
Motion Perception in
Reinforcement Learning with Dynamic Objects

Artemij Amiranashvili
University of Freiburg

Alexey Dosovitskiy
Intel Labs

Vladlen Koltun
Intel Labs

Thomas Brox
University of Freiburg

Abstract: In dynamic environments, learned controllers are supposed to take mo-
tion into account when selecting the action to be taken. However, in existing rein-
forcement learning works motion is rarely treated explicitly; it is rather assumed
that the controller learns the necessary motion representation from temporal stacks
of frames implicitly. In this paper, we show that for continuous control tasks learn-
ing an explicit representation of motion improves the quality of the learned con-
troller in dynamic scenarios. We demonstrate this on common benchmark tasks
(Walker, Swimmer, Hopper), on target reaching and ball catching tasks with simu-
lated robotic arms, and on a dynamic single ball juggling task. Moreover, we find
that when equipped with an appropriate network architecture, the agent can, on
some tasks, learn motion features also with pure reinforcement learning, without
additional supervision. Further we find that using an image difference between the
current and the previous frame as an additional input leads to better results than a
temporal stack of frames.1

Keywords: Reinforcement learning, Motion perception, Optical flow

1 Introduction

In many robotic tasks, the robot must interact with a dynamic environment, where not only the dy-
namics of the robot itself but also the unknown dynamics of the environment must be taken into
account. Examples of such tasks include autonomous driving, indoor navigation among other mo-
bile agents, and manipulation of moving objects such as grasping and catching. The presence of
moving elements in the environment typically increases the difficulty of a control task substantially,
necessitating fast reaction time and prediction of the future trajectories of the moving objects.

In deep reinforcement learning (DRL), using a neural network as function approximator, a model of
the environment’s dynamics can, in principle, be learned implicitly. In simple cases, such as in some
Atari games, corresponding motion features seem to be picked up automatically [20]. However, it
can be observed that a model operating on just a single frame often has the same performance as
a model that takes a stack of successive images as input [6]. Is motion uninformative or is it just
harder to learn than static features for an end-to-end trained system? Intuitively, we expect the latter,
but then: how can we best enable the use of motion when training controllers?

In this paper, we confirm the importance of motion in learning tasks that involve dynamic objects,
and we investigate the use of optical flow to help the controller learn the use of motion features. In
a straightforward manner, optical flow can be just provided as an additional input to an RL agent.
A complication with this approach is that accurate optical flow computation is typically too slow
for training of RL models, which requires frame rates of at least hundreds of frames per second to
run efficiently. To address this issue, we design a small specialized optical flow network derived
from FlowNet [7]. The network is small enough to be run jointly with reinforcement learning while
keeping computational requirements practical. We consider two training modes: one where the

1This is an extended version of the CoRL paper (2nd Conference on Robot Learning (CoRL 2018), Zürich,
Switzerland) with the additional image difference baseline [32].

ar
X

iv
:1

90
1.

03
16

2v
1 

 [
cs

.L
G

] 
 1

0 
Ja

n 
20

19

http://proceedings.mlr.press/v87/amiranashvili18a.html


optical flow network is trained in a supervised manner beforehand, and one where the same network
is trained online via RL based just on the rewards, i.e., without explicit supervision on the optical
flow.

We perform extensive experiments on multiple diverse continuous control tasks. We observe that
the use of optical flow consistently improves the quality of the learned policy. The improvement is
higher the more relevance the dynamics have for the completion of the task. Some tasks involving
dynamic objects cannot be learned at all without the explicit use of motion. In some tasks unsuper-
vised learning of the optical flow based on the rewards is possible, whereas on harder tasks, direct
supervision is still required to kickstart the motion representation learning.

We also find that a network provided with the current frame concatenated with the difference be-
tween the current and the previous frame outperforms or matches the image stack baseline across
all tasks with dynamic objects. This suggests that the image difference could be a more useful input
for pixel control reinforcement learning than the usually used stack of frames [20].

2 Related Work

Deep reinforcement learning aims to learn sensorimotor control directly from raw high-level sensory
input via direct maximization of the task performance, by using deep networks as function approxi-
mators. This approach has allowed learning complex behaviors based on raw sensory data in various
domains: arcade game playing [20], navigation in simulated indoor environments [21, 19, 6, 16],
simulated racing [21], simulated robotic locomotion [17] and manipulation [2, 29], as well as ma-
nipulation on physical systems [12]. Despite these notable successes, there is little understanding of
how and what exactly do the DRL agents learn. In this work, we focus on studying how DRL makes
use of motion information in dynamic environments.

Previous works in DRL vary in how they provide motion information to the network. The most
standard approach is to feed a stack of several recent frames to the agent, assuming that the deep
network will extract the motion information from these if needed [20, 21, 6]. On the architecture
side, agents are commonly equipped with a long short-term memory (LSTM) that can, in principle,
pick up the motion information [21, 19, 16]. An alternative approach to using motion information
is based on future frame prediction, which can be used to learn a useful feature representation [10]
or to plan future actions explicitly [9, 8]. In contrast to all these works, we aim to understand
what representation of motion is the most useful for an RL agent and in particular experiment with
explicitly computed optical flow.

The use of optical flow relates our work to the line of research on using explicit perception systems
to improve the performance of learned sensorimotor control policies. Providing ground truth depth
maps to the agent has been shown to lead to improved navigation performance compared to a system
making use of only color images [19, 24]. In the domain of autonomous driving, semantic segmen-
tation can help improve the driving command prediction [33] or allows the transfer from simulation
to the real world [22]. Goel et al. [11] show that object segmentation learned in an unsupervised
fashion leads to improved performance in some Atari games. Clavera et al. [5] use object detection
to improve transfer of learned object manipulation policies. Our work is similar in spirit to these,
but we focus on analyzing the use of motion and optical flow in deep reinforcement learning, which,
to our knowledge, has not been previously addressed.

While optical flow is not commonly used in DRL, it has a long history in robotics. Vision-based
robotic systems have employed optical flow a range of diverse applications: tracking [18], navi-
gation [23, 31, 4], obstacle avoidance [26], visual servoing [1], object catching [27]. Applications
of optical flow have been complicated by the trade-off between computational efficiency and the
accuracy. Only recently, deep-learning-based methods have allowed for fast and accurate estima-
tion of optical flow [7]. In this paper, we build on this progress and use a miniaturized variant of
FlowNet [7, 15] to estimate optical flow. Our optimized small FlowNet is extremely efficient, which
allows its use for training reinforcement learning agents.

2



Figure 1: Illustration of the approach. The RL agent uses an explicit motion representation provided
in the form of optical flow.

3 Method

We study an agent operating in an environment in discrete time. At each time step t the agent gets an
observation ot from the environment and generates an action at in response. In this work we focus
on environments where observation is a high-dimensional sensory input, such as an image, and the
action is a relatively low-dimensional vector of continuous values. In addition to the observation, at
each step the agent gets a scalar reward rt. In this work the reward is often the sum of two terms
rt = rsct + rsht : the typically sparse scoring reward rsct (we often refer to it as score) and a denser
shaping reward rsht . We are interested in achieving high scoring reward, but add a shaping reward
to simplify training.

Since we deal with continuous control tasks, we use Proximal Policy Optimization (PPO) [25] as
our base RL algorithm. To enable processing of high-dimensional inputs, we use a convolutional
network (CNN) as a function approximator. We use an architecture similar to Mnih et al. [20]. In
tasks involving manipulation of moving objects we provide the vector of robot state variables to the
network in addition to the high-dimensional sensory observation. We process this vectorial input by
a separate fully connected network and concatenate the output with the output of the perception part
of the CNN (full architecture is shown in Table S1).

To understand the role of motion perception in training of an RL agent, we vary the input provided to
the agent. The straightforward options are to provide the network with just the current observation
or several recent observations stacked together. A more interesting scenario is to provide optical
flow explicitly to the RL network. In this case, we use a separate convolutional network to estimate
the optical flow. This setup is illustrated in Figure 1.

For optical flow estimation we use a miniaturized version of the FlowNetS network [7], which
we refer to as TinyFlowNet. This is necessitated by two considerations: first, we need the flow
computation to be sufficiently fast to support RL training and, second, the input resolution used
for RL is much smaller than that assumed by the full FlowNet. TinyFlowNet consists of a 5-layer
encoder and a 2-layer decoder, compared to a 9-layer encoder and a 4-layer decoder in the original
FlowNet. Moreover, there are only two strided layers, the maximum number of channels is 128, and
all convolutional kernels are 3 × 3. We find that this smaller network is sufficiently expressive to
accurately estimate optical flow in environments we consider in this work, while processing 1800
image pairs per second on a Geforce 1080 Ti GPU. The full TinyFlowNet architecture is shown in
Table S3.

We investigate two approaches to training the two-network system: pre-training the flow net-
work separately or training both networks from scratch with RL. In the first case, we pre-train
TinyFlowNet in a supervised fashion on data extracted automatically from the RL environments
using FlowNet 2.0 [15] to provide targets for training; see Figure 2. This student-teacher setup
allows training without ground truth optical flow, making the approach applicable to arbitrary envi-
ronments. In the second case, we initialize both networks with random weights and train the whole
system from scratch with RL.

3.1 Training details

We use images of resolution 84× 84 pixels as sensory observations in all environments. The action
space varies depending on the environment. We train all agents for 20 million time steps. This
is longer than what is typically used for PPO [25], since training from raw sensory observations
is more difficult than from low-dimensional state vectors. We use the same hyperparameters as

3



Figure 2: Training of TinyFlowNet using FlowNet 2.0 [15] as a teacher.

used by Schulman et al. [25] for Atari environments. However, we adjust the learning rate to 1 ×
10−4 and the number of epochs to 2, which resulted in better and more stable performance in our
environments.

The pre-training of TinyFlowNet is illustrated in Figure 2. We compute optical flow in high reso-
lution (512 × 512 pixels) using FlowNet 2.0. This optical flow is downsampled to 84 × 84 pixels
and used as target for training TinyFlowNet. To ensure accurate optical flow prediction, we trained
a separate flow network for each of the environments, by extracting a dataset of 20,000 image pairs.
For the standard control tasks (Walker, Swimmer, Hopper) we execute random actions to generate
training data. In our new tasks with moving objects, we keep the robot arm static while creating the
dataset. This makes the optical flow estimation focus on the moving objects.

4 Experiments

We compare the flow-based approach against several baselines on standard control tasks and on
a series of new tasks that require interaction with dynamic objects. We evaluated the following
models:

• Image: processes the current image by a feedforward CNN
• Image stack: processes a stack of the 2 most recent images by a feedforward CNN
• Image difference: processes the current image stacked with the image difference between

the previous image and the current image
• LSTM: processes the current image by a CNN with an LSTM layer
• Segmentation: processes the current image and a segmentation mask of the moving object

by a feedforward CNN. The mask is a motion segmentation taken from the predicted optical
flow

• Flow: processes the current image and the optical flow between the current frame and the
previous one by a feedforward CNN. Flow is computed in the backward direction to ensure
that the object in the flow image is co-located with the object in the color image

4.1 Standard control tasks

We started by experimenting with three standard control tasks from the OpenAI Gym framework [3]:
Walker, Swimmer, and Hopper. We additionally adjusted these environments with visual modifica-
tions from the DeepMind Control Suite [28]. Typically, these tasks are trained with the robot’s
state vector provided as input to the network. We rather focused on learning solely from raw im-
ages and investigated whether information about motion, represented by optical flow, helps learning
better policies. Because of the high variance of the performance on these tasks [14], we trained
each model 8 times with different random seeds and show the average performance and the standard
deviation in Figure 3.

Although there are no moving objects in these tasks apart from the agent itself, providing optical flow
as input clearly improves results compared to providing just the stack of images. This supports our
initial hypotheses that motion information is very useful in dynamic environments and that the agent
has problems deriving good motion features from the plain image stack using a standard network
architecture.

4



0 5 10 15 20
Timesteps (1e6)

500

1000

1500

2000

2500

3000

3500

Sc
or

e

Walker2D
Image stack
Flow

0 5 10 15 20
Timesteps (1e6)

30

40

50

60

70

80

90

100

Sc
or

e

Swimmer
Image stack
Flow

0 2 4 6 8 10
Timesteps (1e6)

200

400

600

800

1000

Sc
or

e

Hopper

Image stack
Flow

Figure 3: Training curves on standard control tasks with pixel control. We trained 8 models in each
condition. Lines show the mean reward; shaded areas show the standard deviation.

4.2 Tasks with dynamic objects

We analyze the effect of motion perception in more detail on a specifically designed set of tasks,
where the environment surrounding the robot contains moving objects. In such environments, the
use of motion information is expected to be even more crucial than on the control tasks above.
In these experiments we complement the high-dimensional sensory observations with the vector
containing the current state of the robot.

We implemented four such environments in the MuJoCo simulator [30] by modifying OpenAI Gym
tasks [3]. Two of these are set up in a two-dimensional space and two in a three-dimensional space.
The environments are illustrated in Figure 4. All tasks terminate after 250 time steps.

• 2D Catcher. A 2-link 2D robotic arm is fixed in the center of the field as in the standard
reacher environment. The target is a ball moving from the top of the screen towards the
bottom, reflecting from two walls like in billiard. The aim is to “catch” the target by
making the end effector of the arm overlap with the target. After the ball is caught a new
target appears from the top.

• 2D Chaser. A 2-link 2D robotic arm is fixed in the center of the field as in the previous
task, but the target now reflects from the four borders. The aim is to keep the end effector
of the robotic arm as close to the target as possible while the target keeps moving.

• 3D Catcher. A 3-link 3D robotic arm is fixed on a base. Moving targets follow randomized
parabolic trajectories in the vicinity of the arm. The aim is to “catch” the target with the
end effector of the arm.

• 3D KeepUp. A 3-link 3D robotic arm is fixed on a base and has a square pad fixed on
its end effector. A ball falls down from the top under the effect of gravity. The aim is to
reflect the ball with the pad and keep reflecting it every time it falls, by moving the arm and
rotating the pad.

Like in the standard MuJoCo control tasks, each reward function also contains a motion penalty term
to reduce unnecessary movement of the robot arm. Further details are provided in the sections below.
Environment configuration files, reward parameters, implementations, and a video showing the tasks

(a) 2D Catcher (b) 2D Chaser (c) 3D Catcher (d) 3D KeepUp

Figure 4: The tested environments with moving objects.

5



0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Timesteps (1e6)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Sc
or

e

2D Catcher
Image
Image stack
Image diff
LSTM
Segmentation
Flow

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Timesteps (1e6)

0

20

40

60

80

Sc
or

e

2D Chaser

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Timesteps (1e6)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Sc
or

e

3D Catcher

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Timesteps (1e6)

0

2

4

6

8

Sc
or

e

3D KeepUp

Figure 5: Performance on the four tasks that involve moving objects. Overall the agent that uses
optical flow outperforms other baselines, including LSTM and an agent provided with a stack of two
recent frames.

and qualitative results will be made available on the project page: https://lmb.informatik.
uni-freiburg.de/projects/flowrl/.

2D environments. In 2D environments the robots are controlled by applying torque at the joints.
In both tasks the agent receives a dense shaping reward depending on the distance to the target. In
addition, it receives a sparse scoring reward when the distance between the end effector and the
target falls below a fixed threshold (corresponding to overlap of the end effector with the target). In
case of the 2D Catcher, this counts as a catch and a new ball is spawn, while in case of 2D Chaser
the ball keeps moving.

The achieved scores are shown in Figure 5 (top). On both tasks, the use of optical flow improved
the performance of the agent. Most alternative strategies that would allow the agent to use motion
information, such as LSTM units or the image stack, hardly improved over the use of a single
image. However, the image difference baseline clearly outperformed other baselines and nearly
matched the performance of the flow-based agent on the 2D Chaser task. It is interesting that a
minor change in the input representation from image stack to the image difference leads to such a
dramatic performance improvement, despite the fact that a network with image stack as input could
easily learn to compute the image difference. We believe this inability to learn the simple difference
operation is due to the complexity and unstability of the network optimization.

Providing the segmentation mask of the moving ball did not reach the same performance as pro-
viding the optical flow. This shows that the optical flow is not just used for localizing the moving
object, but also for predicting its future position. This is particularly important for the 2D Catcher
task, where the agent easily misses the ball without a good prediction of the future ball position. The
arm is not fast enough to catch up with the falling ball when it was missed.

6

https://lmb.informatik.uni-freiburg.de/projects/flowrl/
https://lmb.informatik.uni-freiburg.de/projects/flowrl/


1.000.750.500.25
Relative target speed

20

40

60

80

100

Re
la

tiv
e 

sc
or

e 
(%

)

2D Catcher with varying target speed

Image
Image stack
LSTM
Segmentation
Flow

Figure 6: Results on the 2D Catcher
task when varying the speed of the tar-
get. We plot the score relative to an agent
equipped with optical flow.

Varying the target speed. The faster the motion in
the environment relative to the robot’s speed, the more
important is the ability to plan ahead and, in order to do
so, to estimate the motion of the objects. We performed
an experiment to verify this hypothesis empirically. We
varied the speed of the target in the 2D Catcher task and
measured the scores.

Figure 6 shows the relative performance of the baselines
to the flow-based agent as a function of the speed of the
target. As expected, the slower the target, the closer the
performance of all methods. However, even for slow
targets the flow-based agent has a small advantage.

This might be because even for slow targets motion in-
formation helps catching them slightly faster, or, alter-
natively, because optical flow is not only useful for pre-
dicting the future trajectory of objects, but also for de-
tecting moving objects which is useful even if the ob-
jects are slow.

3D environments. In the 3D environments we provide two perpendicular camera views to the
agent for it to have sufficient perceptual information to act in 3D space (shown in Figure S1). The
agent must combine the information from both views to control the end effector relative to the target
in 3D space. The robots in these environments are position controlled. In the case of the 3D Catcher
the action space is 3-dimensional and includes the movement along the x, y, and z axis. The shaping
reward is the distance to the target future location in the plane of the end effector. The agent scores
for each catch. In the 3D KeepUp task the shaping reward is the distance along the x-y plane between
the target and the middle of the square pad. The agent scores each time it successfully reflects the
target.

The results are shown in Figure 5 (bottom). In both cases, the flow-based agent learned effective
policies, while the agent provided with an image, an image stack, or a LSTM layer could not solve
the task. The agent with a motion segmentation mask outperformed other baselines on the 3D
Catcher task, but could not reach the score of the flow-based agent. The image difference baseline
matched the performance of the flow-based agent on the 3D KeepUp task.

Analysis of motion representations. In order to better understand the effect of motion represen-
tations on learning, we experiment with providing the agent with a low-dimensional velocity vector
of the target instead of per-pixel optical flow. We compute the velocity vector from the optical flow
prediction and feed it to the RL agent as an additional vector input. We also measure the perfor-
mance of the RL agent with ground truth optical flow or velocity vector. The results are shown in
Figure S4. Overall, the agent with access to per-pixel optical flow outperforms the velocity vector
input. The agent with optical flow ground truth performs better in the 2D environments, indicating
that the TinyFlowNet results could potentially be improved by using a larger network with better
optical flow prediction.

4.3 Learning motion features with deep RL

The previous experiments show that availability of a pre-trained explicit optical flow estimator im-
proves the agent’s performance on dynamic tasks. The typical network architecture used in most RL
works, even when equipped with LSTM units, is not able to learn a good motion representation just
from the reward signals. Is this still true if we train RL from scratch with a more powerful network?

We experiment with two larger network architectures. The first one is the one used in experiments
with pre-trained optical flow: a TinyFlowNet with a normal RL network on top, but trained end-
to-end from scratch. The second one is a residual network [13] with 8 convolutional layers and
approximately the same number of parameters as the combination of the TinyFlowNet with the
normal RL network (the exact architecture is shown in Table S2).

7



0 5 10 15 20
Timesteps (1e6)

0

5

10

15

20

25

Sc
or

e

2D Catcher

0 5 10 15 20
Timesteps (1e6)

0

20

40

60

80

100

Sc
or

e

2D Chaser

Pre-trained TinyFlowNet
TinyFlowNet from scratch
Residual Net from scratch
Residual Net from scr. with image diff.

0 5 10 15 20
Timesteps (1e6)

0

5

10

15

20

25

30

35

Sc
or

e

2D Chaser with Multi-Texture

0 5 10 15 20
Timesteps (1e6)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Sc
or

e

3D Catcher

0 5 10 15 20
Timesteps (1e6)

2

4

6

8

10

Sc
or

e

3D KeepUp

0 5 10 15 20
Timesteps (1e6)

0

2

4

6

8

Sc
or

e

3D KeepUp with High Motion Penalty

Figure 7: Comparison of a fixed pre-trained TinyFlowNet, a TinyFlowNet trained from scratch
within the RL framework, and a deep residual RL network without the TinyFlowNet architecture.

In addition to the four environments introduced above, here we experiment with more difficult ver-
sions of the 2D Chaser and 3D KeepUp tasks. In 2D Chaser with Multi-Texture, in each episode
the background of the environment is randomly selected out of four different backgrounds (shown
in Figure S2). This increases the perceptual complexity of the task. In 3D KeepUp with High Mo-
tion Penalty the motion penalty in the reward is increased, to further reduce the overall speed and
unnecessary movement of the robot.

The results on all six environments are shown in Figure 7. Surprisingly, and in contrast to the
architectures evaluated in the previous section, for both advanced architectures training from scratch
works very well in some of the environments. However, in the more complex tasks – 3D Catcher,
2D Chaser with Multi-Texture, and 3D KeepUp with High Motion Penalty – training from scratch
with an image stack input does not yield a successful policy. In particular, in 3D KeepUp with High
Motion Penalty training from scratch gets stuck in a local optimum of not moving the robot arm,
while the agent with pre-trained TinyFlowNet is still able to solve the task. Providing the residual
network with the image difference improves its performance on the 2D Chaser tasks and results in a
successful policy on the 3D KeepUp with High Motion Penalty. This indicates that using the image
difference as an additional input also improves the performance of larger architectures.

Overall, although in several cases a larger architecture can learn the necessary motion features based
only on the reward signal, the use of a pre-trained optical flow estimator is still beneficial and allows
for robust training on a wider range of environments.

The two advanced architectures trained from scratch reach similar scores in all environments; how-
ever, the architecture including TinyFlowNet has the advantage of being more interpretable, since
it predicts an intermediate optical-flow-like two-channel representation. We show example outputs
of an automatically learned TinyFlowNet in Figure S3. To visualize the two-channel outputs of the
network, we assign them to two color channels of an RGB image: red and blue. Interestingly, the
network learned to represent the motion of the ball and largely ignore the motion of the robotic arm.
The representation of the motion generated by the network is different from the standard optical
flow representation: instead of encoding the (x,y) displacements in the two channels of the result,
the network displaces the content of the two channels spatially in the direction of the motion.

5 Conclusion

In this work we showcased the importance of an explicit motion representation for control tasks that
involve dynamic objects. We presented the integration of an optical flow network into a reinforce-
ment learning setup and showed that the use of optical flow helped on tasks that involve dynamics.
Interestingly, on several tasks, motion features were learned in an unsupervised manner just from

8



task-specific rewards and achieved the same and sometime higher performance than the network
that was trained to predict optical flow in a supervised manner. On two tasks, unsupervised learning
was not successful and kickstarting the use of motion by supervised learning of optical flow was
necessary.

Further, we found that in all experiments providing image difference as input to the network matched
or outperformed the image stack input. RL with image difference input was not able to solve all of
the tasks with dynamic objects, however, the faster computation time compared to optical flow es-
timation makes it a viable alternative for tasks with simple motion components. We still expect
that the image difference will not outperform the image stack in environments with more complex
motion, including large displacements or egomotion. Overall our results suggest using image differ-
ence as the default input representation instead of an image stack when performing RL in dynamic
environments.

Our work opens up several opportunities for future research. First, it would be interesting to apply
similar methods to more complex environments and eventually to physical robotic systems. We
expect that pre-trained perception systems would be even more beneficial in these more complex
conditions, and, moreover, the use of the abstract optical flow representation may simplify the trans-
fer from simulation to the real world [5, 22]. Second, rather than pre-training optical flow using
supervised learning, one could use unsupervised methods based on frame prediction [10, 34]. Third,
learning of motion features just from rewards in several tasks is interesting by itself and only suc-
ceeded due to the deeper network architectures. How the use of suitable network architectures may
generally help improve representation learning in control setups is worth further investigation.

Acknowledgments

We thank Sergio Guadarrama for suggesting the image difference approach [32] and Max Argus for
useful discussions and for help with preparation of the manuscript. This project was funded in part
by the BrainLinks-BrainTools Cluster of Excellence (DFG EXC 1086) and by the Intel Network on
Intelligent Systems.

References
[1] P. K. Allen, B. Yoshimi, and A. Timcenko. Real-time visual servoing. In ICRA, 1991.

[2] M. Andrychowicz, F. Wolski, A. Ray, J. Schneider, R. Fong, P. Welinder, B. McGrew, J. Tobin,
O. Pieter Abbeel, and W. Zaremba. Hindsight experience replay. In NIPS. 2017.

[3] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and W. Zaremba.
Openai gym. arXiv preprint arXiv:1606.01540, 2016.

[4] H. Chao, Y. Gu, and M. Napolitano. A survey of optical flow techniques for robotics navigation
applications. Journal of Intelligent & Robotic Systems, 2014.

[5] I. Clavera, D. Held, and P. Abbeel. Policy transfer via modularity and reward guiding. In IROS,
2017.

[6] A. Dosovitskiy and V. Koltun. Learning to act by predicting the future. In International
Conference on Learning Representations, 2017.

[7] A. Dosovitskiy, P. Fischer, E. Ilg, P. Häusser, C. Hazırbaş, V. Golkov, P. v.d. Smagt, D. Cremers,
and T. Brox. Flownet: Learning optical flow with convolutional networks. In International
Conference on Computer Vision, 2015.

[8] F. Ebert, C. Finn, A. X. Lee, and S. Levine. Self-supervised visual planning with temporal skip
connections. In Conference on Robot Learning, 2017.

[9] C. Finn and S. Levine. Deep visual foresight for planning robot motion. In ICRA, 2017.

[10] C. Finn, I. J. Goodfellow, and S. Levine. Unsupervised learning for physical interaction
through video prediction. In NIPS, 2016.

[11] V. Goel, J. Weng, and P. Poupart. Unsupervised video object segmentation for deep reinforce-
ment learning. arxiv:1805.07780, 2018.

9



[12] S. Gu, E. Holly, T. Lillicrap, and S. Levine. Deep reinforcement learning for robotic manipu-
lation with asynchronous off-policy updates. In ICRA, 2017.

[13] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2016.

[14] P. Henderson, R. Islam, P. Bachman, J. Pineau, D. Precup, and D. Meger. Deep reinforcement
learning that matters. arXiv preprint arXiv:1709.06560, 2017.

[15] E. Ilg, N. Mayer, T. Saikia, M. Keuper, A. Dosovitskiy, and T. Brox. Flownet 2.0: Evolution
of optical flow estimation with deep networks. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2017.

[16] M. Jaderberg, V. Mnih, W. M. Czarnecki, T. Schaul, J. Z. Leibo, D. Silver, and
K. Kavukcuoglu. Reinforcement learning with unsupervised auxiliary tasks. In International
Conference on Learning Representations, 2017.

[17] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D. Wierstra.
Continuous control with deep reinforcement learning. In International Conference on Learning
Representations, 2016.

[18] R. C. Luo, R. E. Mullen, and D. E. Wessell. An adaptive robotic tracking system using optical
flow. In ICRA, 1988.

[19] P. Mirowski, R. Pascanu, F. Viola, H. Soyer, A. J. Ballard, A. Banino, M. Denil, R. Goroshin,
L. Sifre, K. Kavukcuoglu, D. Kumaran, and R. Hadsell. Learning to navigate in complex
environments. In International Conference on Learning Representations, 2017.

[20] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves,
M. Riedmiller, A. K. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A. Sadik, et al. Human-
level control through deep reinforcement learning. Nature, 2015.

[21] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. P. Lillicrap, T. Harley, D. Silver, and
K. Kavukcuoglu. Asynchronous methods for deep reinforcement learning. In International
Conference on Machine Learning, 2016.

[22] M. Müller, A. Dosovitskiy, B. Ghanem, and V. Koltun. Driving policy transfer via modularity
and abstraction. arxiv:1804.09364, 2018.

[23] L. Muratet, S. Doncieux, and J.-A. Meyer. A biomimetic reactive navigation system using
the optical flow for a rotary-wing UAV in urban environment. In International Symposium on
Robotics, 2004.

[24] M. Savva, A. X. Chang, A. Dosovitskiy, T. Funkhouser, and V. Koltun. MINOS: Multimodal
indoor simulator for navigation in complex environments. arXiv:1712.03931, 2017.

[25] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy optimization
algorithms. arXiv preprint arXiv:1707.06347, 2017.

[26] K. Souhila and A. Karim. Optical flow based robot obstacle avoidance. International Journal
of Advanced Robotic Systems, 2007.

[27] K. Su and S. Shen. Catching a flying ball with a vision-based quadrotor. In ISER, 2016.

[28] Y. Tassa, Y. Doron, A. Muldal, T. Erez, Y. Li, D. d. L. Casas, D. Budden, A. Abdolmaleki,
J. Merel, A. Lefrancq, et al. Deepmind control suite. arXiv preprint arXiv:1801.00690, 2018.

[29] J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba, and P. Abbeel. Domain randomization
for transferring deep neural networks from simulation to the real world. In IROS, 2017.

[30] E. Todorov, T. Erez, and Y. Tassa. Mujoco: A physics engine for model-based control. In
Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ International Conference on, pages
5026–5033. IEEE, 2012.

10



[31] A. Vardy and R. Moller. Biologically plausible visual homing methods based on optical flow
techniques. Connection Science, 17:47–89, 2005.

[32] L. Wang, Y. Xiong, Z. Wang, Y. Qiao, D. Lin, X. Tang, and L. Van Gool. Temporal segment
networks: Towards good practices for deep action recognition. In European Conference on
Computer Vision. Springer, 2016.

[33] H. Xu, Y. Gao, F. Yu, and T. Darrell. End-to-end learning of driving models from large-scale
video datasets. In Conference on Computer Vision and Pattern Recognition, 2017.

[34] J. J. Yu, A. W. Harley, and K. G. Derpanis. Back to basics: Unsupervised learning of optical
flow via brightness constancy and motion smoothness. In ECCV Workshops, 2016.

Supplementary Material

Figure S1: Side and top view of the 3D Catcher (top) and 3D KeepUp (bottom) tasks which are
provided to the RL agent.

Figure S2: Four backgrounds of the 2D Multi-Texture Chaser task.

11



Network architectures

Network part Input Channels Kernel Stride Layer type

Perception

Pixel input 32 8× 8 4
ConvolutionsPrevious layer 64 4× 4 2

Previous layer 64 3× 3 1
Previous layer Flatting

Middle part
Vector input 64 Fully connected
Perception output + Previous layer Concatenation
Previous layer 64 Fully connected

Policy Middle part output #actions Fully connected

Baseline Middle part output 1 Fully connected

Table S1: Reinforcement Learning network architecture. Each convolution uses no padding.

Input Output Channels Kernel Stride Padding Layer type

Pixel input 64 3× 3 1 - Convolutions
Previous layer skip 1 128 3× 3 2 -

Previous layer 128 3× 3 1 0-padding Convolutions
Previous layer 128 3× 3 1 0-padding
Previous layer, skip 1 Summation

Previous layer skip 2 128 3× 3 2 - Convolution

Previous layer 128 3× 3 1 0-padding Convolutions
Previous layer 128 3× 3 1 0-padding
Previous layer, skip 2 Summation

Previous layer 128 3× 3 2 - Convolution
Previous layer Perception output 110 Fully connected

Table S2: Deep Perception architecture with residual connections.

Input Output Channels Kernel Stride Layer type

Pixel input skip 1.0 64 3× 3 1

Convolutions
Previous layer 64 3× 3 2
Previous layer skip 0.5 128 3× 3 1
Previous layer 128 3× 3 2
Previous layer 128 3× 3 1
Previous layer 32 4× 4 2 Upconvolution
Previous layer, skip 0.5 tmp Concatenation

tmp half resolution flow 2 3× 3 1 Convolution
Previous layer upsampled flow 2 nearest neighbor Upsample

tmp 16 4× 4 2 Upconvolution
Previous layer, skip 1.0 Concatenation
Previous layer flow 2 3× 3 1 Convolution

Table S3: TinyFlowNet architecture. Each convolution and upconvolution uses zero padding.

12



Training TinyFlowNet details

To train TinyFlowNet for a task, first a dataset consisting of 20000 images was created. Each image
was rendered in both high (512x512) and low (84x84) resolution. We used a random policy for the
standard control tasks and a stationary policy for the tasks with dynamic objects. For the 2D envi-
ronment datasets the target velocities were uniformly sampled between 0.4 and 1.0. This allowed
performing the 2D Catcher with varying target speed experiments and improved the overall flow
prediction quality.

After the dataset was generated the flow between each two successive states was predicted using
FlowNet2.0[15] on the high resolution images. The flow predictions of FlowNet2.0 were down-
sampled to the low resolution of 84x84 and used as targets to train the TinyFlowNet. For the 3D
environments the flow for the two views were predicted separately using FlowNet2.0. Thereafter the
TinyFlowNet was trained to predict the flow from both views at the same time.

The TinyFlowNet was trained for 600000 steps using a batch size of 8 and the Adam optimizer
(with β1 = 0.9, β2 = 0.999, and ε = 1 × 10−8). The initial learning rate was set to 1 × 10−4 and
was reduced by half every 100000 steps. The TinyFlowNet predicts the flow first at half resolution
(42x42) and then at full resolution (shown in Table S3). The half resolution was upsampled with
nearest neighbor upsampling. Both the full-resolution flow predictions (Fx and Fy for the horizontal
and vertical flow predictions) and the upsampled flow predictions (upFx and upFy) are used in the
loss function:

FlowLoss2D = 100 · 1

8 ∗ 84 ∗ 84
·
8∗84∗84∑

i=1

(
√
(Fxi − Fxtargeti)

2 + (Fyi − Fy targeti
)2+

0.5 ∗
√
(upFxi − Fxtargeti)

2 + (upFyi
− Fy targeti

)2)

The sum over i in the loss iterates over each pixel of each flow prediction in the batch. For the 3D
environments this sum included both the side and the top view:

FlowLoss3D = 50 · 1

8 ∗ 84 ∗ 84
·
8∗84∗84∑

i=1

(
√
(Fxi − Fxtargeti)

2 + (Fyi − Fy targeti
)2+

0.5 ∗
√
(upFxi − Fxtargeti)

2 + (upFyi
− Fy targeti

)2+√
(Ftopxi − Ftopxtargeti

)2 + (Ftopyi
− Ftopy targeti

)2+

0.5 ∗
√
(upFtopxi

− Ftopxtargeti
)2 + (upFtopyi

− Ftopy targeti
)2)

The inference after the training only uses the full-resolution flow prediction.

In every environment the flow is predicted between the current and the previous frame. There are
two exceptions. Because of the low simulation time-step of the Walker2D environment the agent
movement between two frames is very small. Therefore for the Walker2D we estimated the flow
between the current frame and the frame four steps in the past instead of the flow of successive
states. The second exception is the 2D Catcher environment with varying target speed in the lowest
speed setting of 0.25. There we estimated the flow between the current frame and the frame two
steps in the past.

13



Image pair Prediction Difference img

Figure S3: Example outputs of a TinyFlowNet trained from scratch with RL on the 2D Chaser
task. Note how the moving object is clearly detected and the predicted values change depending on
the motion of the object. The two images on the right show the difference of the two frames. To
make the difference-images most similar to the prediction of the network, we subtract the grayscale
versions of the two frames and assign positive values of the result to the red channel and negative
values to the blue channel. In contrast to naive image difference, the network mostly ignores the
motion of the arm.

0 5 10 15 20
Timesteps (1e6)

0

5

10

15

20

25

Sc
or

e

2D Catcher
Img Flow
Vec Flow
Img Ground Truth Flow
Vec Ground Truth Flow

0 5 10 15 20
Timesteps (1e6)

0

20

40

60

80

100

Sc
or

e

2D Chaser

0 5 10 15 20
Timesteps (1e6)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Sc
or

e

3D Catcher

0 5 10 15 20
Timesteps (1e6)

0

2

4

6

8

10

Sc
or

e

3D KeepUp

Figure S4: Comparison between different motion representations. Image Flow uses the optical flow
as an additional pixel input. Vector Flow extracts the velocity vector of the target from the optical
flow by taking the average of the 6 largest flow values in each dimension. The velocity vector is
then used as an additional input to the agent. The Vector Flow approach is not easily applicable to
tasks with more complex structure of motion, such as standard MuJoCo control tasks. The dashed
lines show the performance of an RL agent that has been provided with ground truth optical flow
instead of the TinyFlowNet prediction. We calculated the pixel optical flow ground truth only for
the 2d environments. The ground truth velocity vectors are taken directly form the simulation.

14


	1 Introduction
	2 Related Work
	3 Method
	3.1 Training details

	4 Experiments
	4.1 Standard control tasks
	4.2 Tasks with dynamic objects
	4.3 Learning motion features with deep RL

	5 Conclusion

