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Abstract— Densely connected networks for classification en-
able feature exploration and result in state-of-the-art perfor-
mance on multiple classification tasks. The alternative to dense
networks is the residual network which enables feature re-
usage. In this work, we combine these orthogonal concepts for
encoder-decoder architectures, which we call Dual-Path Dense-
Block Network (DPDB-Net). We introduce a dense block which
incorporates feature re-usage and new feature exploration in
the encoder. Moreover, we discuss that feature re-usage by the
residual network architecture leads to a feature map explosion
in the decoder and, thus, is not advantageous in this part of the
network. We evaluated our proposed architecture in multiple
segmentation tasks and report state-of-the-art performance on
the Freiburg Forest dataset and competitive results on the
CamVid dataset.

I. INTRODUCTION

Convolutional Neural Networks (CNNs) are in the center
of major advances in several areas of computer vision and
robotics, such as image classification [12], [13], [16], [28],
loop closure [11], optical flow [9], localization [29] and
image segmentation [21]. The advancement in segmentation
tasks has been mainly due to encoder-decoder networks, also
known under the term Fully Convolutional Networks (FCNs)
[21], [27]. This kind of architecture extends classification
CNNs, which only have an encoder, by adding a decoder
layer which tackles pixel-wise prediction. The encoder part
is typically a state-of-the-art classification architecture, such
as VGG [28] or Resnet [12]. The encoder is responsible for
feature learning and provides an initial low-resolution dense
prediction. This low-resolution prediction is refined by the
decoder, which consists of a set of convolutional layers with
successive upsampling.

In order to recover the resolution loss induced by pooling
layers, all current techniques make use of skip connections
between their encoder and decoder parts. Skip connections
between encoder and decoder help the upsampling path to
recover fine-grained information from downsampling layers.
Although with a different motivation, modern classification
architectures like ResNet and DenseNet [12], [13] take ad-
vantage of skip connections, too, by propagating information
from lower directly to higher layers within the encoder. Such
connections facilitate gradient back-propagation to the bottom
layers without magnitude reduction, thereby reducing the
vanishing gradient problem.

ResNets introduced the residual function, which relies on
a residual connection and is called residual path. Such con-
nection performs element-wise summation between the input
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Fig. 1: Simplified diagram of the DPDB-Net. Our archi-
tecture is built from DPDB blocks, more specifically in
the encoder section of the network. The decoder part uses
dense blocks. Further discussion about this architectural
decision is presented in Section III. The complete architecture
consists of five DPDB blocks for encoding, and each of them
is followed by a down sampling block, called Transition-
Down (T-Down). The decoder part comprises five upsampling
blocks, called Transition-Up (T-Up) blocks. The upsampled
features are fused with its correspondent encoder part through
concatenation and subsequently used as an input for a dense
block. Skip connections are depicted as dotted horizontal
lines and c© represents a concatenation operation.

and output features of each micro-block. The residual unit
has as main characteristic the reuse of features, and serves as
a feature refinement stage. The recently introduced DenseNet
[13] uses a new micro-block called densely connected block.
In contrast to residual blocks which element-wise sum the
input and output features through the residual path, the
input features are concatenated with the output features
permitting features in each micro-block to be connected to
all previous blocks. The main effect of a dense block is
that it keeps exploring new features. Additionally, DenseNets
provide a higher parameter efficiency when compared to
ResNets, which usually requires on average three times more



parameters to provide the same level of accuracy [13]. Such
characteristic mitigates the feature map explosion problem,
i.e., a computationally intractable number of feature maps
with high resolution prior to the softmax layer.

In this work, we aim to incorporate feature refinement
and exploration into a new block, called Dual-Path Dense-
Block (DPDB). By fusing both characteristics, we are able to
produce more informative features, for semantic segmentation
tasks. Such fusing strategy has been explored before in [33],
yet focusing on classification. We also propose a new network
called DPDB-Net which provides a better understanding
on dense connections for semantic segmentation tasks. An
overview of the proposed method is shown in Fig. 1. The
experimental evaluation shows that the proposed approach
yields competitive results on the CamVid dataset [4] and
state-of-the art results for the Freiburg Forest semantic
segmentation dataset [31].

II. RELATED WORKS

In this section we review advances in semantic segmenta-
tion. Driven by the recent progress in classification with deep
neural networks, pixel-level prediction achieved great success
inspired by the fully convolutional concept of replacing fully-
connected layers with convolutions [21]. Following the FCN
concept many works tackle semantic segmentation through
exploring context, resolution or boundary alignment. Adding
context to FCNs is an active research area in semantic
segmentation. Methods like Zoom-out [22], Parsenet [20] and
Deeplab-V2 [6] were design to incorporate context explicitly.
Zoom-out proposes a hierarchical context features network,
while ParseNet includes global pooling features to explicitly
add context information. More recently, Deeplab-V2 proposes
Atrous Spatial Pyramid Pooling, which combines features at
different fields of view given a set of dilated convolutions,
to include context to a Resnet based encoder.

Other works on semantic segmentation focus on recovering
the resolution lost by successive down-sampling operations,
such as pooling. For instance Deconv-Net [23], Fast-Net [24]
and SegNet [2] are examples of these approaches. Deconv-
Net introduces an unpooling operation and an hourglass like
network to learn the upsampling process, while SegNet reuses
the pooling indices from the encoder to recover resolution.
Fast-Net adds skip connections from the encoder features
to the corresponding decoder activations also focusing on
efficiency in terms of computational requirements.

Boundary approaches try to refine the predictions near the
object edges. These approaches make use of post-processing
techniques, such as Deeplab [5], Adelaide [18] and bilateral
solver [3]. Deeplab make use of a CRF built on fully-
connected graph, which serves as a boundary refinement
after the CNN. Another example of CRFs as post-processing
step is Adelaide [18]. Alternative solutions to CRFs are
proposed by [3], [14]. [14] proposes the bilateral filter to
learn specific potentials within CNNs, providing 10× speed
up and comparable performance to CRFs.

In contrary to previous works we will explore the potential
of densely connected blocks, through our DPDB block, as

an encoder-decoder architecture for semantic segmentation.
Differently from previous approaches that use the same
class of dense blocks homogeneously in the whole network,
we found that different characteristics are required for the
encoder and decoder part of FCNs. Our DPDB-Net is a new
architecture that incorporates such demands for semantic
segmentation tasks.

III. METHODOLOGY

We start with our observations on ResNets and DenseNets.
They motivate the proposal of our DPDB block. Then using
our block we design a fully-convolutional framework for
semantic segmentation tasks. The goal of our model is to
further exploit feature reuse and exploration.

A. Analysis of ResNet and DenseNet

In the following we will discuss and present an analysis
on the strengths and weaknesses of the Resnet and DenseNet
topologies. The findings provide the motivation behind
developing an architecture that exploits of both approaches.

Let xl be the output of the l-th layer. Standard CNNs
compute xl by applying a non-linear transformation Nl

to the output of the previous layer xl−1. The equation
xl = Nl(xl−1) defines Nl as a set of operations, such as
convolution followed by Exponential Linear Units (ELUs)
[7] and dropout. Residual networks introduced the so-called
residual block in order to ease the training of very deep
architectures. The residual block sums the input and output
layers:

xl := Nl(xl−1) + xl−1, (1)

making feature reuse possible and permitting gradients to
flow directly to early layers. By sharing features across all
steps, residual blocks encourage feature re-usage and thus
reduce feature redundancy. This makes it more difficult for
residual networks to explore new features. For residual blocks,
Nl is usually defined as the repetition of t blocks, usually two,
composed by batch normalization, ReLU and convolution.

While residual blocks present a repetition of few blocks,
which are sequentially connected, DenseNets extend this
idea with another type of architecture. Dense blocks are
characterized by a connectivity pattern that recursively
concatenates all previous feature outputs. The output xl of a
DenseNet layer is defined as:

xl := Nl([xl−1, xl−2, xl−3, ..., x0]), (2)

where each layer is a composition of all previous ones
through concatenation [· · · ]. The main characteristic of the
densely connected block is the ability to explore informa-
tion from previous outputs, given features are not shared
across steps. Hence, different features may extract the same
information multiple times, leading to a high redundancy
block.

The residual network’s main limitation resides in its
element-wise summation operation for fusing information.
This operation may squash useful features from preceding
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Fig. 2: DPDB-Net Architecture. Only convolutional, DPDB block, transition down, transition up and dense block layers are
visualized. The network before the first transition up layer is considered the encoder part. Such part is constituted by DPDB
blocks, while the rest of the network constitutes the decoder part and uses densely connected layers. Below the architecture
we present a short description of each of the main building blocks of the proposed architecture.

layers. The squashing problem can be interpreted as fol-
lows: given two vectors of weights w1 , [w11, ..., w1n]
and w2 , [w21, ..., w2n] and an element-wise aggregation
function fag(w1,w2) , w1 + w2, thus, if w1j � w2j

then fag(w1,w2) ∼ w1 + εεε then the importance of the low
magnitude weights vanishes. Additionally, its high number
of parameters, makes very deep residual networks intractable.
DenseNets on the contrary can provide a better efficiency in
term of parameter usage. On the other hand, dense blocks
have an excessive parameter growth, due to the concatenation
operation, that can greatly limit the width of DenseNets.

In the following section we will present the Dual-Path
Dense-Block (DPDB) approach which can incorporate both
characteristics into a single block.

B. DPDB Block

Based on the previous analysis, we propose a new dense
block called Dual-Path Dense-Block. Our block is different
from the dual path network [33], which also combines
concepts from ResNet and DenseNet: we give similar weights
to each of the sides and do not use a residual block as main
block adding a thin densely connect path.

Given xl,R and xl,D as the outputs for the l-th layers of
the residual path and dense path, we formulate the DPDB
path block as:

rl := xl,R + xl,D, (3)
hl := Gl(rl), (4)

where Equation 3 defines the path that adds both outputs
and feeds them to the final transformation function in Equation
4. The transformation function Gl(·) is responsible for
making the next mapping or prediction. Path fusion is done
through concatenation, in order to avoid the feature squashing
problem.

C. DPDB Networks

The proposed network consists of a downsampling part,
called encoder, and an upsampling part called decoder. Figure
2 presents the proposed DPDB-Net architecture.

The encoder side is built by stacking DPDB blocks. Each
block is composed by a dual path and the structure of each

path is designed in the bottleneck style. The residual path is
composed by a residual connection which is integrated to the
dense structure with a set of 1×1 convolution layer followed
by a 3× 3 convolution, and ends with a 1× 1 convolution
layer. Each convolution layer described inside the micro-block
is in fact a batch normalization, ELU activation function, and
convolution. The output of the final 1× 1 convolution is split
into two parts, one that is added element-wise to the residual
path, and the second which is concatenated to the densely
connected path. Both streams are concatenated in the final
stage to serve as input to the next block.

Every block in the encoder part is followed by a transition
down operation to reduce the spatial dimensionality of the
feature maps. The transition down block is composed of
a batch normalization, ELU, convolution, dropout and a
final 2× 2 max pooling operation. We also explored stride
for dimensionality reduction but max pooling showed better
performance.

Our decoder part is exclusively composed by dense blocks.
Usually, this part of FCN architectures holds a great number
of parameters and DPDB blocks with the same size in
the encoder and decoder part will make such architecture
as intractable as Residual Nets. As presented in Section
III-A residual blocks present the squashing problem when
features of different magnitudes are fused. Such problem
is potentially intensified in the decoder, given that skip
connections provide features from distant convolution stages,
therefore filtering out low magnitude features. Densely
connected blocks perform concatenation operations, thus not
suffering from the squashing problem and been more suitable
for decoders.

Similarly to the transition down operation for the encoder
part, we count with its counter-part for the up-sampling
operation. Such module is called transition up and consists of
a transposed convolution followed by an ELU activation
function that upsamples the previous feature maps. The
upsampled feature maps are concatenated to the corresponding
skip connection from the encoder part. In order to overcome
the feature map explosion of densely connected blocks, the
input of such layer is not concatenated with its output.
Therefore, we do not suffer from the linear growth in the



number of features of dense blocks, allowing us to build very
deep architectures without feature map explosion.

Network Output DPDB Full

Input 360× 480 -
Conv1 360× 480 7× 7, 96

DPDB_1 360× 480

1 ×1, 128
3×3, 128
1×1, 240

 ×4

DPDB_2 180× 240

1×1, 256
3×3, 256
1×1, 384

 ×5

DPDB_3 90× 120

1×1, 512
3×3, 512
1×1, 832

 ×7

DPDB_4 45× 60

1×1, 1024
3×3, 1024
1×1, 1336

 ×10

DPDB_5 22× 30

1×1, 1024
3×3, 1024
1×1, 1984

 ×12

DB_1 22× 30

[
1×1, 912
3×3, 16

]
×12

DB_2 45× 60

[
1×1, 480
3×3, 16

]
×10

DB_3 90× 120

[
1×1, 320
3×3, 16

]
×7

DB_4 180× 240

[
1×1, 208
3×3, 16

]
×5

DB_5 360× 480

[
1×1, 128
3×3, 16

]
×4

Conv Final 360× 480 1× 1, Ncl

TABLE I: DPDB architecture in more detail. For brevity
transition down and transition up modules are not shown.
The network has 217 convolutional layers. Most of them are
in the encoder part (123 layers). The remaining layers are in
the decoder (84 layers) and in the transitions with 5 layers
each. In the table we use the following notation: DPDB stands
for the Dual-Path Dense-Block module, DB for Dense Block
and Ncl for the number of classes.

Table I provides more details on our DPDB-Net archi-
tecture. DPDB-Net has 217 convolutional layers, where the
first convolution is a 7× 7 layer in which we aim to obtain
features with a larger field of view. The following 123 layers
constitute its encoder part and the other 84 layers represent
the decoding module. We count with 10 extra convolution
layers in the transition down and up blocks. The final layer
of the network is a 1× 1 convolution followed by a softmax
non-linearity to provide pixel-wise per-class distribution. One
characteristic of the reduction of the feature map explosion
problem is that we can provide a larger pre-softmax feature
map.

IV. EXPERIMENTS

We evaluated the performance of our network on two
datasets, the Freiburg Forest dataset [31] and the CamVid
dataset [4]. The implementation was based on the publicly
available TensorFlow learning toolbox [1] and all experiments
were carried on an NVIDIA Titan X GPU.

A. Dataset and Evaluation metrics

1) Datasets:
The Freiburg Forest dataset is an outdoor dataset for

unstructured semantic segmentation. Unstructured semantic
scene understanding plays an important role for robots
operating in real world scenarios. The dataset was proposed
by [31] and contains 15, 000, images which correspond to
traversing about 4.7km each day. The dataset further contains
325 images with pixel-level groundtruth, which are divided
into 203 images for training and 122 images for testing,
with five classes, which are sky, trail, grass, vegetation and
obstacles.

CamVid is a street scene understanding dataset which
consists of five video sequences. The reported results use the
same experimental setup proposed by [2], where 367 frames
are training images, 100 images for validation and 233 images
constitute the testing set. The images are 360× 480 and the
dataset differentiates between 11 semantic categories. One
difference of CamVid to other datasets is its strong spatial
relationship among different categories.

2) Evaluation Metrics: For the experiments we report the
Mean IoU and the Global Avg. metrics. Mean IoU is the
ratio of correct classified pixels in a class over the union set
of pixels predicted to this class and groundtruth, and then
averaged over all class 1

Ncl

∑
i

tii
Ti+

∑
j tji−tii

. Global Avg. is
the percentage of correctly classified pixels over the whole
dataset

∑
i tii∑
i Ti

. Given Ncl as the number of semantic classes
and Ti the total number of pixels in class i, while tij indicates
the number of pixels which belongs to class i and predicted
to class j.

B. Architecture and training details

The network was trained in a single stage manner. DPDB-
Net was trained using Adam solver [15], with an initial
learning rate of 2 × 10−4 which decay 10× every 2 × 105

iterations. All models are trained on data augmented images
with multi-window random crop and vertical flip. We also
apply mean subtraction to images and weight class balancing.
We monitor the mean IoU every 100 iterations. We regularize

TABLE II: Results on Freiburg Forest dataset.

Method Sky Trail Grass Veg mIoU

ParseNet [20] 87.78 81.82 85.20 85.20 85.0
M-Net [25] 89.26 82.41 84.93 88.70 86.3
Fast-Net [24] 90.46 84.51 86.72 90.66 88.0
GCN [26] 91.94 86.29 86.44 88.73 88.3

Ours - dense blocks 91.94 86.75 86.18 89.45 88.6
Ours - Full 92.30 87.28 87.80 90.14 89.4



TABLE III: Results on CamVid dataset.
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Superparsing [30] 4 7 70.4 54.8 83.5 43.3 25.4 83.4 11.6 18.3 5.2 57.4 8.9 − 42.0
ALE [17] 4 7 73.4 70.2 91.1 64.2 24.4 91.1 29.1 31.0 13.6 72.4 28.6 − 53.6
Liu [19] 4 7 66.8 66.6 90.1 62.9 21.4 85.8 28.0 17.8 8.3 63.5 8.5 − 47.2
SegNet [2] 4 7 68.7 52.0 87.0 58.5 13.4 86.2 25.3 17.9 16.0 60.5 24.8 62.5 46.2
DeconvNet [23] 4 7 − − − − − − − − − − − 85.9 48.9
FCN8s [21] 4 7 − − − − − − − − − − − 83.1 52.0

STFCN [10] 4 4 73.5 56.4 90.7 63.3 17.9 90.1 31.4 21.7 18.2 64.9 29.3 − 50.6
Reseg [32] 4 4 − − − − − − − − − − − 88.7 58.8

Ours - dense blocks 7 7 66.9 62.4 81.1 45.5 28.8 83.2 38.9 26.8 22.5 62.0 22.4 81.0 49.1
Ours - Full 7 7 72.4 62.9 88.6 61.9 30.0 88.8 44.8 26.1 23.6 69.4 33.1 85.2 54.7

our model with a weight decay of 10−4 and a dropout rate
of 0.1.

C. Freiburg Forest Experiments

The Freiburg Forest dataset is a new benchmark for un-
structured semantic segmentation. The dataset has 5 different
classes, namely sky, trail, grass, vegetation and obstacles.
While most of the dataset is fairly balanced, the class obstacle
has a frequency of 0.85% and can be considered an outlier
for comparison. Thus, for our experiments, we excluded this
class.

Table II reports the obtained results and comparisons to
the baseline. The experiments also points out the importance
of the DPDB block in the encoder side of the proposed
architecture. Even the recent proposed Global Convolution
Network (GCN) [26] underperforms in comparison to our
DPDB-Net. Additionally, we tested our architecture using only
densely connected layers. We can notice that such architecture
yields competitive results with GCN, however it is still not
able to outperform to our complete approach.

Figure 3 shows qualitative results for our approach on
the Freiburg Forest dataset. The obtained results depict the
high mean IoU values presented previously. All examples
are qualitatively similar to the groundtruth. However, small
errors occur between vegetation and sky.

D. CamVid Experiments

CamVid is a dataset of fully segmented videos for urban
scene understanding [4]. Table III report our results with dense
blocks only and with our full approach with DPDB blocks in
the encoder part. The results show a clear superiority of the
DPDP block, consistently improving the IoU for all classes
and presenting a mean IoU gain superior to 5%. Our baseline
ranges from traditional methods like [17], [19], [30] to fully
convolutional approaches such as [2], [21], [23]. In addition
to standard single frame approaches, we also compared our
network with the Spatio Temporal FCN proposed at [10] and
to a recurrent segmentation approach called Reseg [32].

When compared to other methods, we show that DPDB-
Net achieves state-of-the-art results when only single frame
approaches are taken into account. Particularly, we observe

Fig. 3: Qualitative results on the Freiburg Forest test set. The
rows represent from left to right: Input image, ground truth
and prediction of the DPDB-Net.

that the most challenging classes, such as sign, pedestrian,
pole and cyclist, benefit notably from our approach. As the
CamVid dataset corresponds to video frames it contains
temporal information. Given the temporal consistency of
this dataset, methods which incorporate spatio-temporal
regularization to segmentation present clear advantage over
single frame techniques. Reseg [32] is a method that employ
recurrent layers to provide temporally consistent segmentation
masks and constitutes the current overall state-of-the art
approach. Our method is able to present competitive results
even to spatio-temporal approaches, being even superior to
STFCN [10], which is another FCN that incorporates temporal
information to segmentation. No post-processing temporal
regularization is used in the proposed architecture. However,
we believe such addition would yield additional improvements.
Unlike all the compared approaches, that make use of a pre-
trained encoder on large datasets like ImageNet [8] our DPDB
encoder have not been pre-trained but we could likely benefit
from training on these datasets.

Figure 4 shows qualitative segmentation masks obtained
by our approach on the CamVid dataset. They ratify our
quantitative results, showing sharp and well defined segmen-



Fig. 4: Qualitative results on the Camvid test set. The rows represent from left to right: Input image, ground truth and
prediction of the DPDB-Net. The first row shows examples in which the segmentation approach performs accurately, however
the tree class is not completely segmented. In the second and third rows, it can be seen one of the strongest characteristics
of our architecture, which is highly detailed segmentation to challenging classes, such as person, pole and sign. The last row
presents an example with less fine structures. The last two rows also depicts common prediction mistakes, such as between
sign and building, which can be noticed in the third row, top-right side and in the fourth row, top-left side.



tation masks for fine structures. Classes like pole, pedestrian
and sign appear highly detailed. Some errors are related to
problems like transitions between classes in small areas and
class confusions like between fence and building, which can
be seen in the second row (top-to-bottom). Another common
confusion is between sign and building, which can be noticed
in the third row, top-right side and in the fourth row, top-left
side.

V. CONCLUSIONS

In this paper, we presented a new architecture called Dual-
Path Dense-Block Network (DPDB-Net). We introduced a
dense block that incorporates feature re-usage and new feature
exploration in the encoder of fully convolutional networks.
The resulting DPDB-Net is an architecture with 217 layers.
It improves the state-of-the-art performance on a challenging
unstructured semantic segmentation dataset (Freiburg Forest)
and presents competitive results on the CamVid dataset
without requiring post-processing, pre-training, or temporal
regularization modules.
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