DispNet-CSS: Robust Vision Submission

Tonmoy Saikia, Eddy Ilg, Thomas Brox

June 4, 2018

-
DispNetS

g .
—ST DispNetC
3

Figure 1: Overview of the DispNet-CSS architecture

1 Architecture

Motivated by the archictecture of FlowNet2 [2] we implement a stacked ar-
chitecture for disparity named DispNet-CSS. This architecture is illustrated
in Figure 1. We extend the original FlowNet2 architecture by modifying the
connections in-between network stacks to be residual, to explicitly model refine-
ment [4]. Furthermore, we make the following modifications in the architecture
blocks:

1. scaling prediction values internally and

2. changing the level at which the correlation is performed.

1.1 Scaling of predictions

For training CNNs it is common to normalize input and output data to a com-
mon range. Let f be the output of the network, y8' the ground truth and y our
prediction. The original FlowNet [1, 2] provided the following implementation:

1
min 5(270 : ygt7 f))

y=20-f,

Correlation level | Pred. scaling | EPE (Sintel)
2 No 5.62
3 No 3.33
3 Yes 3.19

Table 1: Impact of correlation depth (the level indicates after which convolution
the correlation is defined in the network) and prediction scaling in DispNetC.
Reported errors are from the Sintel train clean dataset. We observe a significant
performance improvement by just changing the position of the correlation layer
to be after the third convolution. Pred. scaling does not affect the EPE much,
but results in less noisy predictions.

where £ is the loss function. In other words, the ground truth was scaled down
by a factor of 20. This leads to very small values in the network. We instead
propose to scale up the values inside the network by removing the coefficient:

min L(y®",f),

y="f.

Prediction scaling doesn’t significantly affect the performance quantitatively
(see Table 1) but results in much less noisy disparity maps.

1.2 Depth of correlation layer

Another change is the level of the correlation layer. We move the correlation
layer in DispNetC [3] one level up - from after conv2 to after conv3. By this
change we increase the receptive field and obtain much better EPEs on Sin-
tel (see Table 1). This is due to improved performance in large displacement
regions, which are generally common in the disparity setting.

2 Training and evaluation

In this section we discuss the training details of our architecture.

2.1 Generic

We use the FlyingThings3D dataset to first train a generic version of our network
from scratch. Each network in the stack is trained for 600k iterations. Each
successive network in the stack is trained by fixing the weights of the previous
network, i.e, we do not train networks in the stack jointly. Parameters for the
first two networks are randomly initialized. However, due to the similar setting,
the last network is initialized with parameters from the second network (which
we call weight copying). The performance improvements can be observed in
Table 2.

Configuration | Residual | Weight | EPE
refinement copy

C No No 3.194

CS No No 2.634

CS Yes No 2.494

CSS Yes No 2.476

CSS Yes Yes 2.361

Table 2: Ablation study for training details of a single network and network
stacks. Reported errors are from the Sintel train clean dataset. We train each
network with the schedule of 600k iterations on FlyingThings3D [3]. Using
residual connections [4] improves results. By transferring weights from the sec-
ond to the third network (weight copy), we are able to obtain a further small
improvement.

2.2 Fine-tuning

To specialize our generic network for the robust vision challenge we fine-tune
our networks on a mixture of datasets: KITTI, Middlebury and ETH3D. To
measure our performance we split each training set into train and validaton
sets. Instead of re-sampling each dataset to a common resolution, we take the
min width and height per dataset to generate 5 crops per sample. The crops are
taken from the four corners and center. For training we use a random cropping
with a crop size of (768,320). If an input sample is smaller than the crop size we
upscale it by fixed factor. The results after finetuning each network in the stack
is shown in Table 3. The first network is trained for 300k and the refinement
networks are trained for 240k.

Stack | ETH | MBH | KITTI15
C 0.36 | 2.36 1.11
¢S 0.20 | 1.79 0.91
css | 019 | 1.69 0.84

Table 3: Results of fine-tuning each network in the stack. The last row shows
the results of the generic version for each dataset

2.3 Image scaling

For evaluating the test images on each dataset we scale the images by fixed
factor. We observed this can help improve results slightly. We believe this is
due the fact the correlation range is not optimally tuned for the input images.
By changing the image resolution we affect the disparity range and thus the
effective correlation between features. Based on the plot shown in Table 2, we
scale all images from each dataset by factor of 1.4.

] RN o e -~ ETH3D
-~ KITTI15
b : : - - Middlebury
20r '5""\\\ o o — Average

o - . S

EPE

1.0

o5 - - - —

s 2 X e
0.8 1.0 1.2 1.4 1.6
scale factor

Figure 2: This plot shows the effect of image scaling (x-axis) on the validation
errors (y-axis) for each dataset. We observe that up-scaling images slightly helps
improve the validation errors. Based on this plot we choose 1.4 to upscale each
test image.

References

[1] A. Dosovitskiy, P. Fischer, E. Ilg, P. Hiusser, C. Hazirbag, V. Golkov, P. v.d.
Smagt, D. Cremers, and T. Brox. Flownet: Learning optical flow with
convolutional networks. 2015.

[2] E.Ilg, N. Mayer, T. Saikia, M. Keuper, A. Dosovitskiy, and T. Brox. Flownet
2.0: Evolution of optical flow estimation with deep networks. 2017.

[3] N.Mayer, E.Ilg, P.Hausser, P.Fischer, D.Cremers, A.Dosovitskiy, and
T.Brox. A large dataset to train convolutional networks for disparity, optical
flow, and scene flow estimation. 2016.

[4] Jiahao Pang, Wenxiu Sun, Jimmy S. J. Ren, Chengxi Yang, and Qiong
Yan. Cascade residual learning: A two-stage convolutional neural network
for stereo matching. 2017.

