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Abstract. Optical flow estimation can be formulated as an end-to-
end supervised learning problem, which yields estimates with a superior
accuracy-runtime tradeoff compared to alternative methodology. In this
paper, we make such networks estimate their local uncertainty about the
correctness of their prediction, which is vital information when building
decisions on top of the estimations. For the first time we compare several
strategies and techniques to estimate uncertainty in a large-scale com-
puter vision task like optical flow estimation. Moreover, we introduce a
new network architecture utilizing the Winner-Takes-All loss and show
that this can provide complementary hypotheses and uncertainty esti-
mates efficiently with a single forward pass and without the need for
sampling or ensembles. Finally, we demonstrate the quality of the dif-
ferent uncertainty estimates, which is clearly above previous confidence
measures on optical flow and allows for interactive frame rates.

1 Introduction

Recent research has shown that deep networks typically outperform handcrafted
approaches in computer vision in terms of accuracy and speed. Optical flow
estimation is one example: FlowNet [8,14] yields high accuracy optical flow at
interactive frame rates, which is relevant for many applications in the automotive
domain or for activity understanding.

A valid critique of learning-based approaches is their black-box nature: since
all parts of the problem are learned from data, there is no strict understanding
on how the problem is solved by the network. Although FlowNet 2.0 [14] was
shown to generalize well across various datasets, there is no guarantee that it will
also work in different scenarios that contain unknown challenges. In real-world
scenarios, such as control of an autonomously driving car, an erroneous decision
can be fatal; thus it is not possible to deploy such a system without information
about how reliable the underlying estimates are. We should expect an additional
estimate of the network’s own uncertainty, such that the network can highlight
hard cases where it cannot reliably estimate the optical flow or where it must
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Fig. 1: Joint estimation of optical flow and its uncertainty. Left: Image from a KITTI
2015 sequence. Middle: Estimated optical flow. Right: The estimated uncertainty
(visualized as heatmap) marks the optical flow in the shadow of the car as unreliable
(pointed by the red arrow), contrary to the car itself, which is estimated with higher
certainty. Marked as most reliable is the optical flow for the static background.

decide among multiple probable hypotheses; see Figure 1. However, deep net-
works in computer vision typically yield only their single preferred prediction
rather than the parameters of a distribution.

The first contribution of this paper is an answer to the open question which
of the many approaches for uncertainty estimation, most of which have been
applied only to small problems so far, are most efficient for high-resolution
encoder-decoder regression networks. We provide a comprehensive study of em-
pirical ensembles, predictive models, and predictive ensembles. The first cate-
gory comprises frequentist methods, the second one relies on the estimation of
a parametric output distribution, and the third one combines the properties of
the previous two. We implemented these approaches for FlowNet using the com-
mon MC dropout technique [9], the less common Bootstrapped Ensembles [21]
and snapshot ensembles [13]. We find that in general all these approaches yield
surprisingly good uncertainty estimates, where the best performance is achieved
with uncertainty estimates derived from Bootstrapped Ensembles of predictive
networks.

While such ensembles are a good way to obtain uncertainty estimates, they
must run multiple networks to create sufficiently many samples. This drawback
increases the computational load and memory footprint at training and test
time linearly with the number of samples, such that these approaches are not
applicable in real-time.

As a second contribution, we utilize a multi-headed network inspired by [31]
that yields multiple hypotheses in a single network without the need of sampling.
To obtain the hypotheses, we use the Winner-Takes-All (WTA) loss [11,22,6,31]
to penalize only the best prediction and push the network to make multiple
different predictions in case of doubt. We propose to stack a second network to
optimally combine the hypotheses and to estimate the final uncertainty. This
setup yields slightly better uncertainty estimates as Bootstrapped Ensembles,
but allows for interactive frame rates. Thus, in this paper, we address all three
important aspects for deployment of optical flow estimation in automotive sys-
tems: high accuracy inherited from the base network, a measure of reliability,
and a fast runtime.



Uncertainty Estimates and Multi-Hypotheses Networks for Optical Flow 3

2 Related Work

Confidence measures for optical flow. While there is a large number of
optical flow estimation methods, only few of them provide uncertainty estimates.

Post-hoc methods apply post-processing to already estimated flow fields.
Kondermann et al. [18] used a learned linear subspace of typical displacement
neighborhoods to test the reliability of a model. In their follow-up work [19],
they proposed a hypothesis testing method based on probabilistic motion mod-
els learned from ground-truth data. Aodha et al. [1] trained a binary classifier
to predict whether the endpoint error of each pixel is bigger or smaller than a
certain threshold and used the predicted classifier’s probability as an uncertainty
measure. All post-hoc methods ignore information given by the model structure.

Model-inherent methods, in contrast, produce their uncertainty estimates us-
ing the internal estimation model, i.e., energy minimization models. Bruhn and
Weickert [4] used the inverse of the energy functional as a measure of the de-
viation from the model assumptions. Kybic and Nieuwenhuis [20] performed
bootstrap sampling on the data term of an energy-based method in order to
obtain meaningful statistics of the flow prediction. The most recent work by
Wannenwetsch et al. [33] derived a probabilistic approximation of the posterior
of the flow field from the energy functional and computed flow mean and co-
variance via Bayesian optimization. Ummenhofer et al. [32] presented a depth
estimation CNN that internally uses a predictor for the deviation of the esti-
mated optical flow from the ground-truth. This yields a confidence map for the
intermediate optical flow that is used internally within the network. However,
this approach treats flow and confidence separately and there was no evaluation
for the reliability of the confidence measure.

Uncertainty estimation with CNNs. Bayesian neural networks (BNNs)
have been shown to obtain well-calibrated uncertainty estimates while maintain-
ing the properties of standard neural networks [26,24]. Early work [26] mostly
used Markov Chain Monte Carlo (MCMC) methods to sample networks from the
distribution of the weights, where some, for instance Hamiltonian Monte Carlo,
can make use of the gradient information provided by the backpropagation algo-
rithm. More recent methods generalize traditional gradient based MCMC meth-
ods to the stochastic mini-batch setting, where only noisy estimates of the true
gradient are available [7,34]. However, even these recent MCMC methods do not
scale well to high-dimensional spaces, and since contemporary encoder-decoder
networks like FlowNet have millions of weights, they do not apply in this setting.

Instead of sampling, variational inference methods try to approximate the
distribution of the weights by a more tractable distribution [10,3]. Even though
they usually scale much better with the number of datapoints and the number
of weights than their MCMC counterparts, they have been applied only to much
smaller networks [12,3] than in the present paper.

Gal and Ghahramani [9] sampled the weights by using dropout after each
layer and estimated the epistemic uncertainty of neural networks. In a follow-
up work by Kendall and Gal [17], this idea was applied to vision tasks, and
the aleatoric uncertainty (which explains the noise in the observations) and
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the epistemic uncertainty (which explains model uncertainty) were studied in
a joint framework. We show in this paper, that the dropout strategy used in
all previous computer vision applications [17,28] is not the best one per-se, and
other strategies yield better results.

In contrast to Bayesian approaches, such as MCMC sampling, bootstrapping
is a frequentist method that is easy to implement and scales nicely to high-
dimensional spaces, since it only requires point estimates of the weights. The
idea is to train M neural networks independently on M different bootstrapped
subsets of the training data and to treat them as independent samples from the
weight distribution. While bootstrapping does not ensure diversity of the models
and in the worst case could lead to M identical models, Lakshminarayanan et
al. [21] argued that ensemble model averaging can be seen as dropout averaging.
They trained individual networks with random initialization and random data
shuffling, where each network predicts a mean and a variance. During test time,
they combined the individual model predictions to account for the epistemic
uncertainty of the network. We also consider so-called snapshot ensembles [13]
in our experiments. These are obtained rather efficiently via Stochastic Gradient
Descent with warm Restarts (SGDR) [23].

Multi-hypotheses estimation. The loss function for the proposed multi-
hypotheses network is an extension of the Winner-Takes-All (WTA) loss from
Guzman-Rivera et al. [11], who proposed a similar loss function for SSVMs.
Lee et al. [22] applied the loss to network ensembles and Chen & Koltun [6] to a
single CNN. Rupprecht et al. [31] showed that the WTA loss leads to a Voronoi
tessellation and used it in a single CNN for diverse future prediction and human
pose estimation. Chen & Koltun [6] used the WTA loss for image synthesis.

3 Uncertainty Estimation with Deep Networks

Assume we have a dataset D = {(x0,y
gt
0 ), . . . , (xN ,y

gt
N )}, which is generated by

sampling from a joint distribution p(x,y). In CNNs, it is assumed that there is
a unique mapping from x to y by a function fw(x), which is parametrized by
weights w that are optimized according to a given loss function on D.

For optical flow, we denote the trained network as a mapping from the input
images x = (I1, I2) to the output optical flow y = (u,v) as y = fw(I1, I2),
where u,v are the x- and y-components of the optical flow. The FlowNet by
Dosovitskiy et al. [8] minimizes the per-pixel endpoint error

EPE =
√

(u− ugt)2 + (v − vgt)2 , (1)

where the pixel coordinates are omitted for brevity. This network, as depicted in
Figure 2a, is fully deterministic and yields only the network’s preferred output
y = fw(x). Depending on the loss function, this typically corresponds to the
mean of the distribution p(y|x,D). In this paper, we investigate three major
approaches to estimate also the variance σ2. These are based on the empirical
variance of the distribution of an ensemble, a parametric model of the distribu-
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Fig. 2: Overview of the networks considered in this paper. (a) FlowNetC trained with
EPE. (b) Same network as (a), where an ensemble is built using dropout, bootstrapping
or SGDR. (c) FlowNetC trained with -log-likelihood to predict mean and variance.
(d) Same network as (c), where an ensemble is built using dropout, bootstrapping or
SGDR. (e) FlowNetH trained to predict multiple hypotheses with variances, which are
merged to a single distributional output. Only (a) exists in this form for optical flow.

tion, and a combination of both. The variance in all these approaches serves as
an estimate of the uncertainty.

3.1 Empirical Uncertainty Estimation

A straightforward approach to get variance estimates is to train M different
models independently, such that the mean and the variance of the distribution
p(y|x,D) can be approximated with the empirical mean and variance of the
individual model’s predictions. Let fwi

(x) denote model i of an ensemble of M
models with outputs uwi

and vwi
. We can compute the empirical mean and

variance for the u-component by:

µu =
1

M

M∑
i=1

uwi
(x) (2)

σ2
u =

1

M

M∑
i=1

(uwi
(x)− µu)2 (3)

and accordingly for the v-component of the optical flow. Such an ensemble of
M networks, as depicted in Figure 2b, can be built in multiple ways. The most
common way is via Monte Carlo Dropout [9]. Using dropout also at test time,
it is possible to randomly sample from network weights M times to build an
ensemble. Alternatively, ensembles of individual networks can be trained with
random weight initialization, data shuffling, and bootstrapping as proposed by
Lakshminarayanan et al. [21]. A more efficient way of building an ensemble is to
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use M pre-converged snapshots of a single network trained with the SGDR [23]
learning scheme, as proposed by Huang et al. [13]. We investigate these three
ways of building ensembles for flow estimation and refer to them as Dropout,
Bootstrapped Ensembles and SGDR Ensembles, respectively.

3.2 Predictive Uncertainty Estimation

Alternatively, we can train a network to output the parameters θ of a parametric
model of the distribution p(y|x,D) as introduced by Nix and Weigend [27]. In the
literature, Gaussian distributions (where θ parameterizes the distribution’s mean
and the variance) are most common, but any type of parametric distribution is
possible. Such networks can be optimized by maximizing their log-likelihood:

log p(D | w) =
1

N

N∑
i=1

log p(yi | θ(xi,w)) (4)

w.r.t. w. The predictive distribution for an input x is then defined as:

p(y | x,w) ≡ p(y | θ(x,w)). (5)

While negative log-likelihood of a Gaussian corresponds to L2 loss, FlowNet is
trained with an EPE loss, which has more robustness to outliers. Thus, we model
the predictive distribution by a Laplacian, which corresponds to an L1 loss. The
univariate Laplace distribution has two parameters a and b and is defined as:

L(u|a, b) =
1

2b
e−
|u−a|

b . (6)

As Wannewetsch et al. [33], we model the u and v components of the optical
flow to be independent. The approximation yields:

L(u, v|au, av, bu, bv) ≈ L(u|au, bu) · L(v|av, bv). (7)

We obtain a probabilistic version of FlowNet with outputs au, av, bu, bv by
minimizing the negative log-likelihood of Eq. 7:

− log(L(u|au, bu) · L(v|av, bv)) =
|u− au|
bu

+ log bu +
|v − av|
bv

+ log bv. (8)

As an uncertainty estimate we use the variance of the predictive distribution,
which is σ2 = 2b2 in this case. This case corresponds to a single FlowNetC
predicting flow and uncertainty as illustrated in Figure 2c.

3.3 Bayesian Uncertainty Estimation

From a Bayesian perspective, to obtain an estimate of model uncertainty, rather
than choosing a point estimate for w, we would marginalize over all possible
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values:

p(y | x,D) =

∫
p(y | x,w)p(w | D)dw (9)

=

∫
p(y | θ(x,w))p(w | D)dw. (10)

This integral cannot be computed in closed form, but by sampling M networks
wi ∼ p(w|D) from the posterior distribution and using a Monte-Carlo approxi-
mation [26], we can approximate its mean and variance as:

p(y | x,D) ≈
M∑
i=1

p(y | θ(x,wi)). (11)

Since every parametric distribution has a mean and a variance, also the distri-
butions predicted by each individual network with weights wi yield a mean µi

and a variance σ2
i . The mean and variance of the mixture distribution in Eq. 11

can then be computed by the law of total variance for the u-component (as well
as for the v-component) as:

µu =
1

M

M∑
i=1

µu,i (12)

σ2
u =

1

M

M∑
i=1

(
(µu,i − µu)2 + σ2

u,i

)
. (13)

This again can be implemented as ensembles obtained by predictive variants of
dropout [9], bootstrapping [21] or SGDR [13], where the ideas from Section 3.1
and Section 3.2 are combined as shown in Figure 2d.

4 Predicting Multiple Hypotheses within a Single
Network

The methods presented in the Sections 3.1 and 3.3 require multiple forward
passes to obtain multiple samples with the drawback of a much increased com-
putational cost at runtime. In this section, we explain how to apply the Winner-
Takes-All (WTA) loss to make multiple predictions within a single network
[11,22,6,31] and then subsequenly use a second network to obtain predictions
for final flow and uncertainty. We call these predictions hypotheses. The WTA
loss makes the hypotheses more diverse and leads to capturing more different
solutions, but does not allow for merging by simply computing the mean as for
the ensembles presented in the last section. We propose to use a second network
that merges the hypotheses to a single prediction and variance, as depicted in
Figure 2e.
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Since a ground-truth is available only for the single true solution, the question
arises of how to train a network to predict multiple hypotheses and how to
ensure that each hypothesis comprises meaningful information. To this end, we
use a loss that punishes only the best among the network output hypotheses
y1, . . . ,yM [11]. Let the loss between a predicted flow vector y(i, j) and its
ground-truth ygt(i, j) at pixel i, j be defined by a loss functon l. We minimize:

Lhyp =
∑
i,j

l(ybest idx(i,j),y
gt(i, j)) +∆(i, j) , (14)

where best idx(i, j) selects the best hypothesis per pixel according to the ground-
truth:

best idx(i, j) = argmin
k

[
EPE(yk(i, j),ygt(i, j))

]
. (15)

∆ = ∆u +∆v encourages similar solutions to be from the same hypothesis k via
one-sided differences, e.g. for the u component:

∆u(i, j) =
∑

k;i>1;j

|yk,u(i, j)− yk,u(i− 1, j)|+

∑
k;i;j>1

|yk,u(i, j)− yk,u(i, j − 1)|
(16)

For l, we either use the endpoint error from Eq. 1 or the negative log-
likelihood from Eq. 8. In the latter case, each hypothesis is combined with an
uncertainty estimation and l also operates on a variance σ. Equations 15 and
16 remain unaffected. For the best index selection we stick to the EPE since it
is the main optimization goal.

To minimize Lhyp, the network must make a prediction close to the ground-
truth in at least one of the hypotheses. In locations where multiple solutions
exist and the network cannot decide for one of them, the network will predict
several different likely solutions to increase the chance that the true solution is
among these predictions. Consequently, the network will favor making diverse
hypotheses in cases of uncertainty. In Tables 3 and 4 of the supplemental material
we provide visualizations of such hypotheses.

In principle, Lhyp could collapse to use only one of the hypotheses’ outputs.
In this case the other hypotheses would have very high error and would never be
selected for back-propagation. However, due to the variability in the data and the
stochasticity in training, such collapse is very unlikely. We never observed that
one of the hypotheses was not used by the network, and for the oracle merging
we observed that all hypotheses contribute more or less equally. We show this
diversity in our experiments.

5 Experiments

To evaluate the different strategies for uncertainty estimation while keeping the
computational cost tractable, we chose as a base model the FlowNetC architec-
ture from Dosovitsky et al. [8] with improved training settings by Ilg et al. [14]
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and by us. A single FlowNetC shows a larger endpoint error (EPE) than the
full, stacked FlowNet 2.0 [14], but trains much faster. Note that this work aims
for uncertainty estimation and not for improving the optical flow over the base
model. The use of ensembles may lead to minor improvements of the optical flow
estimates due to the averaging effect, but these improvements are not of major
concern here. In the end, we will also show results for a large stacked network
to demonstrate that the uncertainty estimation as such is not limited to small,
simple networks.

5.1 Training Details

Iter. EPE

FlowNetC [14] 600k 3.77
FlowNetC [14] 1.2m 3.58
FlowNetC ours 600k 3.40

Table 1: Optical flow quality
on Sintel train clean with the
original FlowNetC [14] and
our implementation.

In contrast to Ilg et al. [14], we use Batch Nor-
malization [15] and a continuously dropping co-
sine learning rate schedule [23]. This yields shorter
training times and improves the results a little; see
Table 1. We train on FlyingChairs [8] and start
with a learning rate of 2e−4. For all networks, we
fix a training budget of 600k iterations per net-
work, with an exception for SGDR, where we also
evaluate performing some pre-cycles. For SGDR
Ensembles, we perform restarts every 75k itera-
tions. We fix the Tmult to 1, so that each annealing takes the same number of
iterations. We experiment with different variants of building ensembles using
snapshots at the end of each annealing. We always take the latest M snapshots
when building an ensemble. For dropout experiments, we use a dropout ratio of
0.2 as suggested by Kendall et al. [17]. For Bootstrapped Ensembles, we train
M FlowNetC in parallel with bootstrapping, such that each network sees differ-
ent 67% of the training data. For the final version of our method, we perform
an additional training of 250k iterations on FlyingThings3D [25] per network,
starting with a learning rate of 2e − 5 that is decaying with cosine annealing.
We use the Caffe [16] framework for network training and evaluate all runtimes
on an Nvidia GTX 1080Ti. We will make the source code and the final models
publicly available.

For the ensembles, we must choose the size M of the ensemble. The sampling
error for the mean and the variance decreases with increasing M . However,
since networks for optical flow estimation are quite large, we are limited in the
tractable sample size and restrict it to M = 8. We also use M = 8 for FlowNetH.

For SGDR there is an additional pre-cycle parameter: snapshots in the begin-
ning have usually not yet converged and the number of pre-cycles is the number
of snapshots we discard before building the ensemble. In the supplemental ma-
terial we show that the later the snapshots are taken, the better the results are
in terms of EPE and AUSE. We use 8 pre-cycles in the following experiments.
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Fig. 3: Sparsification plot of FlowNetH-Pred-Merged for the Sintel train clean dataset.
The plot shows the average endpoint error (AEPE) for each fraction of pixels having
the highest uncertainties removed. The oracle sparsification shows the lower bound by
removing each fraction of pixels ranked by the ground-truth endpoint error. Removing
20 percent of the pixels results in halving the average endpoint error.

5.2 Evaluation Metrics

Sparsification Plots. To assess the quality of the uncertainty measures, we use
so-called sparsification plots, which are commonly used for this purpose [1,33,19,20].
Such plots reveal on how much the estimated uncertainty coincides with the true
errors. If the estimated variance is a good representation of the model uncer-
tainty, and the pixels with the highest variance are removed gradually, the error
should monotonically decrease. Such a plot of our method is shown in Figure 3.
The best possible ranking of uncertainties is ranking by the true error to the
ground-truth. We refer to this curve as Oracle Sparsification. Figure 3 reveals
that our uncertainty estimate is very close to this oracle.

Sparsification Error. For each approach the oracle is different, hence a
comparison among approaches using a single sparsification plot is not possible.
To this end, we introduce a measure, which we call Sparsification Error. It is
defined as the difference between the sparsification and its oracle. Since this
measure normalizes the oracle out, a fair comparison of different methods is
possible. In Figure 4a, we show sparsification errors for all methods we present
in this paper. To quantify the sparsification error with a single number, we use
the Area Under the Sparsification Error curve (AUSE ).

Oracle EPE. For each ensemble, we also compute the hypothetical endpoint
error by considering the pixel-wise best selection from each member (decided by
the ground-truth). We report this error together with the empirical variances
among the members in Table 2.

5.3 Comparison among Uncertainties from CNNs

Nomenclature. When a single network is trained against the endpoint error, we
refer to this single network and the resulting ensemble as empirical (abbreviated
as Emp; Figures 2a and 2b), while when the single network is trained against
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Fig. 4: (a) Sparsification error on the Sintel train clean dataset. The sparsification error
(smaller is better) is the proposed measure for comparing the uncertainty estimates
among different methods. FlowNetH-Pred-Merged and BootstrappedEnsemble-Pred-
Merged perform best in almost all sections of the plot. (b) Scatter plot of AEPE vs.
AUSE for the tested approaches visualizing some content of Table 2.

empirical (Emp) predictive (Pred)
AUSE EPE Oracle EPE Var. AUSE EPE Oracle EPE Var. Runtime

FlowNetC - 3.40 - - 0.133 3.62 - - 38ms

Dropout 0.212 3.67 2.56 5.05 0.158 3.99 2.96 3.80 320ms

SGDREnsemble 0.191 3.25 2.56 3.50 0.134 3.40 2.87 1.52 304ms

BootstrappedEnsemble 0.209 3.41 2.17 9.52 0.127 3.46 2.49 6.15 304ms

BootstrappedEnsemble-Merged 0.102 3.20 2.49 6.15 332ms

FlowNetH-Merged - 3.50 1.73 83.32 0.095 3.36 1.89 52.85 60ms

Table 2: Comparison of flow and uncertainty predictions of all proposed methods with
M = 8 on the Sintel train clean dataset. Oracle-EPE is the EPE of the pixel-wise best
selection from the samples or hypotheses determined by the ground-truth. Var. is the
average empirical variance over the 8 samples or hypotheses. Predictive versions (Pred)
generally outperform empirical versions (Emp). Including a merging network increases
the performance. FlowNetH-Pred-Merged performs best for predicting uncertainties
and has a comparatively low runtime.

the negative log-likelihood, we refer to the single network and the ensemble
as predictive (Pred ; Figures 2c and 2d). When multiple samples or solutions
are merged with a network, we add Merged to the name. E.g. FlowNetH-Pred-
Merged refers to a FlowNetH that predicts multiple hypotheses and merges them
with a network, using the loss for a predictive distribution for both, hypotheses
and merging, respectively (Figure 2e). Table 2 and Figures 4a, 4b show results
for all models evaluated in this paper.

Empirical Uncertainty Estimation. The results show that uncertainty
estimation with empirical ensembles is good, but worse than the other methods
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presented in this paper. However, in comparison to predictive counterparts, em-
pirical ensembles tend to yield slightly better EPEs, as will be discussed in the
following.

Predictive Uncertainty Estimation. The estimated uncertainty is better
with predictive models than with the empirical ones. Even a single FlowNetC
with predictive uncertainty yields much better uncertainty estimates than any
empirical ensemble in terms of AUSE. This is because when training against a
predictive loss function, the network has the possibility to explain outliers with
the uncertainty. This is known as loss attenuation [17]. While the EPE loss tries
to enforce correct solutions also for outliers, the log-likelihood loss attenuates
them. The experiments confirm this effect and show that it is advantageous to
let a network estimate its own uncertainty.

Predictive Ensembles. Comparing ensembles of predictive networks to a
single predictive network shows that a single network is already very close to
the predictive ensembles and that the benefit of an ensemble is limited. We
attribute this also to loss attenuation: different ensemble members appear to
attenuate outliers in a similar manner and induce less diversity, as can be seen
by the variance among the members of the ensemble (column ’Var.’ in Table 2).

When comparing empirical to predictive ensembles, we can draw the following
conclusions: a.) empirical estimation provides more diversity within the ensemble
(variance column in Table 2), b.) empirical estimation provides lower EPEs and
Oracle EPEs, c.) all empirical setups provide worse uncertainty estimates than
predictive setups.

Ensemble Types. We see that the commonly used dropout [9] technique
performs worst in terms of EPE and AUSE, although the differences between the
predictive ensemble types are not very large. SGDR Ensembles provide better
uncertainties, yet the variance among the samples is the smallest. This is likely
because later ensemble members are derived from previous snapshots of the same
model. Furthermore, because of the 8 pre-cycles, SGDR experiments ran the
largest number of training iterations, which could be an explanation why they
provide a slightly better EPE than other ensembles. Bootstrapped Ensembles
provide the highest sample variance and the lowest AUSE among the predictive
ensembles.

FlowNetH and Uncertainty Estimation with Merging Networks.
Besides FlowNetH we also investigated putting a merging network on top of
the predictive Bootstrapped Ensembles. Results show that the multi-hypotheses
network (FlowNetH-Pred-Merged) is on-par with BootstrappedEnsemble-Pred-
Merged in terms of AUSE and EPE. However, including the runtime, FlowNetH-
Pred-Merged yields the best trade-off; see Table 2. Only FlowNetC and FlowNetH-
Pred-Merged allow a deployment at interactive frame rates. Table 2 also shows
that FlowNetH has a much higher sample variance and the lowest oracle EPE.
This indicates that it internally has very diverse and potentially useful hypothe-
ses that could be exploited better in the future. For some visual examples, we
refer to Tables 3 and 4 in the supplemental material.
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Fig. 5: Plots of the sparsification curves with their respective oracles (a) and of the
sparsification errors (b) for ProbFlow, FlowNetH-Pred-Merged and FlowNetH-Pred-
Merged-SS (version with 2 refinement networks stacked on top) on the Sintel train final
dataset. KITTI versions are similar and provided in the supplemental material.

Sintel Clean Sintel Final KITTI
runtime

AUSE EPE AUSE EPE AUSE EPE

ProbFlow [33] 0.162 1.87 0.173 3.34 0.466 8.95 38.1s†

FlowNetH-Pred-Merged-FT-KITTI - - - - 0.086 3.12 60ms

FlowNetH-Pred-Merged 0.117 2.58 0.128 3.78 0.151 7.84 60ms

FlowNetH-Pred-Merged-S 0.091 2.29 0.098 3.51 0.102 6.86 86ms

FlowNetH-Pred-Merged-SS 0.089 2.19 0.096 3.40 0.091 6.50 99ms

Table 3: Comparison of FlowNetH to the state-of-the-art uncertainty estimation
method ProbFlow [33] on the Sintel train clean, Sintel train final and our KITTI
2012+2015 validation split datasets. The ’-FT-KITTI’ version is trained on Fly-
ingChairs [8] first and then on FlyingThings3D [25], as described in Sec. 5.1 and sub-
sequently fine-tuned on our KITTI 2012+2015 training split. FlowNetH-Pred-Merged,
-S and -SS are all trained with the FlowNet2 [14] schedule described in supplemental
material Fig. 6. Our method outperforms ProbFlow in AUSE by a large margin and
also in terms of EPE for the KITTI dataset. †runtime taken from [33], please see the
supplemental material for details on the computation of the ProbFlow outputs.

5.4 Comparison to Energy-Based Uncertainty Estimation

We compare the favored approach from the previous section (FlowNetH-Pred-
Merged) to ProbFlow [33], which is an energy minimization approach and cur-
rently the state-of-the-art for estimating the uncertainty of optical flow. Figure 5
shows the sparsification plots for the Sintel train final. ProbFlow has almost the
same oracle as FlowNetH-Pred-Merged, i.e. the flow field from ProbFlow can
equally benefit from sparsification, but the actual sparsification error due to its
estimated uncertainty is higher. This shows that FlowNetH-Pred-Merged has
superior uncertainty estimates. In Table 3 we show that this also holds for the
KITTI dataset. FlowNetH outperforms ProbFlow also in terms of EPE in this
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Fig. 6: Comparison between FlowNetH-Pred-Merged and ProbFlow [33]. The first row
shows the image pair followed by its ground-truth flow for two different scenes from
the Sintel final dataset. The second row shows FlowNetH-Pred-Merged results: entropy
from a Laplace distribution with ground-truth error (we refer to this as Oracle Entropy
to represent the optimal uncertainty as explained in the supplemental material), pre-
dicted entropy and predicted flow. Similar to the second row, the third row shows
the results for ProbFlow. Although both methods fail at estimating the motion of the
dragon on the left scene and the motion of the arm and the leg in the right scene, our
method is better at predicting the uncertainties in these regions.

case. This shows that the superior uncertainty estimates are not due to a weaker
optical flow model, i.e. from obvious mistakes that are easy to predict.

Table 3 further shows that the uncertainty estimation is not limited to simple
encoder-decoder networks, but can also be applied successfully to state-of-the-art
stacked networks [14]. To this end, we follow Ilg et al. [14] and stack refinement
networks on top of FlowNetH-Pred-Merged. Different from [14], each refinement
network yields the residual of the flow field and the uncertainty, as recently
proposed by [29]. We refer to the network with the 1st refinement network as
FlowNetH-Pred-Merged-S and with the second refinement network as FlowNetH-
Pred-Merged-SS, since each refinement network is a FlowNetS [14].

The uncertainty estimation is not negatively influenced by the stacking, de-
spite the improving flow fields. This shows again that the uncertainty estimation
works reliably notwithstanding if the predicted optical flow is good or bad.

Figure 6 shows a qualitative comparison to ProbFlow. Clearly, the uncer-
tainty estimate of FlowNet-Pred-Merged also performs well outside motion bound-
aries and covers many other causes for brittle optical flow estimates. More results
on challenging real-world data are shown in the supplemental video which can
also be found on https://youtu.be/HvyovWSo8uE.

6 Conclusion

We presented and evaluated several methods to estimate the uncertainty of deep
regression networks for optical flow estimation. We showed that SGDR and Boot-
strapped Ensembles perform better than the commonly used dropout technique.
Furthermore, we found that a single network can estimate its own uncertainty
surprisingly well and that this estimate outperforms every empirical ensemble.
We believe that these results will apply to many other computer vision tasks,

https://youtu.be/HvyovWSo8uE
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too. Moreover, we presented a multi-hypotheses network that shows very good
performance and is faster than sampling-based approaches and ensembles. The
fact that networks can estimate their own uncertainty reliably and in real-time
is of high practical relevance. Humans tend to trust an engineered method much
more than a trained network, of which nobody knows exactly how it solves the
task. However, if networks say when they are confident and when they are not,
we can trust them a bit more than we do today.
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Supplementary Material

1 Video

Please see the supplementary video for qualitative results on a number of diverse
real-world video sequences and a comparison to ProbFlow [33]. The video is also
available on https://youtu.be/HvyovWSo8uE.

2 Color Coding

For optical flow visualization we use the color coding of Butler et al. [5]. The
color coding scheme is illustrated in Figure 1. Hue represents the direction of the
displacement vector, while the intensity of the color represents its magnitude.
White color corresponds to no motion. Because the range of motions is very
different in different image sequences, we scale the flow fields before visualization:
independently for each image pair shown in figures, and independently for each
video fragment in the supplementary video. Scaling is always the same for all
methods being compared.

For uncertainty visualizations we show the predicted entropy, which we com-
pute as:

H = log(2bxe) + log(2bye) , (1)

where bx and by are estimated scale parameters from our Laplace distribution
model for x and y dimensions and e is Euler’s number. To assess the qual-
ity of our uncertainty estimations, we compare our estimated entropies against
the limiting cases, where bx and by correspond to exactly the estimation errors
|upred−ugt| and |vpred−vgt|. We visualize this as the Oracle Entropy in all cases
where ground-truth is present. For ProbFlow [33], the underlying distribution is
Gaussian and therefore we use the entropy of a Gaussian distribution as:

H = 0.5 ∗ log(2eσ2
xπ) + 0.5 ∗ log(2eσ2

yπ) , (2)

and set σx and σy to |upred − ugt| and |vpred − vgt|, respectively. To compare
to this oracle entropy we normalize to the same range, but when comparing our
method to ProbFlow, we allow to normalize to different ranges to show the most
interesting aspects of the entropy.

3 Sparsification Plots

Sparsification is a way to assess the quality of uncertainty estimates for optical
flow. Already popular in literature [4,19,20,1], it works by progressively discard-
ing percentages of the pixels the model is most uncertain about and verifying

https://youtu.be/HvyovWSo8uE
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(a)

(b)

Fig. 1: (a) Flow field color coding used in this paper. The displacement of every pixel
in this illustration is the vector from the center of the square to this pixel. The central
pixel does not move. The value is scaled differently for different images to best visualize
the most interesting range. (b) The color coding used for displaying the entropy maps,
from the lowest value (blue), to the hightst (red).

whether this corresponds to a proportional decrease in the remaining average
endpoint error. To make the results of different experiments comparable, the
errors are normalized to 1.

Image-wise sparsification. The method, including the normalization, is typi-
cally applied to images individually and the sparsification plots of all images are
then averaged. In the main paper we also follow this procedure. However, this
approach weights images where the uncertainty estimation is easy equally to im-
ages where the uncertainty estimation is hard. Also, due to the normalization,
pixels with very large enpoint error from one image can be treated equally to
pixels with very small endpoint error from another image.

Dataset-wise sparsification. Alternatively, one can perform the sparsification
on a whole dataset. In this variant, the sparsification is performed first (by
ranking across the whole dataset) and normalization is performed last. With
this approach, the effect of the outliers is better visible in the sparsification
curves, which show larger slopes with respect to the previous version.

In Figures 2a, and 2b we present the figures from the main paper again with
the dataset-wise sparsification. In Figure 2a we observe that the FlowNetH-
Pred-Merged and BootstrappedEnsemble-Pred-Merged perform slightly worse
than other ensembles for very high uncertainties, when sparsified on the whole
dataset. As also observed in the main paper the best performing model in terms
of AUSE is FlowNetH-Pred-Merged.
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Fig. 2: NOTE: In this version we normalize to dataset-wise instead of image-
wise. (a) Sparsification error plots on Sintel train clean dataset. Number of ensemble
members are fixed to M = 8 and number of pre-cycles for SGDR to 8. We observe that
in this case FlowNetH-Pred-Merged and the BootstrappedEnsemble-Pred-Merged per-
form slightly worse for very high uncertainties, while still showing the best performance
for remaining uncertainties. (b) Scatter plot of EPE vs. AUSE for proposed ensemble
types. For SGDR, we take the last M available snapshots. The behavior of the different
models is not drastically different from the one visible in the per-image sparsification
scatter plots in Figure 5 from the main paper. The best performing model in terms of
AUSE is FlowNetH-Pred-Merged.

4 Effect of Pre-Cycles for SGDR Ensembles

For SGDR ensembles not only the ensemble size M , but also the models dis-
carded from earlier cycles matter (pre-cycles). Therefore, we have further ex-
perimented with pre-cycle counts from 0 to 8 (with a constant ensemble size of
M = 8). The scatter plots of EPE vs. AUSE can be seen in Figure 3. Figure 3a
shows the plot where image-wise normalization is used for sparsification, while
Figure 3b shows the plot for dataset-wise normalization. From both plots we can
see that the later the models are taken, the lower the EPE gets without a sig-
nificant change in the AUSE. When compared to other ensemble types, SGDR
ensembles are derived from earlier snapshots and the ones with more pre-cycles
are trained for more iterations in total. This might be the reason why they show
a lower EPE. However, it also means they can converge more and we actually
observe the lowest variance for SGDR ensembles among all the models (see Var.
column of Table 2 in the main paper).

5 Evaluation on KITTI and Comparison to ProbFlow

We perform the final evaluation of FlowNetH also on the KITTI datasets. We
therefore mix KITTI2012 and KITTI2015 and split into 75%/25% training and
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Fig. 3: Scatter plot of EPE vs. AUSE showing the effect of different number of pre-
cycles for SGDR ensembles with ensemble size M = 8. (a) shows the plot for the
image-wise sparsification and (b) shows the plot for the dataset-wise sparsification,
as explained in Section 3. It can be seen that a larger number of pre-cycles always
positively affects the EPE without penalizing the AUSE score.

test data. In Figure 4 and Table 3 from the main paper, we show the performance
of our method compared to ProbFlow [33]. As can be seen from Table 3 in the
main paper, fine-tuning significantly reduces the endpoint error, as well as AUSE
for FlowNetH-Pred-Merged. This concludes that the quality of the uncertainty
estimation of FlowNetH-Pred-Merged is outperforming ProbFlow independent
of the flow accuracy.

5.1 Details on ProbFlow results

In order to reproduce ProbFlow results, the ProbFlowFields algorithm con-
tained in the official software package was used. In particular flow initializations
were obtained from FlowFields matches [2] and subsequently interpolated with
EpicFlow [30]. For FlowFields on KITTI, we have found the best parameter com-
bination to be r = 5, r2 = 4, ε = 5, e = 4 and s = 50 (the search was conducted
around the values suggested in the paper, and full parameter optimization was
not performed), and on Sintel we employed r = 8, r2 = 6, ε = 5, e = 4 and
s = 50 as reported by the authors of ProbFlow. In contrast to [33] we evaluate
on the complete Sintel train set instead of the selected subset from [33] This
explains the difference in the resulting EPE comparing to the original paper.
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Fig. 4: Sparsification and sparsification error plots for ProbFlow [33], FlowNetH-
Pred-Merged (further trained on the FlyingThings3D dataset for 250k iterations) and
FlowNetH-Pred-Merged-FT-KITTI (subsequently fine-tuned on our joint KITTI2012
and 2015 training split). One can observe that fine-tuning does not change the sparsifi-
cation error drastically, while EPE reduces significantly (see Table 3 in the main paper).
We see that FlowNetH outperforms ProbFlow both in terms of EPE and AUSE. Note
that although the average EPE for ProbFlow is higher, due to the effect of normaliza-
tion of the oracle sparsification curve, it appears to be the lowest.

6 Training Details for Stacked Networks

The work of FlowNet 2.0 [14] presented how several refinement networks could be
stacked on top of a FlowNetC [14] to obtain improved flow fields. We also build
such a stack for our FlowNetH-Merged. As illustrated in Figure 5, we stack two
refinement networks on top. Different from [14], each refinement network yields
the residual of the flow field and the uncertainty, as recently proposed by [29].
Particularly, we find that the residual connections yield much lower convergence
times. While we found Batch Normalization and the cosine annealing schedule to
be useful for uncertinty estimation networks, we found that refinement networks
perform better without Batch Normalization. Therefore, we use the schedule
proposed by FlowNet 2.0 [14] scaled down to half the number of iterations and
no Batch Normalization for the refinement networks. An overview of the training
steps is provided in Figure 6.
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FlowNetH MergeNet
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+

FlowNetS

Fig. 5: Illustration of our full uncertainty estimation stack. The first two networks are
the FlowNetH and the merging network as described in the paper. The two stacked
FlowNetS architecture networks estimate residual refinements.
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Fig. 6: The learning rate curve of our full stack. FlowNetH and Merging network are
trained with Batch Normalization and cosine annealing, while refinement networks are
trained without Batch Normalization and with the schedules proposed for FlowNet
2.0 [14] scaled to half the number of iterations. As in [14] the networks are trained step
by step, i.e. indicated by each blue line in the figure, the bottom networks are fixed
and not trained any more.
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7 Qualitative Evaluation

We provide qualitative results on real world videos, Sintel train clean, KITTI2012
and KITTI2015 datasets for FlowNetH-Pred-Merged and ProbFlow in Figure 7,
Figure 8 and Figure 9.

At last, we show the outputs for all ensemble members for a simple and a
difficult case in Tables 1,2 and Tables 3,4. We note that comparing to the other
ensembles, hypothesis from FlowNetH generate the most diverse results.
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Fig. 7: Examples from real world data. Examples are arranged in a coarse 4x2 grid,
where in each we follow the convention: first column: original image pair, second
column: flow predicted by FlowNetH-Pred-Merged and flow predicted by ProbFlow,
third column: predicted entropy by FlowNetH-Pred-Merged and predicted entropy by
ProbFlow. For the full videos of the real world dataset and further comments
please see the supplementary video which can also be found on https://

youtu.be/HvyovWSo8uE.

https://youtu.be/HvyovWSo8uE
https://youtu.be/HvyovWSo8uE
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Fig. 8: Four examples from the Sintel train clean dataset for qualitative comparison
between FlowNetH-Pred-Merged and ProbFlow. For each example: first row shows
the original image sequence followed by its ground truth flow field. Second row shows
FlowNetH-Pred-Merged results: oracle entropy (representing the optimal uncertainty),
predicted entropy and predicted flow. Similar to the second row, the third row shows
the results for ProbFlow. While our method is predicting uncertainties on large areas,
ProbFlow shows uncertainties mainly only on the motion or image boundaries and
sometimes shows overconfidence in the regions where its prediction is wrong. This is
visible e.g. in the upper left example for the lower left corner, where the estimation is
wrong, but the uncertainty is low.

Fig. 9: Examples from KITTI2012 and KITTI2015 datasets for qualitative comparison
between FlowNetH-Pred-Merged and ProbFlow. For each example: first row shows the
original image sequence followed by its ground truth flow field (bilinearly interpolated
from sparse ground truth). Second row shows FlowNetH-Pred-Merged results: oracle
entropy (representing the optimal uncertainty), predicted entropy and predicted flow.
Similar to second row, third row shows the results for ProbFlow. Remark: In the sky
the groundtruth provided in the datasets are invalid due to data acquisition.
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Data:

FlowNetC Emp:

FlowNetH Base:

Dropout Emp:

SGDR Emp:

Bootstrapped Ensemble Emp:

Table 1: In this table we show the outputs of empirical experiments with all presented
methods for an easy Sintel example as well as the averaged flows and computed en-
tropies. Because the example is easy, the networks are certain and not much variety is
visible in the outputs.
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Data:

FlowNetC Pred:

Dropout Pred:

SGDR Pred:

BootstrappedEnsemble Pred:

FlowNetH Pred-Merged:

Table 2: In this table we show the outputs of predictive experiments with all pre-
sented methods for an easy Sintel example as well as the averaged flows and computed
entropies. For Bootstrapped-Ensemble-Pred-Merged and FlowNetH-Pred-Merged we
show also the estimated flow and estimated entropy as the output of the merging
network on top.
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Data:

FlowNetC Emp:

FlowNetH Base:

Dropout Emp:

SGDR Emp:

Bootstrapped Ensemble Emp:

Table 3: In this table we show the outputs of empirical experiments with all presented
methods for a hard Sintel example as well as the averaged flows and computed entropies.
Some variety of each method is visible, while FlowNetH provides a different kind of
output with much more variety.
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Data:

FlowNetC Pred:

Dropout Pred:

SGDR Pred:

BootstrappedEnsemble Pred:

FlowNetH Pred-Merged:

Table 4: In this table we show the outputs of predictive experiments with all presented
methods for a hard Sintel example, as well as the averaged flows and computed en-
tropies. For BootstrappedEnsemble-Pred-Merged and FlowNetH-Pred-Merged we show
also the estimated flow and estimated entropy as the output of the merging network on
top. The hypothesis estimated by FlowNetH-Pred-Merged is the most diverse one. In
the second hypothesis, the motion predicted is very small and could be corresponding
to the background.
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