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Abstract— The task of semantic instance segmentation has
gained a large interest within academia as well as industry,
especially in the context of autonomous driving. While several
published approaches achieve very strong results, only few of
them achieve frame rates that are sufficient for the automotive
domain. We present an approach that achieves competitive
results on the Cityscapes [1] and KITTI [2] datasets, while being
twice as fast as any other existing approach. Our method relies
on a single fully-convolutional network (FCN [3]) predicting
object bounding boxes, as well as pixel-wise semantic object
classes and an offset vector pointing to corresponding object
centers. Using those outputs, we present an efficient and
simple post-processing that assigns each object pixel to its best
matching object detection, resulting in an instance segmentation
obtained at real-time speeds.

I. INTRODUCTION

Although semantic instance segmentation has experienced
large progress within the last few years, it still remains a
very challenging task within the vision community. Instance
segmentation describes the problem of predicting a set of
objects with pixel-accurate outlines, opposed to object de-
tection, where axis-aligned bounding boxes give a rather
coarse object localization. It combines the task of semantic
segmentation, where each pixel of a given image has to be
labeled with a semantic class (e.g. road, car, person, ...),
with the task of object detection. Very recently, Kirillov et
al. [4] propose to further refine instance segmentation to
Panoptic Segmentation, where predicted object masks may
not overlap, while additionally requiring a full and consistent
semantic segmentation of the scene.

One of many applications of semantic instance segmen-
tation is the field of autonomous driving. Therefore, several
datasets were created with automotive applications in mind,
e.g. Cityscapes [1] and KITTI [2] (extended to pixel-level
accuracy by [5] and [6]), as well as Mapillary Vistas [7].
This progress is driven by the need to accurately determine
the location of individual objects, where axis-aligned boxes
might be too coarse. This is most often the case for highly
occluded objects and non-rectangular objects, where the
actual object sometimes covers as little as 30% of the area
of its surrounding bounding box.

The key challenge in semantic instance segmentation is
the combination of high-level object knowledge with low-
level pixel information. Approaches relying mainly on pixel
information (e.g. as output of an FCN) usually apply complex
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Fig. 1. Overview: Our method predicts object bounding boxes and
semantic segmentation (top), as well as pixel-wise offset vectors (center)
to corresponding object centers (white crosses) - color encoding such that
red pixels point to the top right, green pixels point to the bottom left. This
allows us to efficiently segment all object instances in the scene (bottom).

post-processing like graphical models [6], [8], clustering
[9], [10] or template matching [11], [12] to gain high-level
object knowledge. On the other hand, approaches relying
mainly on object detection must employ additional (sub-)
networks to achieve a pixel-accurate object mask [13]. Our
approach represents a balanced fusion of object and pixel
knowledge, which produces accurate instance segmentation
with an efficient single FCN forward-pass and a single image
pass post-processing.

II. RELATED WORK

When analyzing the broad range of modern instance
segmentation approaches, we find three kinds of approaches:
The first tries to integrate the task of instance segmentation
into the task of object detection, where Mask R-CNN [13]
is the most recent and successful representative. The second
combines several deep neural networks, typically one for
high-level, object-based information and another for low-
level, pixel-based information. The third relies mostly on
pixel-features generated by a single FCN forward pass,
additionally employing some post-processing to gain high-
level object knowledge.

Very recently, Mask R-CNN by He et al. [13] introduced a
powerful way of predicting object bounding boxes along with
a pixel-accurate mask for each predicted object, based on the



Faster R-CNN framework [14]. With a special ROI-Align
operation, feature maps from an object detector network
are reused and fused with an additional smaller network
to produce a foreground-mask for each detected bounding
box. Similarly, Straight-to-Shapes [15] predicts object box
parameters (class and box dimensions) along with a com-
pact learned mask representation in the shape of a 1 × 1
feature vector. A decoder network recovers pixel-level mask
information from the predicted compact vector. While Mask
R-CNN currently achieves highest performance on instance
segmentation, it requires relatively long execution times due
to the per-proposal computations and its deep base network.
Straight-to-Shapes represents a very lean and efficient design,
however it does not reach sufficient performance in terms of
instance segmentation.

Even though the two methods above combine several
(sub-) networks to address instance segmentation, the follow-
ing approaches employ rather complex network architectures
and post-processing: Romera-Paredes et al. [16], as well
as Ren et al. [17] suggest to use a recurrent network on
top of a feature-extractor base network to iteratively predict
object instances. The Sequential Grouping Network by Liu
et al. [18] present an approach predicting horizontal and
vertical pixel-based instance boundaries with one network
and grouping them with another. Fully Convolutional In-
stance Segmentation [19], [20] is based on Faster R-CNN,
predicting multiple instance-sensitive score maps per pro-
posal to achieve high-quality object masks. Boundary-aware
Instance Segmentation [21] presents an extension for Faster
R-CNN predicting per-pixel distances to proposal centers in
order to allow some pixels outside of the predicted object
box to still be assigned to the respective box. The Multi-
task Network Cascade [22] describes another adaptation of
Faster R-CNN to sequentially predict object proposals, their
masks and eventually their class, reusing extracted features of
previous tasks. MaskLab [23] describes concurrent work to
our approach, using Faster R-CNN as object detector and an
additional per-proposal pixel-wise class prediction describing
direction and distance to the object center. In contrast, we
employ a fast Single-Shot Detector and predict center-offsets
as regression on the full image at once.

The following approaches all rely on a single FCN to
predict strong pixel-based features that allow to form ob-
ject instances with pixel-accurate outlines in a consecutive
post-processing step. Using efficient base architectures, the
runtime of those approaches highly depends on the employed
post-processing step, which tends to be rather slow. Also,
as those approaches do not explicitly incorporate high-level
object knowledge, they tend to degenerate on large objects
and on scenes with large and complex occlusions. Many
works use loss variants of typical metric learning problems
in order to address instance segmentation by predicting em-
bedding vectors that differ across objects [9], [10], [24], [25].
They achieve high-level object representations by applying
a clustering on the high-dimensional feature embeddings
or predict seed points from where instances are grown
via similarity. The method by Neven et al. [24] represents

Fig. 2. Our overall network architecture: A single FCN in GoogLeNet-
v1 style [33] predicts per-pixel semantics and center-offset via deconvolu-
tions with skip-connections [3] and boxes using an SSD head [34].

a particularly efficient solution for instance segmentation,
however, they report performance only on one of eight
object classes of the Cityscapes dataset. Also, to achieve
fast execution, they rely on an image downsampling, which
can be problematic for small objects (i.e. distant or highly
occluded). Another row of work employs classical computer
vision post-processing on top of suitable FCN features:
Template matching [11], [12], watershed [26] or connected
component analysis [27], multicut [28], graph optimization
[29], or graphical models [6], [8], [30]. The Proposal Free
Network [31] predicts object classes and box parameters for
a fixed feature-grid resolution in a single shot (c.f . YOLO
[32]), while additionally regressing an overall number of
visible objects per class - using an off-the-shelf clustering
on the box parameters, they can extract object instances.

In contrast to previous works, we employ an efficient
single-shot detector together with an efficient and simple
pixel-to-box assignment, which is based on a per-pixel
prediction of semantic classes and offset vectors to object
centers. All those features are predicted with a single network
that is based on the efficient GoogLeNet-v1 architecture
[33], using SSD [34] as object detection head. This allows
our method to run on frame rates sufficient for autonomous
driving: over 10Hz on Cityscapes’ 2MP images and 35Hz
on KITTI images (approximately 0.5MP) - with a standard
TensorFlow [35] implementation on an Nvidia Titan Xp.
Also, we present several adaptations of the original SSD [34],
lying in the network architecture, choice of prior boxes, and
loss formulation.

III. METHOD

A. Network Structure

To predict all inputs for our post-processing (bounding
boxes and per-pixel semantic class as well as offset vectors
to object centers), we use an adaptation of the GoogLeNet-
v1 Inception architecture [33], c.f . Fig. 2. We find this
architecture to be very efficient, allowing real-time execution
on 2MP camera images with very high precision in semantic
segmentation performance, c.f . extensive studies in [36].



For the SSD head of our network, we remove the original
average pooling after GoogLeNet’s inception 5b module and
replace it with an ordinary 2-strided max pooling. Then,
instead of adding (partially strided) Conv6 to Conv11 2, as
suggested in [34], we add two additional inception modules,
i.e. 6a and 6b, with same parameters as inception 5a and
5b but on stride 64 instead of stride 32. To achieve even
larger receptive fields for large objects such as trucks, trains,
and buses that might fill the whole 2MP width of 2048
pixels, we add another 2-strided max pooling and inception
modules 7a and 7b, again with parameters of 5a and 5b.
For predicting actual box parameters and box classes, we
add 1 × 1 convolutional branches from following inception
module outputs: 4e, 5b, 6b, and 7b. We recursively compute
the theoretical receptive field of those layers using

RFout = (RFin − 1) ∗ s+ k

where RF describes the receptive field of input and output,
s is a layer’s stride and k describes its kernel size: 427
pixels squared for inception 4e, 715 for 5b, 1291 for 6b, and
eventually 2443 for inception 7b. However, from studies of
effective receptive fields [37], we know that actual receptive
fields after training can be significantly smaller. Therefore,
we require the theoretical receptive field to be twice the
maximal width or height of a prior box in order to assign it
to a specific layer.

For our pixel-wise predictions, namely semantic classes
and center-offset vectors, we employ the strategy presented in
[3]: We use skip connections from corresponding inception-
module outputs, consisting of 1 × 1 convolutions and an
element-wise addition, as well as deconvolutions to sequen-
tially upscale low-resolution feature maps. We find that using
2 filters for center-offsets, and n + 1 filters for n object
classes and a background class for the upsampling part of
the network, as well as a starting point at inception 6b to
give the best runtime vs. performance trade-off.

B. Loss Formulation

To weight the four different tasks that our network shall
solve (semantics, offsets, as well as object location and
detection scores), we use the approach presented by Kendall
et al. [38] to learn task uncertainties σ:

Ltotal =
1

σ2
semantics

Lsemantics + log σsemantics

+
1

2σ2
offsets

Loffsets + log σoffsets

+
1

2σ2
SSDbox

LSSDbox + log σSSDbox

+
1

σ2
SSDclass

LSSDclass + log σSSDclass (1)

For semantic segmentation, we use a standard cross-
entropy loss as Lsemantics. As loss for center offset vectors
Loffsets, we use an L2 regression loss. Both are normalized over
the number of valid pixels. LSSDbox describes our regression
loss for SSD box parameters (parametrized as xmin, ymin,
xmax, ymax), which is implemented as an L2 loss. For our
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Fig. 3. Relative Change Metric: Using the top left (tl) and bottom right
(br) corners of two boxes (typically one prior box and one GT box), we
compute the relative change as described in Equation 2.

box classification loss LSSDclass , we use Focal Loss [39] to
cope for the extreme class imbalance between foreground
and background labels - in Sec. IV-A, we evaluate several
parameterizations for the necessary γ parameter.

C. SSD Adaptations

We identified a weakness in the original SSD implemen-
tation [34] that causes only few GT boxes being associated
during training: A predefined threshold is used in order to
state whether a predicted bounding box and an annotated
ground truth (GT) box match, which is necessary to punish
false-positives and false-negatives. This threshold is defined
as 50% in terms of intersection over union (IoU) of each
possible template box and the GT boxes. For the training
split of Cityscapes [1], we find that only about 40% of all
GT boxes have an overlap larger than this threshold with any
existing prior box. Due to a lack of sufficient supervision, this
causes rather bad object detection performance, especially
for small objects, c.f . Sec. IV-A. By reducing the IoU
threshold, it is possible to increase the number of prior boxes
that get matched with a GT box, however, this also causes
rather dissimilar prior boxes to match with a given GT box.
Overall, we find that reducing the IoU threshold to less than
50% causes even worse object detection performance.

To overcome this problem, we propose a novel metric
to find well matching prior boxes: We use relative box
parameter changes instead of IoU to both overcome issues
on small objects and low coverage rates. For two boxes,
one prior box bprior with parameters (xmin, ymin, xmax, ymax)
and one annotated ground truth box bGT with width wGT =
xmax − xmin and height hGT = ymax − ymin, we compute the
relative change as follows:

dchange =

√
∆ytl

hGT

2

+
∆xtl

wGT

2

+
∆ybr

hGT

2

+
∆xbr

wGT

2

(2)

Where ∆y is the absolute difference between y parameters
of both boxes (ymin for the top left (tl) box corner, ymax
for the bottom right (br) corner), and ∆x analogously for x
parameters, c.f . Fig. 3.

We find our change metric more intuitive than an
IoU-based matching, as box regression is commonly trained
using corner offsets, not to optimize IoU overlaps. And
indeed, having loss and matching in the same space seems
to facilitate the training process, as we experience much
smoother convergence behavior when comparing change-
based matching versus IoU-based matching.
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Fig. 4. Coverage of Prior Boxes: Our 21 selected prior box dimensions
(purple stars) densely cover most Cityscapes [1] objects (black dots).
Colored areas have dchange ≤ 0.7 to any prior box, c.f . Equation 2. Black
lines represent upper bounds of object dimensions according to half the
theoretical receptive field of each SSD output layer.

In addition to the IoU-based matching, we find the choice
of prior boxes as suggested in [34] to be rather inefficient in
terms of number of GT boxes within the matching threshold
vs. number of created prior boxes. We therefore tried to
find an optimal set of prior box dimensions by clustering,
as suggested by Redmon et al. [40]. However, we find
that mostly very small prior boxes are generated, while
some rare large objects are ignored. This effect occurs both
when clustering in IoU distance as well as relative change,
however, not as drastically. Therefore, we manually select
a set of 21 prior boxes to densely cover the wide range
of object dimensions with a minimal amount of priors and
assign them to SSD output layers respecting receptive field
sizes, c.f . Fig. 4.

D. Pixel-to-Box Assignment

In the following section, we describe how to generate
a semantic instance segmentation using the three proposed
network outputs (pixel-wise semantic class and center-offset
vectors, as well as a set of predicted object boxes with
detection scores).

The very first step, based solely on the detected ob-
ject boxes lies in a common non-maximum-suppression
(NMS), which is implemented in the object detection tools
of TensorFlow [35]: We take the argmax non-background
detection for each SSD grid cell (each prior box location
can only predict a single object class), typically resulting in
a set of predictions for a single object. Then, the prediction
scores are sorted in descending order, where all predictions
with a lower score are removed if they have an IoU overlap
larger than a given threshold (usually 50%) with any other
prediction with a higher score.

Followingly, we find the best matching object box for each
pixel by computing the minimal distance between the pixel-
wise center prediction and the predicted bounding boxes:
To determine the estimated per-pixel object center location,
we add each pixel’s location to the predicted center-offset

doff dout

Fig. 5. Pixel-to-Box Assignment: Each pixel (blue circle) predicts an
offset vector (black arrow) towards an object center (black rectangle with
green circle). If the pixel lies outside of a predicted box, it is punished with
the distance to the closest box boundary dout. Additionally, the difference
between offset prediction and box center is punished with doff.

vectors. Next, we extract all foreground pixel indices and
map all predicted semantic labels to corresponding box class
labels, if necessary. Using those indices, we can rearrange
each pixel’s location, its estimated object center and semantic
class in vector form, which allows further processing in
efficient-to-compute GPU tensor operations: We use an outer
addition, similar to an outer product, to subtract a [n, 1]
shaped vector b from a [1,m] shaped vector p. This generates
a [n,m] shaped matrix D, where Di,j = bi − pj . For the
following, n will be the number of non-maximum-suppressed
boxes and m will be the number of non-background pixels.
We find the best matching box for each single pixel by
incorporating several distances: The most obvious distance
is that between a pixel’s predicted object center and the
actual center of a predicted box, c.f . doff in Fig. 5. We
reformulate this pair-wise distance computation as a matrix
multiplication in order to efficiently compute many distances
in parallel. Also, to punish pixels that lie outside of boxes
and to assign them to such boxes less likely, we add dout
which is each pixel’s distance to the closest point on the
predicted box, and zero if it lies inside the box. To heavily
punish label inconsistencies, e.g. to not assign pedestrian
pixels to predicted vehicle boxes, we add a sufficiently large
number to the overall distance whenever pair-wise labels
mismatch. Also, we find that even after successful NMS,
there might still be multiple detections on the same object.
However, due to the previously described behavior of NMS,
those additional detections either have a rather bad IoU
overlap with the actual object or a rather low detection score.
Therefore, we add a small additional distance (relative to
image dimensions) to each box-pixel pair for detection scores
lower than 100%.

Eventually, after adding all additional distance terms to
our Di,j , we can easily extract the index of the closest box
prediction for each non-background pixel using an argmin
over all rows of D. As we stored the locations of all non-
background pixels, we can now simply assign those pixels
with the extracted argmin indices as instance IDs. For eval-
uating this instance ID image on most modern benchmarks,
we still need to generate a prediction score and a class label
for each instance. For prediction scores, we can simply reuse
the detection scores of respective selected box predictions.
For class labels, we can either use the box class label if
we have the same classes in box prediction and semantic
segmentation, or use the most frequently appearing semantic
class among all pixels that got assigned to a specific box.



TABLE I
INSTANCE SEGMENTATION ON CITYSCAPES VALIDATION

Variant AP AP50% mAP50% IoU
(instances) (instances) (objects) (semantics)

IoU
50% FG/BG 6.4% 12.4% 34.8% 58.2%
FL (γ = 2) 8.1% 15.3% 25.2% 63.1%
FL (γ = 5) 8.4% 14.8% 24.7% 63.6%

Change
50% FG/BG 12.4% 24.2% 44.5% 65.5%
FL (γ = 2) 17.4% 33.1% 49.2% 66.2%
FL (γ = 5) 14.5% 28.9% 47.2% 65.5%

TABLE II
INSTANCE SEGMENTATION ON KITTI VALIDATION

Variant AP InsF1 mAP50% IoU
(instances) (instances) (objects) (semantics)

50% FG/BG 47.0% 75.1% 88.5% 93.2%
FL (γ = 2) 46.0% 87.3% 84.5% 93.9%
FL (γ = 5) 47.1% 84.2% 82.7% 94.1%

This operation can be formulated as the argmax of an outer
product of one-hot encoded vectors of box and pixel classes.
The actual maximum value over all columns of this one-hot
vector matrix multiplication gives the number of pixels that
were assigned to an individual box. This information might
be used to further filter out instances where only very small
portions of a predicted bounding box represent an object,
which might be an indicator for false-positives.

Overall, all presented steps can be easily formulated in a
TensorFlow computation graph, which allows GPU computa-
tion of the complete pixel-to-box assignment. We experience
average execution times of approximately 100 milliseconds
on Cityscapes images (2MP), and 30 milliseconds in KITTI
images (approx. 0.5MP) with plain TensorFlow 1.4 [35] and
CUDNN version 6, using an Nvidia Titan Xp.

IV. EXPERIMENTS

In the following, we evaluate our approach on two chal-
lenging datasets, namely Cityscapes [1] and KITTI [2],
[5], [6] using suggested instance-aware metrics. We extract
object bounding boxes from provided instance segmentation
annotations, i.e. minimal and maximal pixel locations for
each object instance. We train our network in the Tensor-
Flow framework [35] with the Adam optimizer [41], using
standard momentum settings of β1 = 0.9 and β2 = 0.999,
as well as a learning rate of 10−4.

A. Ablation Studies

As described in Sec. III-C, we implement several adapta-
tions of the original SSD approach [34]. We find a significant
performance boost from using our suggested change-based
metric (threshold of 0.7) compared to the traditional IoU-
based metric (threshold 0.5) to find matches between pre-
dictions and GT boxes, c.f . ”IoU” and ”Change” sections in
Table I. While semantic segmentation performance stays at
a same level for all experiments (approx. 60% − 65%), we
find large differences in the object mean average precision:

TABLE III
TEST SET EVALUATION FOR CITYSCAPES. EXECUTION TIMES, IF NOT

STATED BY THE AUTHORS, ARE GUESSED IN FAVOR OF THE APPROACH.

Method AP AP50% FPS
Mask-R-CNN (COCO) [13] 32.0% 58.1% < 1
Mask-R-CNN [13] 26.2% 49.9% < 1
SGN [18] 25.0% 44.9% 0.6
Dynamic Net [8] 20.0% 38.8% < 3
DWT [26] 19.4% 35.3% < 3
Discriminative Loss [9] 17.5% 35.9% 5
BAIS [21] 17.4% 36.7% ≤ 1
Instance Cut [28] 13.0% 27.9% < 1
Foveal Vision [12] 12.5% 25.2% < 3
Graph Decomposition [29] 9.8% 23.2% ≤ 1
Recurrent Attention [17] 9.5% 18.9% < 3
Pixel-Encoding [11] 8.9% 21.1% < 3
R-CNN + MCG [1] 4.6% 12.9% 0.02
Deep Contours [43] 2.3% 3.6% 5
Ours (FL, γ = 2) 13.1% 27.2% 10.9

Using the IoU-based matching, trained networks tend to miss
many small objects, which is not the case for the change-
based matching. We did not investigate correlations with
object detection approaches that specifically focus on small
objects, such as Feature Pyramid Network [42], which is left
for future work.

When fixing the used metric, e.g. to relative change,
we find (less significant) performance boosts from using
Focal Loss (FL) [39] over traditional weighting schemes
for foreground (FG) and background (BG), e.g. 50% each.
Experimentally, we find a γ of 2 to achieve highest detection
scores (mAP of 49.2%) as well as highest instance segmen-
tation scores (AP of 17.4%) on the Cityscapes validation
split. Similar trends are visible on the KITTI validation split,
c.f . Table II, however not as clear as for Cityscapes. Even
though γ = 5 achieves slightly better AP performance, we
chose γ = 2 as InsF1 and object detection performance are
significantly better.

B. Segmentation Performance vs. Runtime

We compare our instance segmentation performance with
other baseline approaches on the test set of Cityscapes, c.f .
Table III, as well as the KITTI test split, c.f . Table IV. While
we achieve a new state-of-the-art on KITTI on all metrics but
instance-level precision, we fall behind on Cityscapes. We
experience a significant performance drop from 17.4% AP on
Cityscapes validation down to 13.1% on the test set. We find
no other reason than higher difficulty, as most related work
experiences a similar performance drop. Nevertheless, we
find our method in the middle in terms of average precision
with clearly faster execution times (twice as fast as the
second fastest). Brabandere et al. [9] achieve 17.5% AP with
5 FPS, however to perform such fast execution times, they
downsample images to a resolution of 768 × 384, which is
almost an eighth of the original 2MP. For methods that do
not state execution times on the official benchmark or in
their publications, we guess in favor of the method using the
employed network base architecture (e.g. ResNet-50 [44],
VGG [45], or Dilation-10 [46]) and execution times reported



(a) Bounding Boxes (b) Semantic Segmentation (c) Instance Segmentation

Fig. 6. Result Samples: Result on Cityscapes (top) and KITTI (bottom), using the Cityscapes color encoding for semantic segmentation and random
colors for instance segmentation. Most remaining failure cases are based on missed or double object boxes or erroneous semantics. Best viewed on screen.



TABLE IV
TEST SET EVALUATION FOR KITTI - ALL METRICS IN PERCENT, WHERE HIGHER IS BETTER

Method AP AP50% MWCov InsPr InsRe InsF1 IoU AP50%

(instances) (instances) (instances) (instances) (instances) (instances) (semantics) (objects)
Depth Ordering [30] - - 70.9 40.2 45.9 42.8 77.3 -
Deep MRF [6] - - 74.1 70.9 53.7 61.1 78.5 -
Graph Decomposition [29] 43.6 71.4 - 69.2 76.5 72.7 83.9 -
Pixel-Encoding [11] 41.6 69.1 79.7 86.3 74.1 79.7 84.1 -
Recurrent Attention [17] - - 80.0 - - - 87.4 -
Ours (FL, γ = 2) 44.6 72.5 89.0 84.6 80.7 82.6 93.5 84.2
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Fig. 7. Runtime vs. Performance: Current submissions on the Cityscapes
test benchmark [1], using only Cityscapes training data. Execution times, if
not stated in the original paper, are guessed in favor of the method.

in [36]. Other methods, such as Mask-R-CNN, report 5 FPS
on 0.4MP images, which extrapolates optimistically to 1 FPS
on 2MP Cityscapes images, ignoring additional time for the
increased number of objects. See Fig. 7 for a visualization
of runtime vs. performance numbers for approaches trained
on Cityscapes.

Huang et al. [47] find that SSD is the fastest under the
good performing deep object detectors, i.e. one of the most
efficient base architectures. By further adjusting the base
architecture to a GoogLeNet-v1 [33], we measure the fol-
lowing execution times: For a full 2MP image, the network
(including SSD and deconvolution heads) requires approx-
imately 70 milliseconds on an Nvidia Titan Xp GPU for
inference. The non-maximum-suppression as implemented in
TensorFlow [35] requires in average 10 ms, and our pixel-to-
box assignment requires another 20 ms, resulting on average
in 100 milliseconds for the complete instance segmentation.
For 0.5MP large images, the overall computation lasts 30 ms
with 20 for the network and 8.5 for NMS plus our assign-
ment. When implemented efficiently on a GPU, execution
times of 10 ms for NMS on Cityscapes images go down to
2 ms, resulting in an overall runtime of 92 ms. In future
work, instead of densely computing distances between all
pixels and all bounding boxes in the image, one could further
reduce runtime by only computing distances for pixels in the
neighborhood of a detected object box.

V. CONCLUSION

We present an approach that is capable of segmenting
object instances in real time, even on 2MP large images.
We achieve competitive performance on automotive datasets
such as Cityscapes [1] and KITTI [2], being twice as fast as
the second fastest competitive approach, without relying on
image downsampling. This is possible by employing the ef-
ficient state-of-the-art base network GoogLeNet-v1 [33] and
SSD [34] as object detection head. Additionally, we propose
to extend the GoogLeNet-v1 architecture by several inception
modules for an efficient deep object detection network. Also,
we find a novel metric to define positive matches in the SSD
loss computation (relative box parameter changes), which
produces superior object detection and instance segmentation
performance compared to IoU-based matching approaches.

In future work, we plan to further boost our object
detection performance by incorporating special approaches
for small and highly occluded objects, which are our main
failure case. Also, with the availability of new challenges
incorporating Panoptic Segmentation [4], we plan to extend
our approach to predict complete semantic segmentation
instead of only predicting object and background classes.
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