

SEMANTIC INSTANCE SEGMENTATION

OF TOUCHING AND OVERLAPPING OBJECTS

Anton Böhm¹ Maxim Tatarchenko¹ Thorsten Falk ^{1,2}

¹ Department of Computer Science, ² BIOSS Centre for Biological Signalling Studies, University of Freiburg, Germany

We thank the German Federal Ministry for Economic Affairs and Energy (FKz. ZF4184101CR5) and the DFG (EXC 294) for funding our research.

What is it about?

2D annotated images with overlapping objects Deep learning approach

class-specific semantic instance segmentation masks for **unseen images**

ISOO-V1

1. Segmentation

Segmentation: 3D representation

Basic Idea:

Extend label-space to third dimension

Problem:

Ambiguous order of instances

Segmentation: 3D representation

Basic Idea:

Extend label-space to third dimension

Problem:

Ambiguous order of instances

Solution:

3D overlap-free order-independent masks encoding

Shearing w.r.t object bounding box centers which lie on **z=0 plane** (magenta)

Segmentation: 3D representation

• Shear object masks in xz- and yz-direction

(binary representation, clustered for visibility purposes)

Segmentation: Network architecture

ISOO-V1: 2D Network

ISOO-V2: 2D-3D hybrid network

2D-3D network: Advantages

2D-3D hybrid network

1) 2D network does not optimally exploit **correlations in the z-direction** of the label space. 2D-3D network does.

2D-3D network: Advantages

2) additional dimension allows for object's **sub-parts** prediction / **semantic segmentation**.

"A" is the number of semantical classes within an objects e.g. A=1 for cell body A=2 for cell body and nucleus

2D-3D hybrid network

Detection: Reference points

- Reference point is a unique position in object
- Reference points are grouped to disks
- Every disk represents an object

case: reference point is the bounding box center

case: reference point is object's characteristic points (e.g. cell nuclei)

Only one disk is depicted per case

Detection: Encoding

Reference point encodes object-specific information

object class encoding

bounding box encoding w.r.t. reference point.

Detection: Decoding

- For decoding, the disks must be spatially separated
- Disks mearging / disappearing leads to false negatives

Detection: Dynamic disk size adaptation

ISOO-V1: disks of fixed size

ISOO-V2: disks of adaptive size

Detection: Reference point location

case: reference point is the bounding box center

case: reference point is object's characteristic points (e.g. cell nuclei)

Detection: Bounding box parametrisation

ISOO-V1: hight (green), width (yellow)

ISOO-V2: top (green), bottom (red), right (yellow), left (cyan)

Post-processing: Touching objects

Post-processing: Touching objects

Post-processing: Overlapping objects

Resuts: Complete pipeline

Data set: Duckweed*

- big images (1152x1728x3 pixels)
- high object size diversity
- many objects per image (max. 170 objects / image)
- Two unbalanced object classes: healthy (red disks) and deseased (cyan disks)

Data set: Duckweed

	DC (Mean±SD)	oFN (Mean±SD)	pTP (Mean±SD)	pFP (Mean±SD)
ISOO-V1 (w/o cl) Böhm et al, ISBI, '18	.929±.057	.129±.067	.939±.066	.000±.000
ISOO-V2 (w/o cl)	.945±.051	.103±.062	.953±.063	.000±.000

object-based False Negative rate; Dice Coefficient; pixel-based True Positive, False Positive rate

Data set: OSC-ISBI*

- Highly overlapped objects
- Reference points are set to the cell nuclei

*The Second Segmentation of Overlapping Cervical Cells

Data set: OSC-ISBI

	DC (Mean±SD)	oFN (Mean±SD)	pTP (Mean±SD)	pFP (Mean±SD)
Phoulady et al. ISBI, '15	.831±.079	.408±.163	.927±.098	.003±.002
Ramalho et al. ISBI, '15	.856±.078	.501±.180	.899±.113	.002±.001
Lee et al. CVPR, '16, ws	.879±.087	.434±.168	.877±.123	.001±.001
ISOO-V1 <i>Böhm et al, ISBI, '18</i>	.863±.074	.370±.141	.895±.107	.001±.001
ISOO-V2	.895±.079	.290±.151	.901±.108	.001±.001

object-based False Negative rate; Dice Coefficient; pixel-based True Positive, False Positive rate

Data set: OSC-ISBI-S*

- object subpart (semantic) segmentation: cell body (contours) and nucleus
- object contours and the corresponding sub-parts have the same color

*The first segmentation of overlapping cervical cells

Thank you!

Questions?

