
DeepTAM: Deep Tracking and Mapping

Huizhong Zhou* Benjamin Ummenhofer* Thomas Brox

University of Freiburg
{zhouh, ummenhof, brox}@cs.uni-freiburg.de

Abstract. We present a system for keyframe-based dense camera tracking
and depth map estimation that is entirely learned. For tracking, we estimate
small pose increments between the current camera image and a synthetic
viewpoint. This significantly simplifies the learning problem and alleviates
the dataset bias for camera motions. Further, we show that generating a large
number of pose hypotheses leads to more accurate predictions. For mapping,
we accumulate information in a cost volume centered at the current depth esti-
mate. The mapping network then combines the cost volume and the keyframe
image to update the depth prediction, thereby effectively making use of depth
measurements and image-based priors. Our approach yields state-of-the-art
results with few images and is robust with respect to noisy camera poses.
We demonstrate that the performance of our 6 DOF tracking competes with
RGB-D tracking algorithms. We compare favorably against strong classic
and deep learning powered dense depth algorithms.

Keywords: Camera tracking, Multi-view stereo, ConvNets

1 Introduction

In contrast to recognition, there is limited work on applying deep learning to camera
tracking or 3D mapping tasks. This is because, in contrast to recognition, the field
of 3D mapping is already in possession of very good solutions. Nonetheless, learning
approaches have much to offer for camera tracking and 3D mapping. On the limited
number of subtasks, where deep learning has been applied, it has outperformed
classical techniques: on disparity estimation all leading approaches are based on
deep networks, and the first work on dense motion stereo [30] immediately achieved
state-of-the-art performance on this task.

In this work, we extend the domain of learning-based mapping approaches further
towards full-scale SLAM systems. We present a deep learning approach for the
two most important components in visual SLAM: camera pose tracking, and dense
mapping.

The main contribution of the paper is a learned tracking network and a mapping
network, which generalize well to new datasets and outperform strong competing
algorithms. This is achieved by the following key components:

– a tracking network architecture for incremental frame to keyframe tracking
designed to reduce the dataset bias problem.

*Equal contribution

2 H. Zhou, B. Ummenhofer and T. Brox

– a multiple hypothesis approach for camera poses which leads to more accurate
pose estimation.

– a mapping network architecture that combines depth measurements with image-
based priors, which is highly robust and yields accurate depth maps.

– an efficient depth refinement strategy combining a network with the narrow band
technique.

The most related classical approach is DTAM [23], which stands for Dense Track-
ing And Mapping. Conceptually we follow a very similar approach, except that we
formulate it as a learning problem. Consequently, we call our approach DeepTAM.

For tracking, DeepTAM uses a neural network for aligning the current camera
image to a keyframe –color and depth image– to infer the camera pose. To this
end, we use a small and fast stack of networks which implement a coarse-to-fine
approach. The network stack incrementally refines the estimated camera pose. In each
step we update a virtual keyframe, thereby improving convergence of the predicted
camera pose. This incremental formulation significantly simplifies the learning task
and reduces the effects of dataset bias. In addition, we show that generating a large
number of hypotheses improves the pose accuracy.

Our mapping network is built upon the plane sweep stereo idea [3]. We first
accumulate information from multiple images in a cost volume, then extract the depth
map using a deep network by combining image-based priors with the accumulated
depth measurements. To further improve the depth prediction we append a network,
which iteratively refines the prediction using a cost volume defined on a narrow band
around the previous surface estimate. The obtained depth can be a valuable cue for
many vision tasks, e.g. object localization [26, 4], scene understanding [11, 12], image
dehazing [8, 36, 35].

As a learning approach, DeepTAM is very good at integrating various cues and
learning implicit priors about the used camera. This is in contrast to classic approaches
which fundamentally rely on handcrafted features like SIFT [22] and photoconsistency
maximization. A well-known problem of learning-based approaches is overfitting, and
we took special care in the design of the architecture and the definition of the learning
problem so that the network cannot learn simple shortcuts that would not generalize.

As a consequence, DeepTAM generalizes well to new datasets and is the first
learned approach with full 6 DOF keyframe pose tracking and dense mapping. On
standard benchmarks, it compares favorably to state-of-the-art RGB-D tracking,
while using less data. DeepTAM employs dense mapping that can process arbitrary
many frames and runs at interactive frame rates.

2 Related work

The most related work is DTAM [23]. We build on the same generic idea: drift-free
camera pose tracking via a dense depth map towards a keyframe and aggregation
of depth over time. However, we use completely different technology to implement
this concept. In particular, both the tracking and the mapping are implemented by
deep networks, which solely learn the task from data.

DeepTAM: Deep Tracking and Mapping 3

Most related with regard to the learning methodology is DeMoN [30], which
implements 6 DOF egomotion and depth estimation for two images as a learning
problem. In contrast to DeMoN, we process more than two images. We avoid drift by
the use of keyframes, and we can refine the depth map as more frames are coming in.

A few more works based on deep learning have appeared recently that have a weak
connection to the present work. Agrawal et al. [2] trains a neural network to estimate
the egomotion, which mainly serves as a supervision for feature learning. Kendall et
al. [16] apply deep learning to the camera localization task and Valada et al. [31] show
that the visual localization and odometry can be solved jointly within one network.
DeepVO [33] runs a deep network for visual odometry, i.e., regressing the egomotion
between two frames. There is no mapping part, and the egomotion estimation only
works for environments seen during training. Zhou et al. [37] presented a deep network
for egomotion and depth estimation that can be trained with an unsupervised loss.
The approach uses two images for depth estimation during training. However, it
ignores the second image when estimating the depth at runtime, hence ignoring the
motion parallax. SfM-Net [32], too, uses unsupervised learning ideas, and (despite
its title) does not use the motion parallax for depth estimation. UnDeepVO [20]
proposed egomotion estimation and depth estimation again based on an unsupervised
loss. All these works are like DeMoN limited to the joint processing of two frames
and limited to the motions present in the datasets.

Training and experiments in most of these previous works [37, 33, 20] focus on the
KITTI dataset [10]. These driving scenarios mostly show 3 DOF motion in a plane,
which is induced by a 2 DOF action space (accelerate/brake, steer left/steer right). In
particular the hard ambiguities between camera translation and rotation do not exist
since the car cannot move sideward. In contrast, the present work yields full 6 DOF
pose tracking, can handle these ambiguities, and we evaluate on a 6 DOF benchmark.

We cannot cover the full literature on classical tracking and mapping techniques,
but there are some related works besides DTAM [23] that are worth mentioning.
LSD-SLAM [7] is a state-of-the-art SLAM approach that uses direct measures for
optimization. It provides a full SLAM pipeline with loop closing. In contrast to
DTAM and our approach, LSD-SLAM only yields sparse depth estimates. Engel et
al. [6] propose a sparse direct approach. They show that integrating a sophisticated
model of the image formation process significantly improves the accuracy. For our
learning-based approach, accounting for the characteristics of the imaging process
is covered by the training process. Similarly, Kerl et al. [18] carefully model the noise
distribution to improve robustness. Again, this comes for free in a learning-based
approach. CNN-SLAM [29] extends LSD-SLAM with single image depth maps. In
contrast to our approach, tracking and mapping are not coupled in a dense manner.
In particular, the tracking uses a semi-dense subset of the depth map.

3 Tracking

Given the current camera image IC and a keyframe, which consists of an image IK

and an inverse depth map DK, we want to estimate the 4× 4 transformation matrix
TKC that maps a point in the keyframe coordinate system to the coordinate system

4 H. Zhou, B. Ummenhofer and T. Brox

of the current camera frame. The keyframe pose TK and the current camera pose
TC are related by

TC = TKTKC, with TC,TK,TKC ∈ SE(3). (1)

Learning to compute TKC is related to finding 2D-3D correspondences between
the current image IC and the keyframe (IK,DK). It is well known that the corre-
spondence problem can be solved more efficiently and reliably if pixel displacements
between image pairs are small. Since we want to track the current camera pose at in-
teractive rates, we assume that a guess TV close to TC is available. Similar to DTAM
[23], we generate a virtual keyframe (IV ,DV) that shows the content of the keyframe
(IK,DK) from a viewpoint corresponding to TV . Instead of directly estimating TKC,
we learn to predict the increment δT, i.e., we write the current camera pose as

TC = TV δT. (2)

This effectively reduces the problem to learning the function δT = f(IC, IV ,DV).
We use a deep network to learn f.

3.1 Network Architecture

We use the encoder-decoder-based architecture shown in Fig. 1 for learning to esti-
mate the 6 DOF pose between a keyframe (IK,DK) and an image IC. A detailed
description of all network parameters can be found in the supplementary material.

Since camera motion can only be estimated by relating the keyframe to the
current image, we make use of optical flow as an auxiliary task. The predicted
optical flow ensures that the network learns to exploit the relationship between both
frames. We demonstrate the importance of the flow prediction in Tab. 1. We use
the features shared with the optical flow prediction task in a second network branch
for generating pose hypotheses. As we show in the experiments (Tab. 1), generating
multiple hypotheses improves the accuracy of the predicted pose compared to the
direct prediction of the pose.

The last part of the pose generation consists of N = 64 branches of stacked, fully
connected layers sharing their weights. We found that this configuration is more stable
and accurate than a single branch of fully connected layers computing N poses. Each
generated pose hypothesis is a 6D pose vector δξi = (ri, ti)

>. The 3D rotation vector
ri is a minimal angle-axis representation with the angle encoded as the magnitude of
the vector. The translation ti is encoded in 3D Cartesian coordinates. For simplicity,
and because δξi are small rigid body motions, we compute the final pose estimate
δξ as the linear combination

δξ =
1

N

N=64∑
i=1

δξi. (3)

Coarse camera motions are already visible at small image resolutions, while small
motions require higher image resolutions. Thus, we use a coarse-to-fine strategy to
efficiently track the camera in real time. We train three distinct tracking networks as
shown in Fig. 2, which deal with the pose estimation problem at different resolutions
and refine the prediction of the respective previous resolution level.

DeepTAM: Deep Tracking and Mapping 5

Fig. 1. The tracking network uses an encoder-decoder type architecture with direct connec-
tions between the encoding and decoding part. The decoder is used by two tasks, which are
optical flow prediction and the generation of pose hypotheses. The optical flow prediction is
a small stack of two convolution layers and is only active during training to stimulate the
generation of motion features. The pose hypotheses generation part is a stack of downsam-
pling convolution layers followed by a fully connected layer, which then splits into N = 64
fully connected branches sharing parameters to estimate the δξi. Along with the current
camera image IC we provide a virtual keyframe (IV ,DV) as input for the network, which is
rendered using the active keyframe (IK,DK) and the current pose estimate TV . We stack
the depicted network architecture three times with each instance operating at a different
resolution as shown in Fig. 2.

Fig. 2. Overview of the tracking networks and the incremental pose estimation. We apply
a coarse-to-fine approach to efficiently estimate the current camera pose. We train three
tracking networks each specialized for a distinct resolution level corresponding to the input
image dimensions (80× 60), (160× 120) and (320× 240). Each network computes a pose
estimate δTi with respect to a guess TV

i . The guess TV
0 is the camera pose from the

previously tracked frame. Each of the tracking networks uses the latest pose guess to
generate a virtual keyframe at the respective resolution level and thereby indirectly tracking
the camera with respect to the original keyframe (IK,DK). The final pose estimate T̂C is
computed as the product of all incremental pose updates δTi.

3.2 Training

A major problem of learning-based approaches is the strong dependency on suitable
datasets. Datasets often do not cover all important modes, which complicates gen-
eralization to new data. An example is the KITTI dataset for autonomous driving
[10], which is limited to motion in a plane and does not cover full 6 DOF motion.
As a consequence, learning-based methods easily overfit to this type of motion and
do not generalize. Artificial data can be used to alleviate this problem, but it is not
trivial to generate realistic imagery with ground truth depth.

6 H. Zhou, B. Ummenhofer and T. Brox

We tackle this problem in two ways. First by using the incremental formulation
in (2), i.e., we estimate a small increment δT instead of the absolute motion between
keyframe and current camera image. This reduces the magnitude of motion and
reduces the difficulty of the task. Second, we use rendered images and depth maps as a
proxy for real keyframes. Given a keyframe (IK,DK), we sample the initial pose guess
TV

0 from a normal distribution centered at the ground truth pose TC to generate
the virtual frame (IV ,DV). This simulates all possible 6 DOF motions and, thus,
effectively augments the data to overcome the limited set of motions in the dataset.

Datasets We train on image pairs from the SUN3D dataset [34] and the SUNCG
dataset [27]. For SUN3D we sample image pairs with a baseline of up to 40cm. For
SUNCG we generate images with normally distributed baselines with standard devia-
tion 15cm and rotation angles with standard deviation 0.15 radians. When sampling
an image pair we reject samples with an image overlap of less than 50%. For keyframe
depth maps DK, we use the ground truth depth from the datasets during training.

Training Objective The objective function for the tracking network is

Ltracking = Lflow(w) +Lmotion(δξ) +Luncertainty(δξi). (4)

The predicted optical flow w and the predicted poses δξi are the network’s outputs.
The loss Lflow defines the auxiliary optical flow task. We use the endpoint error

Lflow =
∑
i,j

‖w(i, j)−wgt(i, j)‖2 , (5)

which is a common error metric for optical flow.
The two losses Lmotion and Luncertainty for the generation of pose hypotheses are

defined as:

Lmotion = α‖r− rgt‖2 + ‖t− tgt‖2 , and (6)

Luncertainty =
1

2
log (|Σ|)− 2 log

(
x>Σ−1x

2

)
− log

(
Kv

(√
2x>Σ−1x

))
. (7)

The vectors r and t are the rotation and translation parts of the linear combination δξ
defined in (3). We use the parameter α to balance the importance of both components.
We combine this loss, which directly acts on the predicted average motion, with
Luncertainty, which is the negative log-likelihood of the multivariate Laplace distribution.

We compute Σ from the predicted pose samples as Σ = 1
N

∑N
i (δξi− δξ)(δξi− δξ)>,

and the vector x as x = δξ − δξgt. During optimization we treat x as a constant.
The function Kv is the modified Bessel function of the second kind. We empirically
found that a loss based on the multivariate Laplace distribution yields better results
than the multivariate Normal distribution. The uncertainty loss pushes the network
to predict distinct poses δξi.

We optimize using Adam [19] with the learning rate schedule proposed in [21].
We implement and train the networks with Tensorflow [1]. Training the tracking
network takes less than a day on an NVIDIA GTX1080Ti. We provide the detailed
training parameters in the supplementary material.

DeepTAM: Deep Tracking and Mapping 7

4 Mapping

We describe the geometry of a scene as a set of depth maps, which we compute for
every keyframe. To achieve high-quality depth maps we accumulate information from
multiple images in a cost volume. The depth map is then extracted from the cost
volume by means of a convolutional neural network.

Let C be the cost volume and C(x, d) the photoconsistency cost for a pixel x at
depth label d ∈ Bfb. We define the set ofN depth labels for a fixed range [dmin, dmax] as

Bfb = {bi|bi = dmin + i · dmax−dmin

N−1 , i = 0,1, ...,N − 1}. (8)

Given a sequence of m images I1, .., Im along with their camera poses T1, ..,Tm,
we compute the photoconsistency costs as

C(x, d) =
∑

i∈{1,..,m}

ρi(x, d) ·wi(x). (9)

The photoconsistency ρi(x, d) is the sum of absolute differences (SAD) of 3×3 patches
between the keyframe image IK and the warped image Ĩi at point x for depth d. We
obtain Ĩi using a warping function W(Ii,Ti(T

K)−1, d), which warps the image Ii
to the keyframe using the relative pose and the depth.

The weighting factor wi is then computed as

wi(x) = 1− 1

N − 1

∑
d∈Bfb\{d∗}

exp
(
−α · (ρi(x, d)− ρi(x, d∗))2

)
. (10)

wi describes the matching confidence and is close to 1 if there is a clear and unique
minimum ρi(x, d

∗) with d∗ = argmind ρi(x, d).
In classic methods the cost volume is taken as data term and a depth map can

be obtained by searching for the minimum cost. However, due to noise in the cost
volume, various sophisticated regularization terms and optimization techniques have
been introduced [13, 9, 14] to extract the depth in a robust manner. Instead, we train
a network to use the matching cost information in the cost volume and simultaneously
combine it with the image-based scene priors to obtain more accurate and more
robust depth estimates.

For cost-volume-based methods, accuracy is limited by the number of depth labels
N . Hence, we use an adaptive narrow band strategy to increase the sampling density
while keeping the number of labels constant. We define the narrow band of depth
labels centered at the previous depth estimate dprev as

Bnb = {bi|bi = dprev + i · σnb · dprev, i = −N
2 , ...,

N−2
2 }. (11)

σnb determines the narrow band width. We recompute the cost volume for the narrow
band for a small selection of frames and search again for a better depth estimate. The
narrow band allows us to recover more details in the depth map, but also requires a
good initialization and regularization to keep the band in the right place. We address
these tasks using multiple encoder-decoder type networks. Fig. 3 shows an overview
of the mapping architecture with the fixed band and narrow band stage.

8 H. Zhou, B. Ummenhofer and T. Brox

Fig. 3. Mapping networks overview. Mapping consists of a fixed band module and a narrow
band module, which is based on an encoder-decoder architecture. Fixed band module:
This module takes the keyframe image IK (320 × 240 × 3) and the cost volume Cfb

(320 × 240 × 32) generated with 32 depth labels equally spaced in the range [0.01, 2.5]
as inputs and outputs an interpolation factor sfb (320× 240× 1). The fixed band depth
estimation is computed as Dfb = (1−sfb) ·dmin +sfb ·dmax. Narrow band module: The
narrow band module is run iteratively; in each iteration we build a cost volume Cnb from
a set of depth labels distributed around the current depth estimation with a band width
σnb of 0.0125. It consists of two encoder-decoder pairs. The first pair gets the cost volume
Cnb (320× 240× 32) and the keyframe image IK (320× 240× 3) as inputs and generates a
learned cost volume Cnb learn (320× 240× 32). The depth map is then obtained using a
differentiable soft argmin operation [15]: Dnb1 =

∑
d∈Bnb

Bnb × softmax(−Cnb learn). The
second encoder-decoder pair gets the current depth estimation Dnb1 and the keyframe image
IK and produces a refined depth Dnb2.

4.1 Network Architecture

The network is trained to predict the keyframe inverse depth DK from the keyframe
image IK and the cost volume C computed from a set of images I1, ..., Im and camera
poses T1, ...,Tm. DK is represented as inverse depth, which enables a more precise
representation with closer distance. We apply a coarse-to-fine strategy along the depth
axis. Thus, the mapping is divided into a fixed bandmodule and a narrow bandmodule.
The fixed band module builds the cost volume Cfb with depth labels evenly spaced in
the whole depth range, while the narrow band cost volume Cnb centers at the current
depth estimation and accumulates information in a small band close to the estimate.

The fixed band module regresses an interpolation factor between the minimum and
maximum depth label as output. As a consequence, the network cannot reason about
the absolute scale of the scenes, which helps to make the network more flexible and
generalize better. Unlike the fixed band, which contains a set of fronto-parallel planes
as depth labels, the discrete labels of the narrow band are individual for each pixel. Pre-
dicting interpolation factors is not appropriate since the network in the narrow band
module has no knowledge of the band’s shape. We intentionally do not provide the nar-
row band network with the band shape (i.e. the depth value for which each depth label
stands), because the network tends to overfit to this straight-forward cue and ignores
the cost information in the cost volume. However, the absence of the band shape makes
the depth regularization difficult which can be observed in Fig. 4. Therefore we append
another refine network, which focuses on the problem of depth regularization. Both

DeepTAM: Deep Tracking and Mapping 9

networks together can be understood as solving alternatingly the data and smoothness
terms of a variational approach. The detailed architecture is shown in Fig. 3.

Keyframe w/o refine w/ refine GT

Fig. 4. Effects of the narrow band refinement. We apply the narrow band module for 15
iterations with and without refinement. Without the refinement, the module lacks the
knowledge of the band shape and it can only make updates based on the measurements in
the cost volume. This can help in capturing more details, but also causes strong artifacts.
Appending a refinement network with previous depth estimation as input allows for a better
regularized and more stable depth estimation.

4.2 Training

We train our mapping networks from scratch using Adam [19] based on the Tensorflow
[1] framework. Our training procedure consists of multiple stages. We first train the
fixed band module with subsampled video sequences of length 8. Then we fix the
parameters and sequentially add the two narrow band encoder-decoder pairs to the
training. In the last stage we unroll the narrow band network to simulate 3 iterations
and train all parts jointly. Training the mapping networks takes about 8 days in total
on an NVIDIA GTX 1080Ti.

Datasets We train our mapping networks on various datasets to avoid overfitting.
SUN3D [34] has a large variety of indoor scenes. For ground truth we take the
improved Kinect depths with multi-frame TSDF filling. SUNCG [27] is a synthetic
dataset of 3D scenes with realistic scene scale. We render SUNCG to obtain a sequence
of data by randomly sampling from SUN3D pose trajectories. In addition to SUNCG
and SUN3D, we generate a dataset –in the following called MVS– with the COLMAP
structure from motion pipeline [24, 25]. MVS contains both indoor and outdoor scenes
and was captured at full image and temporal resolution (2704× 1520@50Hz) with a
wide-angle GoPro camera. For training we downsample to (320× 240) and use every
third frame. We manually remove sequences where the reconstruction failed.

During training we use the (pseudo) ground truth camera poses from the datasets
to construct the cost volume.

Training Objective We use a simple L1 loss on the inverse depth maps Ldepth =
|D−Dgt| and the scale-invariant gradient loss proposed in [30]:

Lsc-inv-grad =
∑

h∈{1,2,4}

∑
i,j

‖gh[D](i, j)− gh[Dgt](i, j)‖2 , (12)

10 H. Zhou, B. Ummenhofer and T. Brox

where

gh[D](i, j) =
(

D(i+h,j)−D(i,j)
|D(i+h,j)|+|D(i,j)| ,

D(i,j+h)−D(i,j)
|D(i,j+h)|+|D(i,j)|

)>
. (13)

gh[D](i, j) and gh[Dgt](i, j) are gradient images of the predicted and the ground truth
depth map that emphasize discontinuities. h is the step in the difference operator gh.

5 Experiments

5.1 Tracking evaluation

Tab. 1 shows the performance of our tracking network on the RGB-D benchmark
[28]. The benchmark provides images and depth maps with accurate ground truth
poses obtained from an external multi-camera tracking system.

We use the depth maps from the dataset during keyframe generation to measure
the isolated tracking performance of our approach (left part of Tab. 1). We compare
against the keyframe odometry component of the RGB-D SLAM method of Kerl et
al. [17]. Their method uses the full color and depth information –for both keyframe
and current frame– to compute the pose, while our method only uses the depth
information from the dataset for the keyframes. During testing we generate a new
keyframe if the rotational distance exceeds a threshold of 6 degrees or translational
distance exceeds a 15cm threshold. The number of generated keyframes is similar
to the number of keyframes reported in [17] for RGB-D SLAM.

Tab. 1 shows that our learning-based approach outperforms a state-of-the-art RGB-
D method on most of the sequences, despite using less information. In addition, the
results also show that forcing the network to predict multiple pose hypotheses further
reduces the translational drift on most sequences. The results show also the general-
ization capabilities as we did not train or finetune on any sequences of the benchmark.

5.2 Mapping evaluation

For evaluating the mapping performance we use the following error metrics:

sc-inv(D,Dgt) =

√
1
n

∑
i,j E(i, j)2 − 1

n2

(∑
i,j E(i, j)

)2
, (14)

where E(i, j) = logD(i, j)− logDgt(i, j) and n is the number of pixels,

L1-rel(D,Dgt) =
1
n

∑
i
|D(i,j)−Dgt(i,j)|

Dgt(i,j)
and (15)

L1-inv(D,Dgt) =
1
n

∑
i

∣∣∣ 1
D(i,j) −

1
Dgt(i,j)

∣∣∣ . (16)

sc-inv is a scale invariant metric introduced in [5]. The L1-rel metric normalizes the
depth error with respect to the ground truth depth value. L1-inv gives more impor-
tance to close depth values by computing the absolute difference of the reciprocal
of the depth values. This metric also reflects the increasing uncertainty in the depth
computation with increasing distance to the camera.

DeepTAM: Deep Tracking and Mapping 11

Tracking Tracking and mapping

Sequence
RGB-D SLAM Ours Ours

Ours
CNN-SLAM*

Ours
Kerl et al. [17] (w/o flow) (w/o hypotheses) Tateno et al. [29]

fr1/360 0.125 0.069 0.065 0.054 0.500 0.116
fr1/desk 0.037 0.042 0.031 0.027 0.095 0.078
fr1/desk2 0.020 0.025 0.020 0.017 0.115 0.055
fr1/plant 0.062 0.063 0.060 0.057 0.150 0.165
fr1/room 0.042 0.051 0.041 0.039 0.445 0.084
fr1/rpy 0.082 0.070 0.063 0.065 0.261 0.052
fr1/xzy 0.051 0.030 0.021 0.019 0.206 0.054

average 0.060 0.050 0.043 0.040 0.253 0.086

Table 1. Evaluation of our tracking (left part) and the combined mapping and tracking
(right part) on the validation sets of RGB-D benchmark [28]. The values describe the
translational RMSE in [m/s]. Tracking: We compare the performance of our tracking
network against the RGB-D SLAM method of Kerl et al. [17]. Numbers for Kerl et al. [17]
correspond to the frame-to-keyframe odometry evaluation and have been copied from their
paper. Kerl et al. [17] uses the camera image and the depth stream for computing the poses,
while our approach uses the depth stream only for keyframes and is limited to photometric
alignment. Ours (w/o flow) does not learn optical flow. Ours (w/o hypotheses) is a
network which just predicts a single pose. Ours uses optical flow to learn motion features
and predicts multiple pose hypotheses. Tracking and mapping: We compare our tracking
and mapping against CNN-SLAM by Tateno et al. [29]. * For a fair comparison CNN-SLAM
is run without pose graph optimization. To avoid a bias in the initialization Ours uses the
depth prediction from CNN-SLAM for the first frame of each sequence and then switches to
our combined tracking and mapping.

Fixed band Narrow band

Keyframe 2 frames 6 frames 10 frames 1 iter 3 iters 5 iters GT

Fig. 5. Qualitative comparison of the depth prediction of the fixed band and narrow band
module. We evaluate the effect of different numbers of frames used in the fixed band module
and iterations used in the narrow band module. The fixed band gains in performance
with more frames. The largest improvement can be observed between using only 2 frames
(including keyframe) and 6 frames. The performance saturates with more frames. To further
improve the quality of the depth map we use the iterative narrow band module on the 10
frames result of the fixed band. Using a narrow band around the previous depth estimation
allows us to capture finer details and achieve higher accuracy.

12 H. Zhou, B. Ummenhofer and T. Brox

Fixed band Narrow band Mapping comparison

2frames 6frames 10frames 1iter 3iters 5iters SGM DTAM DeMoN Ours

MVS
L1-inv 0.117 0.085 0.083 0.076 0.065 0.064 - 0.086 0.059 0.036
L1-rel 0.239 0.163 0.159 0.142 0.113 0.111 - 0.557 0.240 0.171
sc-inv 0.193 0.160 0.159 0.156 0.132 0.130 0.251 0.305 0.246 0.146

SUNCG
L1-inv 0.075 0.065 0.067 0.049 0.039 0.036 - 0.142 0.169 0.036
L1-rel 0.439 0.418 0.423 0.304 0.213 0.171 - 0.380 0.533 0.083
sc-inv 0.213 0.199 0.200 0.174 0.152 0.146 0.248 0.343 0.383 0.128

SUN3D
L1-inv 0.097 0.067 0.065 0.050 0.035 0.036 - 0.210 0.197 0.064
L1-rel 0.288 0.198 0.193 0.141 0.082 0.083 - 0.423 0.412 0.111
sc-inv 0.206 0.174 0.172 0.155 0.125 0.128 0.146 0.374 0.340 0.130

Table 2. Keyframe depth map errors on the test split of our training data sets. Fixed band:
The influence of the number of frame used for computing the cost volume for the fixed band
module. Accumulating information from multiple frames improves the performance and
saturates after adding six or more frames. Narrow band: The effect of different number of
iterations of the narrow band module. More iterations lead to more accurate depth maps.
Depth estimations converge after about three iterations and improve only slowly with more
iterations. On SUN3D results get slightly worse with more than three iterations. The narrow
band width σnb is a constant number, which can be replaced by a gradually decreasing
strategy or optimally by the uncertainty of the depth estimation. Mapping comparison:
Quantitative comparison to other learning- and cost-volume-based dense mapping methods.
We evaluate sequences of length 10 from our test sets and use the camera poses from the
datasets to measure the isolated performance of our mapping. DeMoN just uses two input
images (first and last frame of each sequence) and does not use the pose as input. Since
DeMoN predicts the depth scaled with respect to its motion prediction, we compare only
on the scale invariant metric sc-inv. SUNCG and SUN3D feature a large number of indoor
scenes with low texture, while MVS contains a mixture of indoor and outdoor scenes and
provides more texture. Our method outperforms the baselines on all datasets. The margin
is especially large on the very difficult indoor datasets (SUNCG, SUN3D).

We evaluate our fixed band module and narrow band module quantitatively in
Tab. 2. The results show that the fixed band module is able to exploit the accu-
mulated information from multiple frames leading to better depth estimates. While
this behaviour is taken for granted for traditional methods, this is not necessarily
the case for learning-based methods. The same holds for iterative processes like the
narrow band module. Running the narrow band module iteratively improves the
depth estimates. We can show this quantitatively in Tab. 2 and qualitatively in Fig. 5.

We also compare our mapping against the state-of-the-art deep learning approach
DeMoN [30] and two strong classic dense mapping methods DTAM [23] and SGM
[13]. We use the publicly available reimplementation OpenDTAM? and our own
implementation of SGM with 16 directions. For DTAM, SGM and DeepTAM we
construct a cost volume with 32 labels at the resolution of 320× 240. We use SAD
as photo-consistency measure and accumulate the information of video sequences of
length 10. We use the same pseudo camera pose ground truth from the datasets for

? https://github.com/magican/OpenDTAM.git SHA: 1f92a54334c233f9c4ce7d8cbaf9a81dee5e69a6

DeepTAM: Deep Tracking and Mapping 13

a fair comparison. For DeMoN –which is limited to two images– we give the first and
last frame from the sequence to provide enough motion parallax.

As shown in Tab. 2 our method achieves the best performance on all metrics and
test sets. All classic methods tend to suffer from weakly-textured scenes which occur
quite often in the indoor datasets and synthetic datasets. However, we are less affected
by this problem by means of leveraging matching cost information together with scene
priors via a neural network. This is again supported by the qualitative comparison in
Fig. 6. In addition, the mapping performance of all the classic cost-volume-based meth-
ods is prone to noisy camera pose while our method is more robust, which is demon-
strated in Fig. 8. More qualitative examples can be found in the supplemental video.

In the right part of Tab. 1 we compare our combined tracking and mapping
against CNN-SLAM [29] without pose graph optimization. CNN-SLAM uses a semi-
dense photoconsistency optimization approach for computing camera poses and
uncertainty-based depth update. We did not train on RGB-D benchmark datasets
[28]. Our learned dense tracking and mapping generalizes well and proves to be more
robust and accurate on the majority of sequences. While it performs clearly worse
on fr1/plant it seldom fails and overall yields more reliable trajectories.

To further verify our generalization ability, we test our model on KITTI [10]
without finetuning. Fig. 7 shows a qualitative comparison.

Keyframe SGM DTAM DeMoN Ours GT

S
U

N
3D

S
U

N
C

G
M

V
S

Fig. 6. Qualitative depth prediction comparison for sequences with 10 frames. DTAM has
problems with short sequences and textureless scenes. SGM shares the same problems but
works reasonably well if enough texture is present. DeMoN work well even in homogeneous
image regions but misses many details. Our method can produce high quality depth maps
using a small number of frames and captures more details compared to the other methods.

6 Conclusions

We propose a novel deep learning architecture for real-time dense mapping and
tracking. For tracking we show that generating synthetic viewpoints allows us to track
incrementally with respect to a keyframe. For mapping, our methods can effectively

14 H. Zhou, B. Ummenhofer and T. Brox

Image SGM DTAM

DeMoN Ours GT

Fig. 7. Generalization experiment on KITTI [10]. SGM, DTAM and Ours use a sequence of
5 frames from the left color camera, while for DeMoN we only use the first and last frame
of each sequence. We show pseudo GT as a reference, which was obtained by computing
the disparity of the corresponding rectified and synchronized stereo pairs. KITTI is an
urban scene dataset captured with a wide-angle camera, which differs from our training
data significantly. Further, due to the dominant forward motion pattern of the dataset the
epipole is within the visible image borders, which makes depth estimation especially difficult.
Without finetuning our method generalizes well to this dataset. More examples can be found
in the supplementary.

S
G

M
D

T
A

M
O

u
rs

pose noise

Fig. 8. Qualitative depth prediction comparison of DeepTAM, SGM, DTAM against in-
creasing pose noise. We carefully select a well textured video sequence with 10 frames and
enough motion parallax. For SGM and DTAM we use a cost volume with 64 labels, while
we use 32 labels for DeepTAM. We found that using 64 instead 32 labels improves the
results for both baseline methods. We apply the same normal-distributed noise vectors for
all methods to the camera poses and increase the standard deviation from 0 (leftmost) to
0.6|ξ| (rightmost). SGM and DTAM are highly sensitive to noise and their performance
degrades quickly. Our predicted depth preserves the important scene structures even under
large amounts of noise. This behaviour is advantageous during tracking and improves the
robustness of the overall system.

exploit the cost volume information and image-based priors leading to accurate and
robust dense depth estimations. We demonstrate that our methods outperform strong
classic and deep learning algorithms. In future work, we plan to extend the presented
components to build a full SLAM system.

Acknowledgements This project was in large parts funded by the EU Horizon
2020 project Trimbot2020. We also thank the bwHPC initiative for computing
resources, Facebook for their P100 server donation and gift funding.

DeepTAM: Deep Tracking and Mapping 15

References

1. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S.,
Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard,
M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga,
R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I.,
Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Víegas, F., Vinyals, O., Warden,
P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine
Learning on Heterogeneous Systems (2015), software available from tensorflow.org

2. Agrawal, P., Carreira, J., Malik, J.: Learning to See by Moving. In: 2015 IEEE
International Conference on Computer Vision (ICCV). pp. 37–45 (Dec 2015).
https://doi.org/10.1109/ICCV.2015.13

3. Collins, R.T.: A space-sweep approach to true multi-image matching. pp. 358–363.
IEEE (Jun 1996). https://doi.org/10.1109/CVPR.1996.517097

4. Dhiman, V., Tran, Q.H., Corso, J.J., Chandraker, M.: A Continuous Occlusion
Model for Road Scene Understanding. In: 2016 IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR). pp. 4331–4339 (Jun 2016).
https://doi.org/10.1109/CVPR.2016.469

5. Eigen, D., Puhrsch, C., Fergus, R.: Depth Map Prediction from a Single Image using
a Multi-Scale Deep Network. arXiv:1406.2283 [cs] (Jun 2014)

6. Engel, J., Koltun, V., Cremers, D.: Direct Sparse Odometry. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence 40(3), 611–625 (Mar 2018).
https://doi.org/10.1109/TPAMI.2017.2658577

7. Engel, J., Schöps, T., Cremers, D.: LSD-SLAM: Large-scale direct monocular SLAM.
In: European Conference on Computer Vision. pp. 834–849. Springer (2014)

8. Fattal, R.: Single image dehazing. In: ACM SIGGRAPH 2008 Papers.
pp. 72:1–72:9. SIGGRAPH ’08, ACM, New York, NY, USA (2008).
https://doi.org/10.1145/1399504.1360671, http://doi.acm.org/10.1145/1399504.1360671

9. Felzenszwalb, P.F., Huttenlocher, D.P.: Efficient Belief Propagation for Early
Vision. International Journal of Computer Vision 70(1), 41–54 (Oct 2006).
https://doi.org/10.1007/s11263-006-7899-4

10. Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? the kitti
vision benchmark suite. In: Computer Vision and Pattern Recognition (CVPR), 2012
IEEE Conference On. pp. 3354–3361. IEEE (2012)

11. Gupta, S., Arbelez, P., Malik, J.: Perceptual organization and recognition of indoor
scenes from rgb-d images. In: 2013 IEEE Conference on Computer Vision and Pattern
Recognition. pp. 564–571 (June 2013). https://doi.org/10.1109/CVPR.2013.79

12. Gupta, S., Arbeláez, P., Girshick, R., Malik, J.: Indoor scene understanding with rgb-d
images: Bottom-up segmentation, object detection and semantic segmentation. Int. J.
Comput. Vision 112(2), 133–149 (Apr 2015). https://doi.org/10.1007/s11263-014-0777-6,
http://dx.doi.org/10.1007/s11263-014-0777-6

13. Hirschmüller, H.: Accurate and efficient stereo processing by semi-global matching
and mutual information. In: 2005 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition (CVPR’05). vol. 2, pp. 807–814 vol. 2 (Jun 2005).
https://doi.org/10.1109/CVPR.2005.56

14. Hosni, A., Rhemann, C., Bleyer, M., Rother, C., Gelautz, M.: Fast Cost-Volume Filtering
for Visual Correspondence and Beyond. IEEE Transactions on Pattern Analysis and
Machine Intelligence 35(2), 504–511 (2013). https://doi.org/10.1109/TPAMI.2012.156

15. Kendall, A., Martirosyan, H., Dasgupta, S., Henry, P.: End-to-End Learning of Geometry
and Context for Deep Stereo Regression. In: 2017 IEEE International Conference on
Computer Vision (ICCV). pp. 66–75 (Oct 2017). https://doi.org/10.1109/ICCV.2017.17

16 H. Zhou, B. Ummenhofer and T. Brox

16. Kendall, A., Cipolla, R.: Geometric loss functions for camera pose regression with
deep learning. Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (2017)

17. Kerl, C., Sturm, J., Cremers, D.: Dense visual SLAM for RGB-D cameras. In: 2013
IEEE/RSJ International Conference on Intelligent Robots and Systems. pp. 2100–2106
(Nov 2013). https://doi.org/10.1109/IROS.2013.6696650

18. Kerl, C., Sturm, J., Cremers, D.: Robust odometry estimation for RGB-D cameras.
In: 2013 IEEE International Conference on Robotics and Automation. pp. 3748–3754
(May 2013). https://doi.org/10.1109/ICRA.2013.6631104

19. Kingma, D., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv:1412.6980
[cs] (Dec 2014)

20. Li, R., Wang, S., Long, Z., Gu, D.: UnDeepVO: Monocular Visual Odometry through
Unsupervised Deep Learning. arXiv:1709.06841 [cs] (Sep 2017)

21. Loshchilov, I., Hutter, F.: SGDR: Stochastic Gradient Descent with Warm Restarts.
arXiv:1608.03983 [cs, math] (Aug 2016)

22. Lowe, D.G.: Distinctive Image Features from Scale-Invariant Keypoints.
International Journal of Computer Vision 60(2), 91–110 (Nov 2004).
https://doi.org/10.1023/B:VISI.0000029664.99615.94

23. Newcombe, R.A., Lovegrove, S., Davison, A.: DTAM: Dense tracking and mapping
in real-time. In: 2011 IEEE International Conference on Computer Vision (ICCV). pp.
2320–2327 (2011). https://doi.org/10.1109/ICCV.2011.6126513

24. Schönberger, J.L., Frahm, J.M.: Structure-from-Motion Revisited. In: 2016 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR). pp. 4104–4113 (Jun
2016). https://doi.org/10.1109/CVPR.2016.445

25. Schönberger, J.L., Zheng, E., Frahm, J.M., Pollefeys, M.: Pixelwise View Selection for Un-
structured Multi-View Stereo. In: Computer Vision – ECCV 2016. pp. 501–518. Springer
International Publishing (Oct 2016). https://doi.org/10.1007/978-3-319-46487-9 31

26. Song, S., Chandraker, M.: Joint SFM and detection cues for monocular 3D localization
in road scenes. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). pp. 3734–3742 (Jun 2015). https://doi.org/10.1109/CVPR.2015.7298997

27. Song, S., Yu, F., Zeng, A., Chang, A.X., Savva, M., Funkhouser, T.: Semantic
Scene Completion from a Single Depth Image. In: 2017 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR). pp. 190–198 (Jul 2017).
https://doi.org/10.1109/CVPR.2017.28

28. Sturm, J., Engelhard, N., Endres, F., Burgard, W., Cremers, D.: A benchmark
for the evaluation of RGB-D SLAM systems. In: 2012 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems. pp. 573–580 (Oct 2012).
https://doi.org/10.1109/IROS.2012.6385773

29. Tateno, K., Tombari, F., Laina, I., Navab, N.: CNN-SLAM: Real-Time Dense
Monocular SLAM with Learned Depth Prediction. In: 2017 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR). pp. 6565–6574 (Jul 2017).
https://doi.org/10.1109/CVPR.2017.695

30. Ummenhofer, B., Zhou, H., Uhrig, J., Mayer, N., Ilg, E., Dosovitskiy, A., Brox,
T.: DeMoN: Depth and Motion Network for Learning Monocular Stereo. In: IEEE
Conference on Computer Vision and Pattern Recognition (CVPR) (2017)

31. Valada, A., Radwan, N., Burgard, W.: Deep Auxiliary Learning for Visual Localization
and Odometry. arXiv:1803.03642 [cs] (Mar 2018)

32. Vijayanarasimhan, S., Ricco, S., Schmid, C., Sukthankar, R., Fragkiadaki, K.: SfM-Net:
Learning of Structure and Motion from Video. arXiv:1704.07804 [cs] (Apr 2017)

DeepTAM: Deep Tracking and Mapping 17

33. Wang, S., Clark, R., Wen, H., Trigoni, N.: DeepVO: Towards end-to-end visual
odometry with deep Recurrent Convolutional Neural Networks. In: 2017 IEEE
International Conference on Robotics and Automation (ICRA). pp. 2043–2050 (May
2017). https://doi.org/10.1109/ICRA.2017.7989236

34. Xiao, J., Owens, A., Torralba, A.: SUN3D: A Database of Big Spaces Reconstructed
Using SfM and Object Labels. In: 2013 IEEE International Conference on Computer
Vision (ICCV). pp. 1625–1632 (Dec 2013). https://doi.org/10.1109/ICCV.2013.458

35. Zhang, H., Patel, V.M.: Densely connected pyramid dehazing network. In: CVPR (2018)
36. Zhang, H., Patel, V.M.: Density-aware single image de-raining using a multi-stream

dense network. In: CVPR (2018)
37. Zhou, T., Brown, M., Snavely, N., Lowe, D.G.: Unsupervised Learning of Depth and

Ego-Motion from Video. arXiv:1704.07813 [cs] (Apr 2017)

1

DeepTAM: Deep Tracking and Mapping

Supplementary Material

1 Tracking Network Implementation Details

Fig. 1 shows the operations and parameters of the ConvNet parts for the three
tracking networks.

1.1 Rendering

The input to the ConvNets is the current camera image and the rendered virtual
keyframe. To pass as much information as possible to the ConvNet, we render
two image and depth map pairs. We use the depth tests GREATER and LESS
to render the images and depth maps. The depth test GREATER generates an
image and an inverse depth map pair which corrsponds to what can actually be
seen from the specified viewpoint. The depth test LESS generates an image and
depth map which shows the occluded parts (we assume that there are at most
two depth layers). We use simple point-based rendering to generate images and
depth maps.

2 Mapping Network Implementation

Fig. 3 shows the operations and parameters of the ConvNets of the mapping
module.

3 Runtimes

Tab. 1 shows the runtimes of each network component of our approach. The
tracking can run in real-time. For the mapping we use the cost volume to collect
information from incoming frames. We do not run the fixed band and narrow
band modules at frame rate, but invoke them once enough frames have been
collected.

2

Fig. 1. Tracking network parameters. The shared encoder decoder configuration is iden-
tical for all resolution levels. The pose hypotheses generation part uses slightly different
kernel size and stride parameters for each resolution level. The changing parameters
for the resolution levels [60 × 80, 120 × 160, 240 × 320] are: k1 : [3, 5, 5], s1 : [2, 4, 4],
k2 : [3, 3, 5], s2 : [2, 2, 4], k3 : [1536, 1536, 2048], k4 : [24, 24, 32].

3

Fig. 2. Mapping networks parameters. The mapping consists of two modules: fixed
band module and narrow band module. Fixed band module: This module takes
the keyframe image IK (320 × 240 × 3) and the cost volume Cfb (320 × 240 × 32)
generated with 32 depth labels equally spaced in the range [0.01, 2.5] as inputs and
outputs an interpolation factor sfb (320 × 240 × 1). The fixed band depth estimation
is computed as Dfb = (1 − sfb) · dmin + sfb · dmax. Narrow band module: The
narrow band module is run iteratively; in each iteration we build a cost volume Cnb

from a set of depth labels distributed around the current depth estimation with a
band width σnb of 0.0125. It consists of two encoder-decoder pairs. The first pair
gets the cost volume Cnb (320 × 240 × 32) and the keyframe image IK (320 × 240 ×
3) as inputs and generates a learned cost volume Cnb learn (320 × 240 × 32). The
depth map is then obtained using a differentiable soft argmin operation [3]: Dnb1 =∑

d∈Bnb
Bnb× softmax(−Cnb learn). The second encoder-decoder pair gets the current

depth estimation Dnb1 and the keyframe image IK and produces a refined depth Dnb2.

4

Tracking Cost volume Fixed band Narrow band

Mean 0.0227 0.0164 0.0181 0.0359
Min 0.0203 0.0153 0.0171 0.0347
Max 0.0251 0.0168 0.0190 0.0393

Table 1. Runtime in seconds for each component of our system. The statistic is com-
puted excluding outliers. The Tracking time is the time required for a forward pass
through all three resolution levels including render time for the virtual keyframe. The
isolated tracking component runs with about 44 Hz. The runtimes for Cost volume
describe the time to compute and add the matching costs of a new frame. The cost
volume generation is implemented with Tensorflow ops and has some overhead. The
Narrow band time is the time per iteration. All runtimes have been measured on an
NVIDIA GTX 1070.

4 Results

Tab. 2 shows an extended evaluation on the TUM RGB-D benchmark for the
freiburg1 sequences with public ground truth and the validation sets with secret
ground truth.
Fig. 3 shows more examples of our mapping component in comparison with
SGM [2], DTAM [5] and DeMoN [8].

5 Generalization

It is well known that learning-based methods easily overfit. To prevent this
problem we trained and tested on diverse datasets, which covers indoor and
outdoor scenarios and consists of realistic and artificial data. Additionally, we
carefully design our network architecture to avoid overfitting. Tab. 2 shows our
results on the TUM RGB-D benchmark, which was not part of our training data.
In addition, Fig. 4 demonstrates that our mapping module also generalizes well
to KITTI datasets without any finetuning.

5

Tracking Tracking and mapping

Sequence
RGB-D SLAM Ours Ours

Ours
CNN-SLAM*

Ours
Kerl et al. [4] (w/o flow) (single pose) Tateno et al. [7]

fr1/360 0.119 0.079 0.070 0.063 0.839 0.133
fr1/360 (v) 0.125 0.069 0.065 0.054 0.500 0.116
fr1/desk 0.030 0.051 0.048 0.033 0.175 0.130
fr1/desk (v) 0.037 0.042 0.031 0.027 0.095 0.078
fr1/desk2 0.055 0.064 0.054 0.046 0.236 0.124
fr1/desk2 (v) 0.020 0.025 0.020 0.017 0.115 0.055
fr1/floor 0.090 0.095 0.091 0.081 0.282 0.282
fr1/plant 0.036 0.038 0.028 0.027 0.178 0.299
fr1/plant (v) 0.062 0.063 0.060 0.057 0.150 0.165
fr1/room 0.048 0.059 0.048 0.040 0.169 0.138
fr1/room (v) 0.042 0.051 0.041 0.039 0.445 0.084
fr1/rpy 0.043 0.052 0.045 0.046 0.074 0.046
fr1/rpy (v) 0.082 0.070 0.063 0.065 0.261 0.052
fr1/teddy 0.067 0.067 0.058 0.059 0.207 0.164
fr1/xzy 0.024 0.029 0.021 0.017 0.060 0.045
fr1/xzy (v) 0.051 0.030 0.021 0.019 0.206 0.054

average 0.058 0.055 0.047 0.043 0.250 0.123

Table 2. Evaluation of our tracking (left part) and the combined mapping and track-
ing (right part) on the RGB-D benchmark [6]. The values describe the translational
RMSE in [m/s]. The validation sets are marked with (v). Tracking: We compare the
performance of our tracking network against the RGB-D SLAM method of Kerl et
al. [4]. Numbers for Kerl et al. [4] correspond to the frame-to-keyframe odometry eval-
uation and have been copied from their paper. Note that Kerl et al. [4] uses the camera
image and the depth stream for computing the poses, while our approach uses the
depth stream only for keyframes and is limited to photometric alignment. Ours (sin-
gle pose) is our tracking with generating just a single pose hypothesis and deactivated
Luncertainty. Ours is our tracking network with 64 pose hypotheses and the mean as
final estimate. Both versions use the depth stream to obtain the depth for keyframes.
Tracking and mapping: We compare our tracking and mapping against CNN-SLAM
by Tateno et al. [7]. * For a fair comparison CNN-SLAM is run without pose graph
optimization. To avoid a bias in the initialization Ours uses the depth prediction from
CNN-SLAM for the first frame of each sequence and then switches to our combined
tracking and mapping.

6

Keyframe SGM DTAM DeMoN Ours GT

S
U

N
3
D

S
U

N
3
D

S
U

N
3
D

S
U

N
3
D

S
U

N
3
D

S
U

N
3
D

S
U

N
3
D

S
U

N
C

G
S

U
N

C
G

M
V

S
M

V
S

Fig. 3. Qualitative depth prediction comparison for sequences with 10 frames. DeMoN
uses only the first and last frame of each sequence.

7

Im
a
g
e

S
G

M
D

T
A
M

D
e
M

o
N

O
u
r
s

G
T

Fig. 4. Generalization experiment on KITTI [1]. SGM, DTAM and Ours use a sequence
of 5 frames from the left color camera, while for DeMoN we only use the first and last
frame of each sequence. We show pseudo GT as a reference, which was obtained by
computing the disparity of the corresponding rectified and synchronized stereo pairs.
KITTI is an urban scene dataset captured with a wide-angle camera, which differs from
our training data significantly. Further, due to the dominant forward motion pattern
of the dataset the epipole is within the visible image borders, which makes depth
estimation especially difficult. Without finetuning our method generalizes well to this
dataset.

8

References

1. Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? the kitti
vision benchmark suite. In: Computer Vision and Pattern Recognition (CVPR),
2012 IEEE Conference On. pp. 3354–3361. IEEE (2012)

2. Hirschmüller, H.: Accurate and efficient stereo processing by semi-global matching
and mutual information. In: 2005 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition (CVPR’05). vol. 2, pp. 807–814 vol. 2 (Jun 2005).
https://doi.org/10.1109/CVPR.2005.56

3. Kendall, A., Martirosyan, H., Dasgupta, S., Henry, P.: End-to-End Learning
of Geometry and Context for Deep Stereo Regression. In: 2017 IEEE In-
ternational Conference on Computer Vision (ICCV). pp. 66–75 (Oct 2017).
https://doi.org/10.1109/ICCV.2017.17

4. Kerl, C., Sturm, J., Cremers, D.: Dense visual SLAM for RGB-D cameras. In: 2013
IEEE/RSJ International Conference on Intelligent Robots and Systems. pp. 2100–
2106 (Nov 2013). https://doi.org/10.1109/IROS.2013.6696650

5. Newcombe, R.A., Lovegrove, S., Davison, A.: DTAM: Dense tracking and mapping
in real-time. In: 2011 IEEE International Conference on Computer Vision (ICCV).
pp. 2320–2327 (2011). https://doi.org/10.1109/ICCV.2011.6126513

6. Sturm, J., Engelhard, N., Endres, F., Burgard, W., Cremers, D.: A bench-
mark for the evaluation of RGB-D SLAM systems. In: 2012 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems. pp. 573–580 (Oct 2012).
https://doi.org/10.1109/IROS.2012.6385773

7. Tateno, K., Tombari, F., Laina, I., Navab, N.: CNN-SLAM: Real-Time Dense
Monocular SLAM with Learned Depth Prediction. In: 2017 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR). pp. 6565–6574 (Jul 2017).
https://doi.org/10.1109/CVPR.2017.695

8. Ummenhofer, B., Zhou, H., Uhrig, J., Mayer, N., Ilg, E., Dosovitskiy, A., Brox,
T.: DeMoN: Depth and Motion Network for Learning Monocular Stereo. In: IEEE
Conference on Computer Vision and Pattern Recognition (CVPR) (2017)

