technically. This section will cover both aspects.

SN 2.1 What to annotate?

Be consistent Decide what you want to annotate and
prepare a precise annotation protocol before you start an-
notating. A description like mark all cells with a point, is
insufficient, instead write: Place a point marker in the center
of the nucleus of every cell. If possible give your annota-
tion protocol to a colleague and ask her to annotate the same
data. Compare the annotations using quantitative measures
like IoU (segmentation) or F-measure (detection) and dis-
cuss discrepancies. If there are systematic differences find a
consensus and extend the protocol accordingly.

Especially out-of-focus parts of objects pose a problem, you
can decide to guess the boundary of those objects for simple
counting tasks or only annotate the part that is in focus which
may lead to object fragmentation. Both is not desirable but
you have to decide for a clear strategy based on what you
want to measure. Ignoring out-of-focus parts does not allow
the network to learn how to deal with them and you might
get disappointing results.

Quality over quantity For segmentation, always anno-
tate full objects and follow the object contour as accurately
as possible. For detection, only annotate positions that can
be uniquely localized, e.g. line/plane intersections, corners,
centers of round structures, . . . . From our experience it is
better to provide few complete high quality annotations than
providing a large number of partial or inaccurate annotations.

Capture the whole range of visual appearances
The U-Net is quite strong in interpolating between seen ob-
ject appearances, but it poorly extrapolates to appearances
that are very different from what it saw during training.
Therefore selecting a proper subset of objects or images cap-
turing the whole range of possible appearances is very im-
portant. Objects that only differ by location, orientation or
slight deformation can be treated as identical when selecting
"good" training samples, because these operations are ap-
plied during data augmentation. Do not present only patho-
logical cases, then the network cannot learn the usual ap-
pearance. Instead try to keep the ratio of usual and unusual
appearances as realistic as possible to avoid a training bias

towards rare appearances and classes. E.g. if one out of hun-
dred cells looks "somehow odd", annotating only ten normal
cells and one odd cell is still fine. But, when annotating only
one normal and one odd cell the network might learn that
every other cell should look "odd".

The higher the visual variability of either objects or back-
ground, the more annotations are required. I.e. if you have
clean samples without background clutter and your fore-
ground objects are evenly stained with a fluorescence stain,
ten cells can already be sufficient. But, e.g. in the case of the
pollen dataset were particles were automatically collected
from polluted air in an urban environment, water droplets,
air inclusions, dust particles and other tiny objects produce
lots of background clutter. This leads to many false positives
which can only be counteracted with more training data and
longer training times.

Keep some annotations for validation We highly
recommend to use a part of your annotated data for validat-
ing your trained model, i.e. this part is not used for train-
ing. Training without validation set is of course possible, but
if you want to know how well your model will perform on
new unseen data of the same kind, you must test your model
on unseen yet annotated data. Especially with very small
amounts of training data, validation on a left-out set is the
only way of identifying overfitting. We recommend a split of
approximately 75% of your annotated data for training and
25% for validation.

SN 2.2 How to annotate in ImageJ?

The U-Net segmentation plugin supports two kinds of anno-
tations, region of interest (ROI)-based annotations and mask
annotations which are prepared in a separate (typically 16-
Bit integer) image. In both cases annotations must be associ-
ated with the raw data by embedding them as overlay. After
embedding, image and annotations form a training sample
that is recognized by the plugin. Both, ROI and mask annota-
tions are equally well suited for network training and transfer
learning but require slightly different preparation steps.

SN 2.2.1 ROI-based image annotation for
instance-aware semantic segmentation

General notes ROI-based annotation is one of ImageJ’s
core capabilities and is not part of our plugin nor does it re-
quire third-party plugins. You manually generate and ma-
nipulate ROIs using the regional selection tools: Rectan-
gle, Oval, Ellipse, Selection Brush, Polygon or Freehand.
For simple segmentation tasks you can also consider us-
ing the Wand (tracing) tool to obtain an initial segmen-
tation. ROIs are managed using the ImageJ ROI Man-
ager. Please read the "Selections" section of the ImageJ
User’s guide (https://imagej.nih.gov/ij/docs/
guide/146-10.html) for a comprehensive overview
over ROI generation and manipulation. Use ROI manager
"Add" to add the current selection to its list of ROIs. If you
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want to modify an existing ROI, simply select it in the ROI
manager, modify the selection using ImageJ’s selection tools
and click "Update" in the ROI manager to replace the se-
lected ROI by the new selection.

Avoid overlapping ROIs! Behavior is undefined in the case
of overlapping ROIs. Internally the plugin turns ROI anno-
tations to mask annotations which only allow for one label
per pixel. The masks are generated using the painter’s algo-
rithm, i.e. ROIs are painted irrespective of whether affected
pixels already contained label information. Therefore, the la-
bel from the last ROI that is painted will be used. We do not
give any guarantees that ROIs are painted in the order they
are shown in the ROI manager.

Class label information is inferred from the ROI name. There
is one special case: If you name a ROI "ignore", pixels in
the selected region will not contribute to the training. There
are two use cases: First, the image contains many very simi-
lar instances and a subset already covers all possible appear-
ances, then select only a part of the image for annotation and
turn the rest into one big ignore ROI. Secondly, if you are
not able to provide accurate annotations in a region, you can
tell the network to ignore it. However, this has been taken
with a grain of salt, because these regions would in fact be
most valuable for network training. Try to provide annota-
tions wherever possible even if they are not perfectly pixel-
accurate. This gives you control over how the network will
address problematic regions.

2D foreground/background segmentation Create
one ROI per object. We recommend to start with a simple
shape as e.g. an ellipse (Right-click "Oval" selection for its
alternatives) for round cells and add fine details using the
"Selection Brush" tool (Another alternative of the "Oval"
tool). The selection brush adds to the current selection when
painting from its inside and subtracts from the selection
when painting from its outside. When you are satisfied with
the segmentation, add it to the ROI manager (Hit "Ctrl+T" or
click "Edit→Selection→Add to Manager"). Continue with
the next object until all foreground objects in the image are
annotated. Finally, turn the selections in the ROI manager
into an Image Overlay by clicking "Image→Overlay→From
ROI manager". Uncheck "Labels are classes" during transfer
learning.

2D multi-class segmentation Create one ROI per
class and object. Sequentially add new ROIs to the ROI man-
ager and rename them to the object class name, e.g. cell, cy-
toplasm, nucleus, membrane, . . . . Don’t use class names like
"organelle-1", "organelle-2", since the "-<number>" part will
be stripped when parsing the class name. After annotating all
objects, turn the selections in the ROI manager into an Im-
age Overlay by clicking "Image→Overlay→From ROI man-
ager". Check "Labels are classes" during transfer learning.

3D foreground/background or multi-class segmen-
tation We recommend to annotate only non-consecutive

selected slices, at least one showing upper cell boundaries,
one showing central cuts and another one for lower cell
boundaries. More annotated slices help, but increase anno-
tation effort and difficulty. Especially in the case of consec-
utive slices it is very hard to annotate object boundaries such
that they lead to smooth surfaces in depth. If only sparse
annotations are given the network will usually learn to pro-
duce smooth 3D segmentations which is most often desired.
For slices you don’t want to annotate, select the whole slice
(Hit "Ctrl+A" or click Edit→Selection→Select all) add it
to the ROI manager and rename it to "ignore". Process all
other slices as described in the 2D case and sequentially add
new ROIs to the ROI manager for each object. Change the
ROI names to distinguish object instances. ROI names must
start with the class name, e.g. cell, cytoplasm, nucleus, mem-
brane, . . . , followed by a hash ("#") symbol and a unique
instance number. Trailing parts of the ROI name containing
only numbers or dashes are ignored, e.g. ROI label "cell#5-
123-456" will be translated to class "cell" instance "5" and
everything following the first dash being ignored. Make sure
that annotations belonging to the same object have the same
instance number. After annotating all objects, turn the selec-
tions in the ROI manager into an Image Overlay by clicking
"Image→Overlay→From ROI manager". Check "Labels are
classes" during transfer learning.

SN 2.2.2 ROI-based image annotation for
multi-class detection

2D Instead of the regional ROI tools, use the Multi-Point
tool (alternative under "Point" tool). For each class, add all
locations to the multi-point-ROI and add the ROI to the ROI
manager (Hit "Ctrl+T" or click "Edit→Selection→Add to
Manager"). Change the ROI names to their class label, e.g.
GFP, RFP, Colocalization, . . . . Don’t use class names like
"marker-1", "marker-2", since the "-<number>" part will be
stripped when parsing the class name. Especially in the case
of multi-point selections we recommend to use different col-
ors for the different classes during annotation. The marker
color can be changed using the ROI properties in the ROI
manager. You can edit multi-point-ROIs by selecting them
in the ROI manager. Then click into the image to add new
points, drag points to new locations or delete points by click-
ing them with pressed Ctrl-key. After annotating all objects,
turn the selections in the ROI manager into an Image Overlay
by clicking "Image→Overlay→From ROI manager". Check
"Labels are classes" during transfer learning.

3D Process all slices of your image as described in the 2D
case.

SN 2.2.3 Mask-based image annotation for
instance-aware semantic segmentation

Mask-based image annotation is the most common way of
annotating images. Annotated data in public repositories
usually come with mask annotations, due to their simplic-
ity and the possibility to generate mask images with many
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popular image processing tools. ImageJ’s core support for
generating mask images is comparably poor because paint-
ing of integer labels is not supported by the UI of core
ImageJ. Here a third-party plugin, the Segmentation Edi-
tor (Plugins→Segmentation→Segmentation Editor) comes
to the rescue. Please refer to the tutorial of the authors of the
plugin for a detailed description on how to use it (https:
//imagej.net/Segmentation_Editor). The seg-
mentation editor opens a second window that shows the gen-
erated segmentation masks live.

Important remark: The U-Net segmentation plugin treats
all pixels with value zero as "ignore" regions, pixels with
value one are background, pixels with values greater than
one are foreground objects. This differs from publicly avail-
able annotations and the Segmentation Editor which have no
notion of ignored regions. There, a value of zero indicates
background and values greater than zero mark foreground
objects. You can still train the U-Net with these annotations,
but have to add a value of 1 to all slices of the mask image
using "Process→Math→Add..." before adding the masks as
Overlay to the raw image. Please make sure that annotations
from a public source are fully annotated, especially in the
ISBI Cell Tracking Challenge this is not guaranteed. In order
not to introduce false negatives during training add ignore re-
gions over cells without annotation.

2D foreground/background segmentation Rename
the first class (Exterior) to "ignore" and change its color to
black. Rename the second class (Interior) to "background"
and change its color to mid gray. Select the part of the im-
age you want to annotate (all if you want to annotate the
whole image) and add the selected region to the background
class. Now use the ImageJ ROI tools to annotate the cells.
Give each cell a unique label for instance-aware seman-
tic segmentation. When all cells are annotated, click "OK"
and embed the mask annotations into the raw image us-
ing "Plugins→U-Net→Utilities→Embed mask annotations"
and uncheck "Labels are classes" during transfer learning.

2D multi-class segmentation Rename the first class
(Exterior) to "ignore" and change its color to black. Rename
the second class (Interior) to "background" and change its
color to mid gray. Add new labels for each class you want
to annotate. Select the part of the image you want to an-
notate (all if you want to annotate the whole image) and
add the selected region to the background class. Now use
the ImageJ ROI tools to annotate the objects of the differ-
ent classes and add them to the corresponding class mask.
When all objects are annotated, click "OK" and embed the
mask annotations into the raw image using "Plugins→U-
Net→Utilities→Embed mask annotations" and check "La-
bels are classes" during transfer learning. Instance informa-
tion cannot be encoded in this case, because the label is
needed for the class information. Ensure that a gap of at least
one pixel remains between different instances.

SN 2.3 Saving annotations

After embedding the annotations into the raw image you
can store the prepared training samples as TIFF. ImageJ will
store both raw image and annotations to the same file, so
they can be easily transfered and used again later. Don’t use
other formats like PNG or JPEG, otherwise your annotations
will be "burnt" into the raw image and you won’t be able to
extract them!
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Supplementary Note 3
Experimental validation on
real-world applications

SN 3.1 Cell detection, classification, and
counting

Cell counting is typically achieved by manually marking
the cell/nucleus centers on a small image set and statisti-
cally evaluating the resulting counts. In screening experi-
ments with control populations and several replicates, man-
ual annotation is time consuming and often results are re-
ported only for a selected (ideally representative) subset of
the recorded data.

The U-Net was tested in two such screening experiments
– one co-localization experiment in the context of optoge-
netics and one proliferation quantification experiment in the
context of wound healing. In both cases, a hand-annotated
dataset was created and a subset of this was used to train
the U-Net. After training, the U-Net processed all remaining
images of the dataset for model evaluation.

SN 3.1.1 Co-localization analysis in optogenetics
(2D)

Sample preparation In order to histologically quan-
tify the opsin expression as part of a typical optoge-
netic experiment, we stereotactically injected 5 wild type
rats at several different sites with three different con-
structs (Tab. SN3.1). These constructs included the mem-
brane channel channelrhodopsin-2 (ChR2)15, which acti-
vates neurons when driven with blue light and the chlo-
ride pump enhanced Natronomonas pharaonis halorhodopsin
(eNpHR3.0)16, which inhibits spiking when driven with yel-
low or green light. The coexpression of opsin and fluores-
cent protein leads to strong labeling not only of the cell
soma but also dendrites and axons, rendering the detection
of opsin expressing cell bodies difficult. Thus, we added a
2A self-cleaving peptide (2AP)17 in one of the constructs,
in order to separate the expression of opsin and fluores-
cent protein, which simplifies the detection of opsin express-
ing cell bodies. Our promoter choices included human Syn-
pasin (hSyn), which has been implicated in the regulation
of neurotransmitter release at synapses, particularly at glu-
tamatergic and GABAergic synapses18, and has been de-
scribed to label excitatory as well as inhibitory neurons,
and Ca2+/calmodulin-dependent protein kinase II (CamKII),
which is involved in many signaling cascades and has been
described as targeting excitatory neurons19. As viral vectors,
we chose adeno-associated virus (AAV) serotype 2 pseudo-
typed with serotype 5 (here referred to as AAV5). We in-
jected 1µl of virus at several sites (Tab. SN3.1). After an
expression time of 4-5 weeks, we used standard histologi-
cal techniques to determine expression patterns in cryosec-
tions of 40µm. All sections were co-labeled with a mono-
clonal antibody staining adding a second fluorescent channel
in red. Image were recorded with a ZEISS LSM510 Meta mit

Axio Imager.Z1 Stativ equipped with a ZEISS LD LCI Plan-
Apochromat 25x/0.8 Imm Corr DIC M27 objective using
ZEN 2010 B SP1 Version 6.0.0.485. Pixel size: 0.17µm/px.

Approval of animal experimentation Animal experi-
mentation was approved by the Regional Council of Freiburg
(G15/11).

Image Annotation and label generation The overall
dataset consists of 12 images, each containing a red chan-
nel showing the antibody stain and a green channel show-
ing eYFP expression. An expert annotated cells in rectan-
gular regions of all images (Annotator 1). To estimate hu-
man annotation variance, two additional experts (Annotator
2 and 3) annotated subsets of these image regions. In total,
five images were annotated by all three annotators, two im-
ages only by Annotator 1 and 2 and the residual five only
by Annotator 1. Experts annotated cells in the red and green
channels separately by placing one roughly centered point
in nuclei of cells showing signal in the corresponding chan-
nel using ImageJ’s Multi-Point tool. We denote the gener-
ated point sets as G (green channel) and R (red channel).
Cells annotated in both channels with a distance of less than
dcoloc = 10px (3.4 µm) were treated as co-localization. In
case of co-localization, both points were removed from their
corresponding point sets and their average position added to
a third point set C. From these three sets, ground-truth labels
were generated using

y (x) :=


0 ∀p ∈ G ∪R ∪ C : ‖x− p‖ > rdisk

1 ∃p ∈ G : ‖x− p‖ ≤ rdisk
2 ∃p ∈ R : ‖x− p‖ ≤ rdisk
3 ∃p ∈ C : ‖x− p‖ ≤ rdisk

with disk radius rdisk = 5px (1.7µm).

Weight computation parameters: λ = 0 (no instance
separation), vbal = 0.1, σbal = 0px, radius of the ignored
region around each annotated point rign = 15px (5.1µm).

Data augmentation We applied random rotation drawn
from a uniform distribution in the full 360◦ range and elastic
deformation with random seed displacement vectors drawn
from a Gaussian distribution with standard deviation 10px
along each dimension. Seed grid point distance: 100px.

Training We trained the U-Net on annotations of annota-
tor 1 and 2 on the subset of images containing annotations
from both. We left out the residual five images from train-
ing to quantify the performance of U-Net on new images.
Training from scratch and transfer learning were performed
at original resolution (pixel size: 0.34×0.34 µm/vx).

We trained one network from scratch (U-Nets) and in a sec-
ond experiment applied transfer learning to adapt the generic
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Figure SN3.3: Comparison of manual annotation and automatic detection of opsin-expressing cells. (a–d) Top row: Image 8 (see
Tab. SN3.1); Bottom row: Image 6. (a) Antibody stain (red channel); (b) eYFP expression (green channel). (c) Comparison of inde-
pendent annotations of three experts; ©: Annotator 1; 4: Annotator 2; 5: Annotator 3. Marker color indicates kind of signal. Red and
green: Cell shows only signal in the channel with corresponding color; Yellow: co-localization, i.e. cell shows signal in both channels.
(d) Detection result of the U-Net (?) compared to annotator one (©). (e) Quantitative comparison. Agreement among three independent
human experts (Annot. 1–3), a U-Net trained from scratch (U-Nets), and a generic U-Net pre-trained for 2D cell segmentation and adapted
to the co-localization detection task (U-Netf ). Scores show the average F-measure with matching tolerance dmatch = 5px (1.7µm) on five
test images. Network training was repeated three times (rep 1-3) leading to comparable results. Scale bar: 50µm.

Table SN3.1: Description of the samples used in the optogenetic 2D co-localization experiments.

Image Vector and virus titer (vg/ml) Antibodies Area Rat Injected brain area (volume) Expression time
(green) (red) (weeks)

5 hSyn-ChR2-eYFP NeuN – AlexaFluor647 Stratium 1 Striatum; AP 1; ML 3,4; DV -4,5 (2µl) 5
6 hSyn-ChR2-p2A-eYFP (1.86 · 107) NeuN – AlexaFluor647 Cortex 2 M1; AP 1,7; ML 2,5; DV -1,5 (1µl) 4
7 CamKII-eNpHR-eYFP (5.2 · 1012) CamKII – AlexaFluor647 Cortex 3 M1; AP 1,7; ML 2,5; DV -1,5 (1µl) 4
8 CamKII-eNpHR-eYFP (5.2 · 1012) CamKII – AlexaFluor647 Cortex 3 PFC; AP 3,2; ML 0,6; DV -3,5 (1µl) 4
9 CamKII-eNpHR-eYFP (5.2 · 1012) CamKII – AlexaFluor647 Cortex 3 M1; AP 1,7; ML 2,5; DV -1,5 (1µl) 4

10 CamKII-eNpHR-eYFP (5.2 · 1012) CamKII – AlexaFluor647 Cortex 3 M1; AP 1,7; ML 2,5; DV -1,5 (1µl) 4
11 hSyn-ChR2-p2A-eYFP (9.89 · 109) PV – AlexaFluor647 Cortex 4 M1; AP 1,7; ML 2,5; DV -1,5 (1µl) 4
12 hSyn-ChR2-p2A-eYFP (9.89 · 109) PV – AlexaFluor647 Stratium 4 Stratium; AP 1; ML 3,4; DV -4,5 (1µl) 4
13 hSyn-ChR2-p2A-eYFP (9.89 · 109) PV – AlexaFluor647 Cortex 4 M1; AP 1,7; ML 2,5; DV -1,5 (1µl) 4
14 hSyn-ChR2-p2A-eYFP (9.89 · 109) PV – AlexaFluor647 Cortex 4 M1; AP 1,7; ML 2,5; DV -1,5 (1µl) 4
17 CamKII-eNpHR-eYFP (5.2 · 1012) CamKII – AlexaFluor647 Cortex 5 PFC; AP 3,2; ML 0,6; DV -3,5 (1µl) 4
19 CamKII-eNpHR-eYFP (5.2 · 1012) CamKII – AlexaFluor647 Cortex 5 M1; AP 1,7; ML 2,5; DV -1,5 (1µl) 4
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2D cell segmentation model (Sec. SN 3.2.1) to this detection
task (U-Netf ).

U-Nets: Input patch size: 508 × 508 (2 channels); Solver:
Stochastic gradient descent (SGD); Base Learning rate:
10−3; Momentum: 0.9; Learning rate decay: 10−4 after
150000 iterations; Iterations: 300000.

U-Netf : Input patch size: 508 × 508 (2 channels); Solver:
ADAM20; Base learning rate: 10−4; Momentum: 0.9; Mo-
mentum2: 0.999; Iterations: 30000.

Results The considered task is challenging due to the
large variety in terms of cell shape, size and signal-to-noise
ratio (Fig. SN3.3a,b). Inconsistencies between the expert an-
notations (Fig. SN3.3c) confirm this claim. We quantify an-
notation/detection agreement by the F-measure with match-
ing tolerance dmatch = 5px (1.7µm) (Fig. SN3.3e). The F-
measure ranges from 0 (no agreement) to 1 (perfect agree-
ment) of two annotations (Online Methods). Two annotations
within the matching tolerance agree if they share the same
class label.

The agreement of U-Net with the experts is comparable
to the agreement among experts (Fig. SN3.3). U-Nets per-
formed a bit better than the generic U-Netf . However, for
from scratch training we changed the training schedule to
better cope with noisy annotations, while in the transfer
learning experiment we used the training parameters from
the base-model which resembles the behaviour of the ImageJ
plugin.

SN 3.1.2 Clonal analysis of confetti-labeled
microglial cells during brain recovery (3D)

To understand the clonal relationship of microglia, or brain
immune cells, that rapidly proliferate in response to injury,
we analyzed a transgenic mouse model, "Microfetti", in
which microglial cells express Confetti colors21.

Sample preparation Unilateral facial nerve transection
was performed in tamoxifen-treated Microfetti mice to in-
duce the expression of Confetti labels in microglial cells. Mi-
croglial cell proliferation in response to the lesion occurred
in the facial nucleus in the ventral pons. Contralateral facial
nucleus was used as healthy control. Mouse brains were fixed
at onset of injury (2 d after lesion), peak of injury (14 d after
lesion) and recovery (60 d after lesion) for microglial marker
IBA-1 immunohistochemistry, nuclear counterstain and con-
focal imaging as detailed previously21. In total, 301 fixed
mouse brain sections from 30 animals at different stages of
injury progression up to recovery were imaged.

Approval of animal experimentation Animal experi-
mentation was approved by the Regional Council of Freiburg
(G13/107).

Image annotation and label generation Semi-
automatic cell detection followed by manual quality con-
trol21 were performed for all microglial cells positive for
the IBA-1 marker, as well as Confetti-labeled microglia
(Fig. SN3.4a). Centers of cell nuclei of microglia cells were
annotated in 2D maximum intensity projections along z us-
ing a custom MATLAB interface. All channels – a refer-
ence channel showing all IBA-1-positive microglia cells and
four Confetti channels – were annotated independently. For
each annotated 2D location its depth z was automatically es-
timated as the local maximum along the z-axis. All anno-
tated points were put into separate point sets M (all IBA-
1-positive microglia) and C1, . . . C4 for the different Con-
fetti markers. Point annotations occurring both inM and any
Confetti channel (tolerance: dcoloc = 10µm) were removed
from M . Ground truth labels were rendered as spheres in a
3D map encoding six classes using

y (x) :=



0 ∀p ∈M ∪ C1,...,4 : ‖x− p‖ > rsphere

1 ∃p ∈ C1 : ‖x− p‖ ≤ rsphere
2 ∃p ∈ C2 : ‖x− p‖ ≤ rsphere
3 ∃p ∈M : ‖x− p‖ ≤ rsphere
4 ∃p ∈ C3 : ‖x− p‖ ≤ rsphere
5 ∃p ∈ C4 : ‖x− p‖ ≤ rsphere

with sphere radius rsphere = 5vx at voxel size
(0.621, 0.621, 1.5)µm/vx. Clones of microglial cells were
identified by clusters of Confetti-labeled cells that were
above the 98th percentile range of Monte Carlo simula-
tions21. The images were randomly split into a training set
containing 80 stacks and a test set containing the remaining
221 stacks.

Weight computation parameters: λ = 0 (no instance
separation), vbal = 0.1, σbal = 0vx, rign = 15vx.

Data augmentation We applied random rotation around
the z-axis drawn from a uniform distribution in the full 360◦

range and elastic deformation with random seed displace-
ment vectors drawn from a Gaussian distribution with stan-
dard deviations (10, 10, 0.1)px along corresponding dimen-
sions. Seed grid point distance: 150px.

Training Input patch size: 236×236×100; Solver:
ADAM; Base learning rate: 10−5 (fixed schedule); Momen-
tum: 0.9; Momentum2: 0.999; Iterations: 150000.

Results Injury induces proliferation of microglial cells as
wound healing response. When randomly modifying some
microglial cells to express fluorescent markers, daughter
cells (clones) show the same fluorescence expression. Con-
sequently, in areas of high proliferation, we observe clusters
of marked cells, while in areas with low proliferation such
clustering is absent. When using multiple markers of differ-
ent colors, the visual impression of colored spots on dark
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Figure SN3.4: Clonal analysis of Confetti-labeled microglial cells during neurodegeneration and recovery. (a) Representative maximum
intensity projection of a typical "Microfetti" brain section at peak of neurodegeneration. All microglial cells are marked by IBA-1 (magenta).
A small population of microglial cells express Confetti colors, namely membrane-tagged CFP (cyan) and cytoplasmic YFP (yellow) and
RFP (red). Higher magnification insets show only Confetti-labeled microglia (filled arrowheads) and background noise from the tissue
(open arrowheads). Scalebars: 50µm. (b) Clonal relationships of Confetti-labeled microglial cells in injured (top row) and healthy (bottom
row) brain tissue at disease onset 2 days (d) after injury, peak of disease (14 d after injury), and recovery (60 d after injury). Bold lines:
Cell densities of Confetti-labeled microglia (mean over mice in population); red: based on U-Net detections; black: based on manual
annotation. Transparent areas: Monte-Carlo simulations for random microglial proliferation (10000 bootstrap iterations); yellow: based on
U-Net detections; blue: based on manual annotation. n: Number of mice in population

background lead to the term Confetti marker. In our experi-
ment we used one tag that marks all microglial cells (IBA-1)
and three Confetti markers (YFP, CFP, RFP). Note, that mul-
tiple colors are only used to allow multiplexing in order to
reduce the number of required images. The same experiment
could be performed with only one Confetti color, but would
require more images.
We trained U-Net on volumetric image stacks to detect mi-
croglial cells and, if expressing a Confetti marker, its color.
For each detected Confetti-positive (reference) microglial
cell we counted the number of microglial cells containing
the same Confetti marker in cylindrical shells with increas-
ing radius and normalized them by the shell volume. In case
of clustering, the resulting cumulated distribution shows a
peak close to the microglial diameter, indicating response to
the injury. As null-hypothesis for significance tests we per-
formed a monte-carlo experiment in which we randomly re-
distributed the Confetti markers among all microglial cells.
We evaluated only the test set for both U-Net and manual
annotations. Both U-Net and the manual analysis came to
the same conclusion that Confetti-labeled microglial clusters
were only detected in the tissues from onset and peak of in-
jury, but not in healthy and recovery stages (Fig. SN3.4b,
intermediate states after 7d and 30d are not shown).
U-Net required a manual annotation effort that was four folds
lower than the fully manual analysis.

SN 3.2 Cell segmentation

SN 3.2.1 Segmentation of single cells recorded
with various common imaging modalities (2D)

In this section we present our generic 2D cell segmentation
model that allows to segment cells of various types recorded

Table SN3.2: Statistics for training and test sets for the eleven
datasets for 2D cell segmentation. Valid pixels are all pixels that
do not belong to an "ignored region", and therefore have an effect
on the loss function and its gradient during optimization.

Dataset #images #cells #valid pixels Touching
train/test train/test train/test

F1-MSC 51 / 4 228 / 20 24M / 1.6M No
F2-GOWT1 50 / 4 265 / 122 2.3M / 1M No
F3-SIM 371 / 10 9194 / 283 10M / 0.3M No
F4-HeLa 36 / 4 1386 / 566 7M / 4.8M No
DIC1-HeLa 18 / 6 195 / 59 0.6M / 0.2M Yes
PC1-U373 34 / 6 211 / 33 21M / 3.7M No
PC2-PSC 4 / 4 493 / 509 17M / 12M Yes
PC3-HKPV 26 / 10 133 / 46 15M / 5.4M Yes
BF1-POL 531 / 125 928 / 235 260M / 61M No
BF2-PPL 10 / 2 659 / 124 16M / 3.1M Yes
BF3-MiSp 1 / 1 87 / 97 0.5M / 0.5M Yes

with any of the most common light microscopy techniques.
For this, we trained one U-Net on 11 different single cell
datasets (Fig. SN3.5). The resulting model can be applied
to new similar cell datasets out-of-the-box (Sec. SN 3.2.2).
Moreover, the resulting model is the basis for easy transfer
learning to new 2D segmentation or detection tasks with only
few additional annotated training samples (Sec. SN 3.2.3).

Sample preparation, selection and anno-
tation Datasets F1-MSC, F2-GOWT1, F3-SIM,
F4-HeLa, DIC1-HeLa, PC1-U373 and PC2-PSC
are from the ISBI Cell Tracking Challenge 201522

(http://celltrackingchallenge.net). Please
refer to the individual dataset descriptions at the correspond-
ing challenges for more details. At the challenge in 2015
our U-Net won in DIC1-Hela, F4-HeLa, PC1-U373, and
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Figure SN3.5: U-Net classification performance on different cell types and imaging modalities. (Top) Sample images from the 11 2D cell
datasets from fluorescence, brightfield, DIC, and phase contrast microscopy and corresponding segmentations using the U-Net jointly
trained on all classes. green: true positive; blue: false positive; red: false negative. Scale is identical for all images. (Bottom) Quantitative
comparison (IoU) of U-Nets trained for each dataset individually (black bars) and the U-Net trained jointly on all datasets (blue bars). Red
bars: Generalization performance of the jointly trained network when leaving out the corresponding dataset from training.

got the second place in F1-MSC and F3-SIM. In the mean
time other approaches could achieve better results for some
datasets. However, especially our new jointly trained U-Net
is among the top three for four datasets. For PC1-U373 it
sets a new state-of-the-art (Tab. SN3.3).

F1-MSC (Original name: Fluo-C2DL-MSC) Rat mes-
enchymal stem cells on a flat polyacrylamide sub-
strate (2D). Provided by Dr. F. Prósper. Cell
Therapy laboratory, Center for Applied Medical
Research (CIMA), Pamplona, Spain. Microscope:
PerkinElmer UltraVIEW ERS; Objective lens: Plan-
Neofluar 10×/0.3 (Plan-Apo 20×/0.75); Pixel size:
0.3×0.3 µm (0.3977×0.3977 µm), time step: 20 (30)
min; Images (Train/Test): 51/4; Objects (Train/Test):
228/20.

F2-GOWT1 (Original name: Fluo-N2DH-GOWT1) GFP-
GOWT1 mouse stem cells (2D). Provided by Dr. E.
Bártová. Institute of Biophysics, Academy of Sci-
ences of the Czech Republic, Brno, Czech Republic.
Microscope: Leica TCS SP5; Objective lens: Plan-
Apochromat 63×/1.4 Oil; Pixel size: 0.240×0.240µm,
time step: 5 min; Images (Train/Test): 50/4; Objects
(Train/Test): 265/122.

F3-SIM (Original name: Fluo-N2DH-SIM+) Simulated nu-
clei moving on a flat surface (2D). Provided by Dr.
V. Ulman & Dr. D. Svoboda. Centre for Biomedi-
cal Image Analysis (CBIA), Masaryk University, Brno,
Czech Republic (Created using Cytopacq). Pixel size:
0.125×0.125µm; Images (Train/Test): 371/10; Ob-
jects (Train/Test): 9194/283.

F4-HeLa (Original name: Fluo-N2DL-HeLa) HeLa
cells stably expressing H2b-GFP (2D). Provided
by the Mitocheck Consortium. Microscope: Olym-
pus IX81; Objective lens: Plan 10×/0.4; Pixel
size: 0.645×0.645µm, time step: 30 min; Images
(Train/Test): 36/4; Objects (Train/Test): 1386/566.

DIC1-HeLa (Original name: DIC-C2DH-HeLa) HeLa cells
on a flat glass surface (2D). Provided by Dr. Gert
van Cappellen. Erasmus Medical Center, Rotterdam,
The Netherlands. Microscope: Zeiss LSM 510 Meta;
Objective lens: Plan-Apochromat 63×/1.4 (oil); Pixel
size: 0.19×0.19µm, time step: 10 min; Images
(Train/Test): 18/6; Objects (Train/Test): 195/59.

PC1-U373 (Original name: PhC-C2DH-U373)
Glioblastoma-astrocytoma U373 cells on a poly-
acrylimide substrate (2D). Provided by Dr. Sanjay
Kumar. Department of Bioengineering, Univer-
sity of California at Berkeley, Berkeley CA, USA.
Microscope: Nikon; Objective lens: Plan Fluor
DLL 20×/0.5; Pixel size: 0.65×0.65µm; Images
(Train/Test): 34/6; Objects (Train/Test): 211/33.

PC2-PSC (Original name: PhC-C2DL-PSC) Pancreatic
Stem Cells on a Polystyrene substrate (2D). Provided
by Dr. Tim Becker, Fraunhofer Institution for Marine
Biotechnology, Lübeck, Germany. Microscope: Olym-
pus ix-81; Objective lens: UPLFLN 4XPH; Pixel size:
1.6×1.6µm, time step: 10 min; Images (Train/Test):
4/4; Objects (Train/Test): 493/509.

We used the provided training sets with manual annota-
tions after adding ignore regions in only partially annotated
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datasets for network training and annotated a representative
random subset of the corresponding test sets ourselves us-
ing ImageJ’s regional ROI tools for evaluation. We selected
2-3 frames per sequence such that they were uniformly dis-
tributed across the sequences.
We added custom datasets PC3-HKPV, BF1-POL, BF2-PPL
and BF3-MiSp.
PC3-HKPV (D. Saltukoglu and M. Simons): Keratinocytes

(courtesy of Leena Bruckner-Tuderman, Department of
Dermatology, University Hospital, Freiburg) isolated
from human foreskin were transformed with the hu-
man papillomavirus oncogenes E6 and E7 for immor-
talization23. Microscope: Zeiss Cell Observer micro-
scope controlled by AxioVision and equipped with a
cooled charge-coupled device AxioCam Rev3 camera;
Objective lens: Zeiss EC Plan Neofluar 20×/0.5 phase
contrast24; Pixel size: 0.65×0.65µm, time step: 1.5h;
Images (Train/Test): 26/10; Objects (Train/Test):
133/46; Annotation: We manually selected 36 frames
from the recorded sequences. Training and test split was
performed, such that training and test frames originate
from different sequences. We annotated the images us-
ing ImageJ’s regional ROI tools. Then ROIs were con-
verted to instance mask images, rescaled to processing
resolution, and one pixel wide gaps between touching
cell instances added before binarization.

BF1-POL (O. Ronneberger): Airborne pollen grains col-
lected, prepared and recorded using a fully automated
pollen monitor25 which was developed together with the
German weather service (Deutscher Wetterdienst) and
the Fraunhofer institute, Freiburg, Germany. Aeroso-
lic particles were collected on custom plates contain-
ing glycerine gelatine. After heat shock, rehydrated par-
ticles settled on the bottom of the plate and image
stacks were recorded under green (533nm) LED illu-
mination. Microscope: Embedded inverted microscope
(Custom design) using a CCD camera (AVT Dolphin
F-145B from Allied Vision Technologies) equipped
with a 2/3" sensor with 1392×1040 pixels and a cell
size of 6.45×6.45µm; Objective lens: 20×/0.8 Zeiss
Plan-apochromat; Pixel size: 0.3225×0.3225×1.5µm;
Images (Train/Test): 531/125; Objects (Train/Test):
928/235; Annotation: Spherical particles were de-
tected in 656 volumes using a robust hough-based
sphere detector. 2D segmentations in the sharpest layer
of each particle were obtained using active contours
(snakes). We inspected the resulting segmentations
and replaced erroneous segmentations and out-of-focus
pollen by rectangular regions enclosing the correspond-
ing objects to be ignored during training. Segments
containing objects that are no pollen were treated as
background. Then contours were rendered to instance
masks, images rescaled to processing resolution, and
one pixel wide gaps between touching pollen added be-
fore binarization.

BF2-PPL (A. Dovzhenko, S. Walsh, O. Tietz, C. D.
Bosco and K. Palme): Tobacco (Nicotiana tabacum)
mesophyll protoplasts were isolated and immobilized

in alginate hydrogels according to26. The globally
sharpest image was extracted from a recorded bright-
field stack with 1µm z-step using edge-based auto-
focus. Microscope: Automated inverted microscope
platform MORE (TILL I.D. GmbH, Planegg, Ger-
many) equipped with an AVT-Stingray F-145 cam-
era (Allied Vision, Germany); Objective lens: Zeiss
10×/0.45 objective; Pixel size: 0.51×0.51µm; Images
(Train/Test): 10/2; Objects (Train/Test): 659/124;
Annotation: We annotated 10 training and 2 test im-
ages in ImageJ using the region-based ROI tools. Then
ROIs were converted to instance mask images, rescaled
to processing resolution, and one pixel wide gaps be-
tween touching cell instances added before binariza-
tion.

BF3-MiSp (A. Dovzhenko, S. Walsh and K. Palme): To-
bacco (N. tabacum) microspores were isolated and
cultured according to27. Image series acquisition was
performed as for BF2-PPL. We incubated the mi-
crospores in Carboxyfluorescein diacetate (CFDA) 30
minutes prior to recording. We recorded CFDA accu-
mulation in living microspores using structured illu-
mination fluorescence microscopy. Microscope: Au-
tomated inverted microscope platform MORE (TILL
I.D. GmbH, Planegg, Germany) equipped with an
AVT-Stingray F-145 camera (Allied Vision, Ger-
many); Objective lens: Zeiss 20×/0.8 objective; Pixel
size: 0.27×0.27×1µm; Images (Train/Test): 1/1; Ob-
jects (Train/Test): 87/97; Annotation: The globally
sharpest image was extracted from two recorded bright-
field stacks using edge-based autofocus and annotated
manually using ImageJ’s regional ROI tools. Then ROIs
were converted to instance mask images, rescaled to
processing resolution, and one pixel wide gaps between
touching cell instances added before binarization.

Weight computation parameters: λ = 50, vbal =
0.1, σbal = 10px, σsep = 6px.

Data augmentation We applied random rotation drawn
from a uniform distribution in the 360◦ range and elastic
deformation with random seed displacement vectors drawn
from a Gaussian distribution with standard deviation 10px
along each dimension. Seed grid point distance: 150px.

Training Training was performed on the training images
for our N = 11 datasets. We normalized the image resolu-
tion to pixel extents of 0.5µm × 0.5µm and the image inten-
sities to [0, 1]. We presented single images of the different
datasets to the network in an interleaved order to ensure that
the network optimizes the segmentation for all datasets in
parallel.

Input patch size: 540×540, Solver: ADAM, Base learning
rate: 10−5 (fixed schedule), Momentum: 0.9, Momentum2:
0.999, iterations: 150000.
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Table SN3.3: Ranking of our U-Net variants in the cell track-
ing challenge leader board w.r.t. the SEG measure (http://
celltrackingchallenge.net) (2018/10/16). Only challenge
results we participated in are shown. Colored cells: Results of our
U-Net variants. Uncolored cells: Results of other participants. Top
row: Dataset names. Second row: Total number of participants for
each dataset. Rank 1 – Rank 3: Leader board excerpt; Additional
rows: Results not among the top three. The corresponding submis-
sion IDs are given in the legend.

Dataset F1-MSC F3-SIM F4-HeLa DIC1-HeLa PC1-U373 PC2-PSC
17 18 18 9 10 13

Rank 1 0.645 0.811 0.903 0.814 0.924 0.682
Rank 2 0.617 0.807 0.902 0.793 0.922 0.665
Rank 3 0.590 0.802 0.900 0.792 0.920 0.633

0.582 0.781 0.776 0.536
0.581 0.755

Legend: FR-Ro-GE: Individual U-Nets (original resolution)28

FR-Fa-GE: U-Net trained on all classes (0.5µm/px)

We use drop-out with probability 0.5 when entering and exit-
ing the ’innermost’ network layer, i.e. the one with the coars-
est spatial resolution.

We report segmentation performance as object-wise inter-
section over union (IoU) (Online Methods). IoU evaluates
the overlap between the ground truth for each cell and the
segmentation computed by the network. A value of 0 corre-
sponds to no overlap at all, a value of 1 to a perfect pixel-by-
pixel match. Values above 0.8 indicate a very good segmen-
tation.

SN 3.2.2 Out-of-the-box cell segmentation

Joint training of U-Net on all 11 datasets (Fig. SN3.5 blue
bars) yields similar results compared to multiple individ-
ual U-Nets trained separately on each of these datasets
(Fig. SN3.5 black bars).

A possible use case for the U-Net jointly trained on all 11
datasets is to directly process new cell data that is similar
enough to one of the training datasets. In such use case, there
is neither a need to collect and annotate any new training data
nor to run the training procedure. The images to be analyzed
must be loaded in ImageJ and the U-Net plugin will provide
the cell segmentations for these images.

To quantitatively compare our results to other ap-
proaches, we submitted segmentation results of our jointly
trained U-Net to the Cell tracking challenge (http://
celltrackingchallenge.net) and let it evaluate on
six datasets (Tab. SN3.3).

For all experiments in this work images were rescaled to an
isotropic element size of 0.5µm per pixel. For some datasets
this halves the original image resolution. Surprisingly, re-
sults are still on par with individual U-Nets trained at origi-
nal image resolution except for the simulated dataset F3-SIM
which is of no practical importance.

Note that these results are not directly comparable to the ones
in Fig. SN3.5 for which we tested on our own annotated sub-
set of the official test set only. Additionally, SEG measure

and our IoU measure are slightly differently defined. Both
measure the average intersection over union of the ground
truth segmentation of all objects and their corresponding pre-
dictions. However, the SEG measure assigns a score of zero
for IoU values below 0.5, while our IoU measure does not.
Thus the SEG measure is slightly more strict.

To also explore the generalization capabilities of our model,
we performed a leave-one-dataset-out cross-validation ex-
periment on the 10 non-synthetic datasets, i.e. the network
was trained on all except one dataset, and the held-out dataset
was used for testing (Fig. SN3.5 red bars). The network gen-
eralized well to datasets F2-GOWT1, F4-HeLa, PC1-U373,
BF1-POL, and BF3-MiSp. Datasets DIC1-HeLa, PC2-PSC,
and BF2-PPL showed poor segmentation quality in this use
case. This is because datasets PC2-PSC and BF2-PPL differ
too much in terms of cell appearance from the other datasets.
Dataset DIC1-HeLa is the only DIC dataset. If it was re-
moved from the training set, the network had never seen DIC
images; hence, it failed to segment them correctly.

Analysis and treatment of false positive segments
The Object IoU metric does not account for false positive
segments, therefore we present an evaluation including false
positives here.

We observe that small impurities in the background are
sometimes erroneously classified as cells. The reason is that
training data contained almost no background clutter leaving
the network with only very few training examples of non-cell
objects that should be classified as background. More train-
ing data would also increase the amount of "training clutter"
and allow the network to learn to distinguish cells from clut-
ter. However, in many cases a simple post-processing of the
segmentation allows to reach a similar result without addi-
tional annotations.

We compared the area statistics from predictions of U-Net
jointly trained on all 11 datasets, with the area statistics from
predictions of individually trained U-Nets, i.e. one U-Net per
dataset (Fig. SN3.6). Statistics are very comparable, except
for dataset BF1-POL, where the individually trained U-Net
produces considerably less false positives. This is due to non-
pollen objects that were labeled as background, but are visu-
ally similar to cells from other datasets.

Most false positive segments are substantially smaller than
cells in the respective datasets and can be identified using
a simple area threshold. We decided to set this threshold
individually for each dataset based on the area statistics of
the labeled cells in the training set (Fig. SN3.6). A suitable
threshold is the break-even point at a recall of 0.91 with a
precision of 0.94 which is obtained at a value such that 95%
of the cells in the training set are accepted. See Sec. SN 3.2.3
for individual threshold values per dataset.

SN 3.2.3 Transfer Learning

The U-Net encodes its knowledge about the appearance of
cells in the weights of its filters. Due to the joint training on
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Figure SN3.6: Comparison of area-distributions of accepted and re-
jected segments generated using (a) the U-Net trained jointly on
all datasets and (b) multiple U-Nets trained individually for each
dataset. Blocks: Cell datasets; Boxplots in each block: (left) ac-
cepted segments when comparing to ground truth, (right) rejected
segments when comparing to ground truth. For each boxplot: cen-
tral mark: median; Box: 25th to 75th percentiles; whiskers extend
to the most extreme data points within 1.5× IQR; crosses: out-
liers. (c) Precision-Recall diagram for different area thresholds in
the post-processing of segmentation candidates. n indicates the
number of true positive / false positive segments respectively.

different datasets, it has learned about the appearance varia-
tion of cells in general, but only within the range seen during
training. For cell appearances outside that range, U-Net of-
fers the possibility to be adapted by transfer learning on few
annotated images of the new dataset. The provided ImageJ
interface automatically prepares and hands over training im-
ages and their annotations to the training software. Thanks
to the adaptation on task-specific data, U-Net is expected to
yield much more reliable results than in the use case without
transfer learning.

To verify this claim, the models from the leave-one-out ex-
periment were finetuned on subsets of the training set of
the held-out dataset. We measured the segmentation quality
for different training set sizes and for different numbers of
transfer learning iterations. We distinguish between touching

cells (DIC1-HeLa, PC2-PSC, PC3-HKPV, BF2-PPL, BF3-
MiSp) and non-touching cells (F1-MSC, F2-GOWT1, F4-
HeLa, PC1-U373, BF1-POL). For non-touching cells it was
possible to annotate only some of the cell instances in the
images. Depending on the dataset, one image contained be-
tween 5 and 120 cells. Touching cells require at least one
fully annotated image for training. Therefore, we note the
number of labelled images instead of the number of cells for
those datasets.

The segmentation performance for datasets with non-
touching cells was measured after transfer learning
(Fig. SN3.7a,d). Experiments were performed with a sub-
set of 1, 10, 100, and with all available annotated cells. For
comparison, the performance without transfer learning (0 an-
notated cells) is also shown. We report the mean IoU and
its variance over ten repetitions of each experiment with a
randomly picked subset of annotated cells. The quality gen-
erally improved as more training samples were added, yet
for some datasets the quality saturated already after very few
samples. The same analysis was done for the datasets with
touching cells (Fig. SN3.7b,e). Already a single training im-
age increased the segmentation quality to an acceptable level
above 0.5 IoU on all datasets.

A critical issue of deep learning in case of few training sam-
ples is overfitting, where the network learns to represent the
training samples but its performance on new samples de-
creases. Since transfer learning uses very few samples, we
measured after how many iterations the network started to
overfit (Fig. SN3.7c). Up to 1000 iterations, the performance
increased or saturated even in cases with very few train-
ing samples. After 1000 iterations, overfitting effects became
visible in cases with very few annotated cells (10 cells).

Transfer learning must be stopped before severe overfitting
effects occur. The number of stopping iterations for a cer-
tain number of annotated samples can be derived roughly
from the above results (Fig. SN3.7c). More accurate, dataset-
specific stopping times can be obtained with few additional
annotated validation images, which are not used as training
samples but for measuring and monitoring the performance
of the model during training.

We trained U-Net for 600k iterations and evaluated the
model every 10k iterations on the test sets of the eleven
datasets (Fig. SN3.8). Peak performance was reached at
150k training iterations. After more than 150k iterations
training loss steadily decreased which indicates slight over-
fitting to the training set.

To show the benefit of a pre-trained model, we compared
training times and segmentation performance when training
from scratch (Fig. SN3.9) or adapting a pre-trained U-Net
using transfer learning (Fig. SN3.7). Training from scratch
requires at least 10 − 50k iterations for satisfactory perfor-
mance, which is one order of magnitude more than in the
transfer learning setting.

Transfer learning details for single datasets This
section summarizes the performed leave-one-out experi-
ments. We first analyze the out-of-the-box performance, i.e.
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Figure SN3.7: Leave-one-dataset-out transfer learning results. (a–b) Segmentation quality after 1000 iterations of transfer learning for differ-
ent numbers of annotated cells. Circles show the average IoU for 10 training runs with randomly chosen training data. Error bars: standard
deviation. Column ’0’: performance of U-Net without transfer learning; Column ’all’: all available training data were used for transfer learn-
ing; Missing values indicate too few training images (PC2-PSC: 4 training images, BF2-PPL: 10 training images, BF3-MiSp: 1 training
image). (c) Segmentation quality evolution during transfer learning over training iterations. (d–e) Qualitative examples for the non-adapted
U-Net (out-of-the-box) and the U-Net after transfer learning. Green: true positive; blue: false positive; red: false negative. (d) PC1-U373.
(e) BF2-PPL.
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Figure SN3.8: Quantitative evaluation of U-Net model evolution dur-
ing training. curves at top: Average object IoU for the eleven
classes evaluated every 10000 iterations. Curve at bottom: Run-
ning average filtered training loss with a window size of 1001
iterations.

how accurate an unseen dataset can be segmented if the net-
work was trained on ten different cell datasets (Tab. SN3.2).
For this, we trained ten U-Nets, each leaving out one of the
ten real 2D cell datasets (transfer to simulated dataset F3-
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Figure SN3.9: Segmentation performance for 50k iterations when
training from scratch measured as object-wise IoU, averaged over
touching- and non-touching datasets.

SIM is of no practical relevance) for 200k iterations.

We then investigate the effect of transfer learning on the left-
out dataset with different amounts of annotated cells or im-
ages as follows: For datasets with non-touching cells, i.e. sin-
gle cell instances are separated by background, we randomly
select 10, 100, or all available cells from the pool of labeled
cell instances. The remaining cell instances are masked out
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using ignore regions, such that they have no effect on the
loss function during optimization. For datasets with touch-
ing cells we randomly select 1, 10, or all available images
from the respective dataset because we need annotated clus-
ters of cells for training cell instance separation. For touch-
ing datasets with less than 11 training images, we skipped
the training set size with 10 images.

We investigate first, the minimum amount of training data
necessary to achieve satisfactory results, and secondly the
saturation point, i.e. when adding more training data does
not lead to an increase in performance. Both of these val-
ues strongly depend on the complexity of the examined cell
dataset.

For every dataset we give a quantitative analysis of the evolu-
tion of the segmentation performance by means of the object
IoU, corresponding recall and precision and one qualitative
example (Fig. SN3.10–SN3.19). Note that the leftmost point
in each line plot is the out-of-the-box performance. We also
compare to a training from scratch with randomly initialized
network weights. For the qualitative examples we picked the
image patch with the highest fraction of foreground pixels
from the test set.
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Figure SN3.10: F1-MSC; Segmentation performance after transfer
learning with different numbers of cells. (a) IoU for transfer learning
with different numbers of annotated cells compared to training from
scratch; (b) (recall, precision) for T = 827 pixels which equals 0.95
of training set accepted; Segments with IoU < 0.5 are considered
false positives; (c) Qualitative example. Green: true positive; red:
false negative; blue: false positive.

F1-MSC, Non Touching (Fig. SN3.10) The out-of-the
box performance is quite low with an IoU of ∼0.4. This is
most likely due to the low signal in the raw data, the un-
usually large and complex structure of the cells, and their
uniqueness in appearance compared to the other ten datasets
in our training set. Transfer learning benefits from many
annotated instances while the peak performance is reached
after about 3k training iterations with IoU 0.75. For longer
training times an overfitting to the training set can be ob-
served when applying transfer learning with 10 labeled cells
only. With only few annotated cells, training times of less
than 1000 iterations yield higher peak performance com-
pared to a training from scratch.
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Figure SN3.11: F2-GOWT1; Segmentation performance after trans-
fer learning with different numbers of cells. (a) IoU for transfer
learning with different numbers of annotated cells compared to
training from scratch; (b) (recall, precision) for T = 496 pixels
which equals 0.95 of training set accepted; Segments with IoU <
0.5 are considered false positives; (c) Qualitative example. Green:
true positive; red: false negative; blue: false positive.

F2-GOWT1, Non Touching (Fig. SN3.11) The out-of-
the box performance is quite high with an IoU of 0.88 due
to the visual similarity to F3-SIM and F4-HeLa. Transfer
learning leads to marginal improvements. For longer train-
ing times slight overfitting to the training set can be observed
when applying transfer learning with 10 labeled cells only.
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Figure SN3.12: F4-HeLa; Segmentation performance after transfer
learning with different numbers of cells. (a) IoU for transfer learning
with different numbers of annotated cells compared to training from
scratch; (b) (recall, precision) for T = 379 pixels which equals 0.95
of training set accepted; Segments with IoU < 0.5 are considered
false positives; (c) Qualitative example. Green: true positive; red:
false negative; blue: false positive.

F4-HeLa, Non Touching (Fig. Fig. SN3.12) The out-
of-the box performance is acceptable with an average IoU
of ∼0.7. Some of the brighter cells are missed but captured
cells show high IoU. Transfer learning leads to an improve-
ment to an IoU of ∼0.9 for >1000 training examples. How-
ever, already 10 labeled examples lead to an IoU of 0.85 after
100 training iterations. An overfitting to the training set can
be observed after more than 1000 training iterations.
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Figure SN3.13: DIC1-HeLa; Segmentation performance after trans-
fer learning with different numbers of images. (a) IoU for trans-
fer learning with different numbers of annotated cells compared
to training from scratch; (b) (recall, precision) for T = 701 pixels
which equals 0.95 of training set accepted; Segments with IoU <
0.5 are considered false positives; (c) Qualitative example. Green:
true positive; red: false negative; blue: false positive.

DIC1-HeLa, Touching (Fig. SN3.13) DIC1-HeLa is
one of the most challenging datasets. Cells are touching, and
their appearance is very heterogenous. The out-of-the box
performance is low with an IoU of ∼0.25. Transfer learn-
ing improves the IoU to∼0.7 for∼2k training iterations with
at least 10 annotated images. For this dataset we observed a
significantly higher performance when training from scratch
with a peak IoU of 0.8 at ∼10k training iterations. Image
features learnt from other imaging modalities seem not to
transfer well to DIC. Low recall mainly stems from non-
separated cell instances, low precision from contaminations
in the background.
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Figure SN3.14: PC1-U373; Segmentation performance after trans-
fer learning with different numbers of cells. (a) IoU for transfer
learning with different numbers of annotated cells compared to
training from scratch; (b) (recall, precision) for T = 2303 pixels
which equals 0.95 of training set accepted; Segments with IoU <
0.5 are considered false positives; (c) Qualitative example. Green:
true positive; red: false negative; blue: false positive.

PC1-U373, Non Touching (Fig. SN3.14) The out-of-
the box performance is good with an IoU of ∼0.8 due to
the visual similarity to PC3-HKPV. Transfer learning leads
to an improved IoU of ∼0.9 after 100 training iterations and
at least 20 annotated cells. With at least 100 annotated cells,
no overfitting to the training set can be observed. More an-
notated cells do not give an advantage in terms of IoU.
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Figure SN3.15: PC2-PSC; Segmentation performance after transfer
learning with different numbers of images. (a) IoU for transfer learn-
ing with different numbers of annotated cells compared to training
from scratch; (b) (recall, precision) for T = 780 pixels which equals
0.95 of training set accepted; Segments with IoU < 0.5 are consid-
ered false positives; (c) Qualitative example. Green: true positive;
red: false negative; blue: false positive.

PC2-PSC, Touching (Fig. SN3.15) This is the only
dataset with out-of-the box performance of 0. Transfer
learning quickly leads to an improvement to an IoU of ∼0.6
after 100 training iterations. 1 annotated image seems to be
enough to capture the variability of our test set. The rela-
tively low IoU compared to the other cell datasets is due to
cell clusters that were not correctly segmented. The area of
many cells is underestimated which is a consequence of the
artificially introduced background ridges during training.
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Figure SN3.16: PC3-HKPV; Segmentation performance after trans-
fer learning with different numbers of images. (a) IoU for trans-
fer learning with different numbers of annotated cells compared to
training from scratch; (b) (recall, precision) for T = 4511 pixels
which equals 0.95 of training set accepted; Segments with IoU <
0.5 are considered false positives; (c) Qualitative example. Green:
true positive; red: false negative; blue: false positive.

PC3-HKPV, Touching (Fig. SN3.16) The out-of-the
box performance has an IoU of 0.6 which is mostly due to
cell clusters that were not properly separated into their indi-
vidual cells. Transfer learning improves the IoU to a value
of ∼0.75 after 1k training iterations. 10 annotated images
seems to be enough to capture the variation in visual appear-
ance of cells in our test set.
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Figure SN3.17: BF1-POL; Segmentation performance after transfer
learning with different numbers of cells. (a) IoU for transfer learning
with different numbers of annotated cells compared to training from
scratch; (b) (recall, precision) for T = 1535 pixels which equals
0.95 of training set accepted; Segments with IoU < 0.5 are consid-
ered false positives; (c) Qualitative example. Green: true positive;
red: false negative; blue: false positive.

BF1-POL, Non Touching (Fig. SN3.17) The out-of-
the box performance is very good with an IoU of ∼0.88.
Transfer learning improves the IoU marginally to a value of
∼0.9 after 100 training iterations for 100 annotated objects
and to a value of ∼0.94 after 1000 training iterations for 928
annotated objects. Background clutter produces many false
positives. With all available 928 labeled cells, the precision
is considerably lower after 10k iterations of transfer learn-
ing compared to training with 100 examples. The 100 ran-
domly selected cells seem to better reflect the statistics of
the test set. Precision benefits from longer training times in
every setting. For this dataset with its difficult background,
our choice of weights that give 10× more weight to the loss
for foreground pixels is not optimal.
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Figure SN3.18: BF2-PPL; Segmentation performance after transfer
learning with different numbers of images. (a) IoU for transfer learn-
ing with different numbers of annotated cells compared to training
from scratch; (b) (recall, precision) for T = 887 pixels which equals
0.95 of training set accepted; Segments with IoU < 0.5 are consid-
ered false positives; (c) Qualitative example. Green: true positive;
red: false negative; blue: false positive.

BF2-PPL, Touching (Fig. SN3.18) The out-of-the box
performance is low with an IoU of <0.2. Transfer learning
improves the IoU quickly to a value of ∼0.9 after 100 train-
ing iterations. Only 1 annotated image seems to be enough
to capture the variability in the appearance of cells in our test
set.
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Figure SN3.19: BF3-MiSp; Segmentation performance after transfer
learning with different numbers of images. (a) IoU for transfer learn-
ing with different numbers of annotated cells compared to training
from scratch; (b) (recall, precision) for T = 502 pixels which equals
0.95 of training set accepted; Segments with IoU < 0.5 are consid-
ered false positives; (c) Qualitative example. Green: true positive;
red: false negative; blue: false positive.

BF3-MiSp, Touching (Fig. SN3.19) The out-of-the
box performance is quite good with an IoU of ∼0.72.
Transfer learning improves the IoU marginally to a value
of∼0.8 after 100 training iterations. Beware, that this dataset
only contains one image for training and one for testing.

SN 3.2.4 Single cell segmentation in volumetric
data (3D)

Image annotation and label generation We used
dataset BF3-MiSp as described above for the 3D cell seg-
mentation experiment. Volume datasets were first converted
from their native OME-TIFF to Analyze format and then
cell instances manually annotated in 3DSlicer using a ball
brush with varying diameter (depending on required detail
level). Resulting annotations were converted to HDF5 for-
mat using ImageJ, and binarized after adding one pixel wide
background ridges between individual cell instances to allow
instance-aware semantic segmentation.

For the experiments with sparse annotations, all volumetric
annotations outside the slices considered for training were
ignored by assigning them a pixel-wise weight of zero during
loss computation.

Weight computation parameters: λ = 50, vbal =
0.1, σbal = 10vx, σsep = 6vx.

Data augmentation We applied random rotation around
the z-axis drawn from a uniform distribution in the full 360◦

range and elastic deformation with random seed displace-
ment vectors drawn from a Gaussian distribution with stan-
dard deviation 1px along each dimension. Seed grid point
distance: 150px. We chose a very small magnitude for the
elastic deformations to avoid unrealistic distortions of the
almost perfectly round protoplasts while still randomizing
the otherwise structured noise introduced by image interpo-
lation.

Training Input patch size: 236×236×100, Solver:
ADAM, Base learning rate: 10−5 (fixed schedule), Momen-
tum: 0.9, Momentum2: 0.999, iterations: 46000.

Results In our experiments we used a total of 14 manu-
ally annotated volumetric images. For 8 of these volumes,
two aligned channels were available: one from brightfield
microscopy and one from structured illumination fluores-
cence microscopy. The other 6 volumes contained only the
brightfield channel.

Segmentation of 3D brightfield data is challenging due to the
effects of the point spread function (psf) of the optical sys-
tem. Especially in z-direction (perpendicular to the imaging
plane), psf-induced conical structures dominate the actual
cell boundaries. Light refraction leads to non-linear effects –
so-called caustics – that often fool human observers and tra-
ditional segmentation approaches. Thus, on the aligned data,
the fluorescence channel was used for annotation. Datasets
without fluorescence channel were annotated to the best of
the annotator’s knowledge in order to produce plausible cell
shapes.
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Figure SN3.20: Volumetric segmentation with U-Net. (a) Example for semi-automatic volumetric segmentation based on only few annotated
slices. (b) Example for fully-automatic segmentation on challenging brightfield data. (Left) Orthogonal cuts through the raw images; colored
boxes and lines indicate the cut positions; (right) segmentation results overlaid over the raw data: true positive (green), false positive (blue),
false negative (red), network prediction in areas without ground truth (yellow). Dashed areas: no ground truth annotation available (see
text). (c) Quantitative evaluation of 3D cell segmentation by means of IoU for three scenarios. Full: Segmentation of unseen datasets
after training on full-volume annotations; Sparse: Segmentation of unseen datasets after training on 2D slice annotations; Semi-Automatic:
Full-volume segmentation from sparse 2D slice annotation in the same sample.
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Segmentation of unseen datasets after training
with dense annotation. We trained a U-Net on the
dense annotations of 12 of the 14 brightfield samples
and another U-Net on 6 of the 8 fluorescence samples
(Fig. SN3.20c Full) and quantified the segmentation perfor-
mance on the two left-out datasets of the respective imaging
modality. The network learned to segment the cells based
on the fluorescence channel without problems as expected.
Also on the much harder brightfield channel, the network
produced surprisingly accurate segmentations with an aver-
age IoU of 0.8.

Segmentation of unseen samples after training
with sparse annotation. Since manual annotation of
volumetric datasets is particularly tedious, we repeated the
above experiment, but this time we used annotations of only
8 slices in each sample volume (Fig. SN3.20a, Fig. SN3.20c
Sparse). Interestingly, the results obtained with this sparsely
annotated training data were as good as those with densely
annotated data.

Semi-automated segmentation. In a third experi-
ment, we analyzed the capability of the U-Net to generate
a volumetric segmentation of a 3D image from sparse plane
annotations. For this, we trained the network from scratch
on a sample with only 8 annotated slices. After training we
applied the network to the whole sample to produce a dense
volumetric segmentation. We repeated the experiment for all
samples of the training set (12 for brightfield and 6 for flu-
orescence data) (Fig. SN3.20c Semi-automatic). Without the
use of any pre-trained models, U-Net was able to extend the
annotation from 8 slices to a full volumetric segmentation
with an average IoU greater than 0.8.

SN 3.2.5 Neurite segmentation in volumetric EM
data (3D)

As a last proof-of-principle experiment, we applied the U-
Net to the segmentation of neurites in electron microscopy
(EM) image stacks.

Image annotation and label generation We trained
on the publicly available SNEMI (http://brainiac2.
mit.edu/SNEMI3D/) training set, consisting of one an-
notated EM volume of size 1024 × 1024 × 100 vx (voxel
extents: 6× 6× 30nm ) and tested on the corresponding test
image stack.

Weight computation parameters: λ = 50, vbal =
0.1, σbal = 10px, σsep = 6px, inter-instance ridge spacing:
3px.

Data augmentation We applied random rotation around
the z-axis drawn from a uniform distribution in the full 360◦

range and elastic deformation with random seed displace-
ment vectors drawn from a Gaussian distribution with stan-
dard deviation 20px along each dimension. Seed grid point
distance: 150px.

Training We trained a four-stage U-Net as in the 3D cell
segmentation example, but performed only 2D operations on
the first and second resolution levels to reach approximately
cubic voxels (24 × 24 × 30nm) at third level. Input patch
size: 300 × 300 × 72, Solver: ADAM, Base learning rate:
10−5 (fixed schedule), Momentum: 0.9, Momentum2: 0.999,
iterations: 74000.

Results Neurite segmentation is particularly hard for the
U-Net for several reasons: First, the structures to segment
(soma and neurites) show a wide range of sizes and shapes.
Large structures, like soma, exceed the receptive field of
the network and would require sub-sampling of the vol-
ume, however, sub-sampling precludes segmentation of thin
neurites. Secondly, cells are forming a tissue and are thus
densely packed. Adding ridges with extra-weights, as we
did for the 2D segmentation example, works fine in the case
of occasionally touching instances, but solving the problem
of dense tissue segmentation in 3D with a pure semantic
segmentation approach will very likely fail. In a semantic-
segmentation-sense mis-classifying one voxel as cell instead
of background is a tiny error, but this one pixel may merge
two instances, leading to a large topological error. The prob-
ability of such merging is proportional to the area of the in-
terfaces between neighboring cells.

Zeng et al.29 train an ensemble of semantic segmentation net-
works on pre-processed challenge annotations. With tuned
watershed post-processing they reach results close to human
performance.

Our goal is to show the pure U-Net performance with as few
engineering as possible. Therefore, we trained on the raw
annotations and did not perform any post-processing on the
binary output labels. We assigned different colors to the con-
nected components of the output for instance visualization
(Fig. SN3.21b).

As expected, large cells merge with neighboring cells due
to mis-classifications in their interface area, which could
be corrected manually or with automated post-processing.
However, most of the thinner neurites are already properly
segmented without any post-processing.

A simple extension is to use an ensemble of U-Net models
and only accept a voxel as foreground if all models agree.
This introduces a bias that treats voxels with low confi-
dence as background and thus improves instance separation.
In practice we simply perform segmentation with different
snapshots from one training and randomly picked the mod-
els after iteration 44k, 50k and 74k (Fig. SN3.21c). We com-
bined them using the minimum of the binary segmentation
outputs. With this simple trick that can be easily applied us-
ing ImageJ’s image calculator, almost all instances are prop-
erly separated.
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a cb

Figure SN3.21: Segmentation result on the SNEMI test volume. (a) Raw volume. (b) Segmentation result using a single U-Net model. (c)
Segmentation result using the intersection of the outputs of an ensemble of three U-Net models. Training was repeated three times leading
to comparable results. Panels show orthographic cuts through the SNEMI test volume. Colors indicate instance labels. Scalebar: 2µm.

Discussion Segmentation performance would further in-
crease if the distinction of instances would be directly en-
coded into the objective function. Another possibility is to
transform the label space to allow better instance separa-
tion30, however this comes at the cost of higher memory con-
sumption.
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