
Global, Dense Multiscale Reconstruction for a Billion Points

Benjamin Ummenhofer and Thomas Brox

Computer Vision Group

University of Freiburg, Germany

{ummenhof, brox}@cs.uni-freiburg.de

Abstract

We present a variational approach for surface re-

construction from a set of oriented points with scale

information. We focus particularly on scenarios with

nonuniform point densities due to images taken from

different distances. In contrast to previous methods,

we integrate the scale information in the objective and

globally optimize the signed distance function of the

surface on a balanced octree grid. We use a finite ele-

ment discretization on the dual structure of the octree

minimizing the number of variables. The tetrahedral

mesh is generated efficiently with a lookup table which

allows to map octree cells to the nodes of the finite ele-

ments. We optimize memory efficiency by data aggre-

gation, such that robust data terms can be used even on

very large scenes. The surface normals are explicitly

optimized and used for surface extraction to improve

the reconstruction at edges and corners.

1. Introduction

Current structure from motion pipelines are able
to create sparse reconstructions of large scenes with
thousands of images. Even city scale reconstructions
have become feasible (Frahm et al, 2010). Such large
scenes come along with several challenges for dense re-
construction. These include (i) an efficient scene repre-
sentation, both in terms of memory and computational
costs, (ii) reconstruction of surfaces observed at differ-
ent levels of detail, and (iii) graceful handling of noisy
and missing data.

In this paper, we deal with all three aspects. We pro-
pose for the first time to optimize a global cost function
that takes the scale of the imaged points into account.
Such scale adaptive reconstructions become important
for scenes that are too large to be modeled at a single
scale or where the focus of attention is concentrated on
small parts of the scene as shown in Fig. 1.

Especially in these cases, the scene representation

Figure 1. Reconstruction of a scene with large differences
in scale. The top right and bottom left corner show a close-
up view of the respectively marked spots.

must be efficient in memory and should adapt to the
scene structure rather than to the size of the input
data. Therefore, we propose an octree representation in
conjunction with point aggregation. The octree allows
us to adaptively store information at different spatial
resolutions. Our aggregation scheme ensures that the
memory requirements only depend on the scene struc-
ture, hence the octree structure, and stays indepen-
dent of the number of points. We propose a fast finite
element discretization of the octree into a tetrahedral
mesh. Our discretization is based on the dual structure
of the balanced octree. It does not introduce additional
nodes, thus allowing us to state the optimization prob-
lem with a minimum number of variables with respect
to the balanced tree structure. Together with the small
memory footprint this makes our approach suitable for
the dense reconstruction from a billion points.

By casting the reconstruction as a global optimiza-
tion problem we can complement the data fusion with
regularization to deal with noisy or missing measure-
ments. To this end, we use robust norms in the cost
function. This is only possible because we counter the
high memory requirements of robust norms by efficient

1

storage of the data. To obtain a faithful reconstruc-
tion also of edges and corners at all levels of detail in
the octree representation, we explicitly model functions
for the surface position and orientation and jointly op-
timize them.

Fig. 2 gives a coarse overview of our method. The
input to our method is a point cloud with normal and
scale information describing the size of the underlying
pixel or patch in the world coordinate system. Such
data can be obtained with off-the-shelf disparity esti-
mation methods and structure-from-motion packages.
In particular, we used the VisualSfM software (Wu
et al, 2011; Wu, 2013) to compute camera parame-
ters and (Goesele et al, 2007) for estimating the depth
maps.

Based on this input, in a first pass, we compute a
balanced octree representation of the scene by taking
into account the sampling density and the scale of the
points. The scale information determines the octree
levels to which each individual point contributes as in
(Fuhrmann and Goesele, 2011).

In a second pass, we aggregate the points of each
node in the octree. We treat each point as a signed dis-
tance function with compact support, the size of which
is determined by the point’s scale. After aggregation of
the signed distance values and normals in each node we
obtain a compact representation that does not require
access to the original point cloud anymore.

Once the octree is built, we generate the dual octree
structure and its tetrahedral mesh. We then minimize
a discretized version of our energy functional on the
tetrahedral mesh. The result of this optimization is a
regularized signed distance function and its gradient.
We generate a triangle mesh of its zero level set with a
dual contouring approach to visualize the reconstruc-
tion.

2. Related Work

Many algorithms have been proposed for volumetric
integration of depth data. We focus here on the most
closely related ones.

Kazhdan and Hoppe (2013) and Calakli and Taubin
(2011) take as input a point cloud with normal infor-
mation and globally optimize a surface representation.
However, they do not take the scale of points into ac-
count and without robust norms they are not robust to
erroneous data. We compare to (Kazhdan and Hoppe,
2013) and (Calakli and Taubin, 2011) in Section 8. Re-
cently, Estellers et al (2015) proposed a modification of
(Kazhdan and Hoppe, 2013) which uses a robust norm
to penalize deviations from the point normals but uses
least squares for the positions. They also do not deal
with the scale.

To avoid artifacts due to different point resolutions,
Fuhrmann and Goesele (2011) propose a fusion method
that averages samples from depth maps at compatible
scales within an octree data structure. They compute
a weighted average of signed distances similar to the
VRIP method by Curless and Levoy (1996). In con-
trast to VRIP, Fuhrmann and Goesele use the scale
information of each depth sample to select an appropri-
ate octree level. In a later work Fuhrmann and Goesele
(2014) use basis functions with compact support that
depend on the position, normal and scale of the point
samples. These basis functions are aggregated in an
octree representation. Both approaches by Fuhrmann
and Goesele are local approaches and lack global reg-
ularization capabilities. We compare to them in Sec-
tion 8.

Sagawa et al (2005) present a robust method for
merging range images with an octree structure. Sub-
division of the octree follows a similar scheme as in the
dual marching cubes algorithm (Schaefer and Warren,
2004), which is steered by the geometric complexity
rather than density.

Bolitho et al (2007) and Manson et al (2008) have
proposed out of core algorithms for the reconstruction
of large data sets. Both methods use a sliding window
approach to make the memroy requirements indepen-
dent of the input data. Due to the window approach
optimization is limited to the active window or requires
multiple passes over the volume.

Labatut et al (2009) treat surface reconstruction as
a tetrahedra labelling problem. They compute the De-
launay triangulation of the input point cloud and use
the graph cut framework to label the tetrahedra either
as inside or outside. Faces connecting inside and out-
side tetrahedra describe the surface triangle mesh. The
reconstructed surfaces show discretization artifacts due
to the fixed Delaunay triangulation and the binary la-
belling. Hiep et al (2009) counter this problem by in-
creasing the number of points and adding a variational
refinement step, which makes the algorithm more in-
volved. Bailer et al (2012) make use of the scale infor-
mation to optimize the point cloud before the Delaunay
triangulation step, by selecting point samples with the
best resolution. Further they also use point samples of
similar scales to optimize the positions of the selected
points. Jancosek and Pajdla (2011) modify the edge
weights in the graph to improve the reconstruction of
surfaces that are only weakly supported by the input
point cloud. This results in reconstructions that are
more complete. We compare to them in Section 8.

Like (Jancosek and Pajdla, 2011), we also use a
tetrahedral net as discretization of the volume. We use
the finite element method (FEM) to discretize our en-

octree generation
& point aggregation

point cloud with scale

energy optimization
with FEM

signed distance field
with surface orientation

surface extraction:
dual contouring

octree with histograms triangulated surface

Figure 2. Method overview. The input data is a point cloud with scale and normal information. First, we generate an octree
based on the scale information in the point cloud and aggregate the information into orientation and distance histograms.
Second, the implicit representation is computed, which is a signed distance function and a vector field describing the surface
orientation. Finally, we extract the surface making use of the signed distance function and the vector field.

ergy model. There exist several approaches for gener-
ating meshes suited for the FEM. There are advancing
front algorithms (Blacker and Meyers, 1993), Delau-
nay triangulation based approaches (Shewchuk, 1998)
or combined methods (Mavriplis, 1995). While these
methods generate high quality elements, they add addi-
tional nodes which increases the number of variables.
Further they do not take advantage of the underly-
ing octree structure. Marchal (2009) creates a hexahe-
dral mesh from the dual octree structure. Therefore,
the generated mesh is related to the underlying octree.
To avoid hanging nodes they also introduce additional
nodes. We propose a fast lookup table approach, which
generates a tetrahedral net for the dual octree and does
not add additional nodes. This allows us to directly
map octree cells to the nodes in the tetrahedral net.
Similarly to (Marchal, 2009), we require the octree to
be balanced.

Our regularization is strongly related to Pock et al
(2011), who compute the signed distance function with
robust energy terms for the data and a regularizer
based on the total variation. They propose a convex
functional with a second order total generalized varia-
tion (TGV) regularizer. The TGV regularization intro-
duces an additional vector-valued function, which in-
creases the computational complexity. Moreover, their
robust data terms based on the Huber norm require
storing all samples in memory during optimization.
Zach (2008) proposed a memory efficient robust ap-
proach using histograms to store the signed distance
values. Both methods work on a regular grid, which
prevents them to be applied to large scenes or scenes
with large differences in scale.

Although some of the discussed methods (Kazhdan
and Hoppe, 2013; Bolitho et al, 2007; Estellers et al,
2015; Manson et al, 2008; Calakli and Taubin, 2011;
Fuhrmann and Goesele, 2014), use the normal infor-
mation to compute the implicit function, none of these
methods uses normal information directly for the sur-
face extraction. In contrast, we explicitly optimize the

surface orientation and use this additional information
for extracting the surface, which yields a more faithful
representation of edges and corners.

A preliminary version of this work appeared in (Um-
menhofer and Brox, 2015). This version features more
experiments and an extended analysis of our method.
The resulst section has been extended with a com-
parison with CMPMVS (Jancosek and Pajdla, 2011),
which uses an unstructured tetrahedral grid. Addition-
ally, we include a reconstruction experiment on the ro-
man forum internet photo collection data set. We eval-
uate the extended marching cubes as an alternative to
the dual contouring. We now give an analysis of the
runtimes on the Breisach data set. Further we give
more details on the parallelization.

3. Octree Generation

We represent the scene with a linear octree imple-
mentation analogous to (Gargantini, 1982). To process
the input data in parallel we use the concurrent hash
map implementation of Li et al (2014) to store the lo-
cation keys for the octree nodes.

Our goals for building an octree representation of
the scene are twofold. First, the octree should adapt
to the scene structure to reduce the required memory.
Second, the octree should allow a fast discretization of
the energy functional (9), which is a non-trivial pro-
cess for adaptive volumetric grids. To achieve this sec-
ond goal we restrict the octree to be balanced, i.e., the
depth difference of adjacent leaf nodes must be at most
one depth level. Leaf nodes are adjacent if they share
a face, an edge or a corner. This permits us to build
a tetrahedral mesh with lookup tables as described in
Section 5.1.

We begin with building an unconstrained octree,
which is based on an estimate of the distribution of
the point density in space and scale. With this esti-
mate we decide where and at which scale to create the
leaf nodes. Similar to (Fuhrmann and Goesele, 2011),

(a) (b) (c) (d) (e)

Figure 3. (a) Quadtree before balancing. Each node stores the value of the scale function s. (b) Quadtree after balancing.
The difference of the quadtree level of adjacent nodes is limited to 1 by recursive splitting of nodes. Splitted nodes keep
the original values of the scale function. (c) Balanced quadtree (dashed) and its corresponding dual structure (solid red).
Each node center becomes a vertex of the dual structure. In contrast to octrees, the polygonal cells of the dual structure of
a quadtree can be converted to a triangle mesh by just splitting cells with 4 vertices into 2 triangles. (d) Primal sampling
of a quadtree. Function values are stored in the vertices of the quadtree cells. (e) Dual sampling of a quadtree. Function
values are stored in the center of each cell. The dual sampling results in a lower number of samples therefore reduces the
memory and computational complexity for minimizing the energy functional (9)

the input scale of the points and the scene bounding
box allow us to assign each point to an octree level.
The scale information is the spatial extent of a point
and is defined by the distance to the camera center
and the internal camera parameters. With the edge
length L of the cubic bounding box, the edge length
of an octree voxel at depth d is l = L/2d. We assign
a point with input scale σ to the highest octree level
d ∈ {0, .., dmax} with 2σ ≤ L/2d. Together with the
position of the point we compute the location key for
each input point. The location key describes the depth
and position of the voxel in the octree containing the
point sample. Sorting the points with respect to the lo-
cation keys yields a linear octree that only stores nodes
containing points. For each node we accumulate the
density contribution of each point. We compute the
point density for a voxel with edge length l as

ρ =
∑

i∈P

σ3
i

l3
, (1)

where P is the set of points with the same location key
as the voxel. The assignment of a point to a compatible
octree level based on the scale limits the maximum
contribution to the point density to 1/8. This discards
points with a scale too large to describe the surface
at the specific octree level. On the other hand, we
want to keep high resolution point samples at a smaller
scale. To include these points in the density estimate,
we recursively add the (averaged) density of child nodes
to their parents. This procedure creates all missing
parent nodes up to the root node. This is in contrast
to (Fuhrmann and Goesele, 2011), which uses a coarse
to fine pass that uses information at coarse scales to
regularize voxels with low density at finer scales.

As a last step, we improve the sparsity of the octree

by removing nodes that fall below a user defined den-
sity threshold. Nodes that are ancestors of at least one
node that passes the threshold are kept to preserve a
valid tree structure.

3.1. Octree Balancing

We balance the octree by splitting nodes recursively
until all leaf nodes satisfy the balancing criterion.

To preserve the resolution information of the un-
constrained octree we define a scale function s over the
octree. s stores the scale of the reconstruction at each
node and is initialized with the edge length of the cor-
responding octree voxel. We use s to define a scale
aware energy model.

Splitting a leaf node creates the 8 child nodes and
turns the former leaf into an inner node. We assign
the scale value of the split node to the new leaf nodes.
Passing on the scale value prevents an artificial increase
in the reconstruction’s resolution. We also add missing
child nodes for inner nodes. Fig. 3 shows an example
of a quadtree before (a) and after balancing (b).

3.2. Point Aggregation

For each node in the balanced octree, we aggre-
gate the data of the input point cloud affecting this
node. This yields aggregated signed distance functions
fn and aggregated orientations gm that are used in the
cost function in Section 4. In (Fuhrmann and Goesele,
2011), this aggregation is the only form of regulariza-
tion. Since we globally optimize a cost function, in our
case the aggregation mainly serves the efficient repre-
sentation of the raw input data.

We treat each point sample as a signed distance
function with a compact window function W . The sup-
port radius of the window function W is the point’s

scale σi; see also Fig. 4. Moreover, we assign to each
voxel a soft window R with a compact support radius
h proportional to the scale of the voxel. This relates
the influence computation to the scale of the voxel and
avoids missing points with a small scale σi. For most of
our experiments we use h = 3s(c) with c as the voxel
center. The signed distance value at the voxel center
for point i is

fi(c) =
1

wi

∫

Rh(x−c)Wσi
(x−pi) 〈ni, c− x〉 dx, (2)

where 〈·, ·〉 denotes the dot product, ni is the measured
surface normal of the point, and pi is the position of
the point. The associated weight is

wi =

∫

Rh(x− c)Wσi
(x− pi) dx. (3)

Gaussian windows R and W would not have com-
pact support, and considering all points for all voxels
would be prohibitively slow. Besides, evaluating the
integrals of (2) and (3) can become computationally
expensive even in case of a closed form solution. To
speed up computation, we approximate fi and wi using
the window function proposed in (Müller et al, 2003):

Rh(r) =

{

315
64πh9 (h

2 − ‖r‖2)3 if ‖r‖ ≤ h

0 else.
(4)

It is fast to evaluate and widely used in the smoothed
particle hydrodynamics literature.

We define the window function W for the point sam-
ple as

Wσi
(r) =

{

1 if ‖r‖ ≤ σi

0 else.
(5)

With R and W as above

wi(c) ≈
4

3
πσ3

iRh(pi − c) , and (6)

fi(c) ≈
1

wi

4

3
πσ3

iRh(pi − c) 〈ni, c− pi〉 = 〈ni, c− pi〉 .
(7)

Since the orientation does not depend on the distance
to the point, the orientation gi induced by point i sim-
ply reads

gi(c) = ni. (8)

Due to the compact support of R, wi is zero for
point samples outside the radius h and the points can
be ignored. We reuse the spatial sorting of the input
points with respect to the location keys during density
computation to accelerate the radial search for candi-
dates.

Again we discard points with a too large scale 2σi >
s(c) but consider high resolution points with low scale
values. In (Fuhrmann and Goesele, 2014), contribution
only depends on a single window function centered at
the points, thus points with a small scale may not con-
tribute at all to voxels at coarse scale, because the voxel
vertices lie outside the window. With the two window
functions R and W , we can aggregate the data also
reliably for voxels at coarser levels.

Efficient Storage Instead of storing the information
of each point inside the octree nodes, we use histograms
and k-means clustering to store a fixed number of fn,
wn and gm, wm for each voxel. We store the signed
distance values fi and the corresponding weights wi

for each point in the histogram fn, wn with 8 bins. We
use soft binning to reduce quantization effects. The
minimum and maximum values of the bin levels fn
are bound individually for each voxel by ±h. We re-
duce the number of normal hypotheses to 10 using an
online k-means clustering. We start with 20 evenly
distributed cluster centers which represent 20 orienta-
tions. The distance to the cluster is defined by the
angular difference between the represented orientation
and the normal. Each time we add a normal we up-
date the cluster centers gm and the weights wm. After
adding all points for a voxel we pick the 10 clusters
with the largest weights. To further decrease the size
in memory, we quantize the normal direction of the se-
lected clusters with 8 bits for inclination and azimuth.
We store all weights of the histograms and the normal
clusters in 16 bit half-precision floating-point format.
The total memory footprint of the data term is 64 byte
per voxel including fields for averaging color informa-
tion.

4. Energy Model

The final reconstruction is obtained by minimizing
the energy

E(u,v) = λ1Edatau+λ2Edatav+α1Ecoupling+α2Esmooth

(9)
over the signed distance function u(x) and the normal
vector field v(x), where x is a coordinate in R

3. In
the following, we drop x in the notation. The factors
λ1,2 and α1,2 steer the relative importance of the terms,

h

Rh

pi

ni

σi

Wσi

c

s(c)

Figure 4. Data aggregation for a voxel centered at c.
The aggregation window Rh is depicted by the outer cir-
cle shaded in green. Its support h depends on the value of
the scale function at the voxel center s(c). The weight func-
tion Wσi

of a point sample at position pi is shown as the
smaller circle in blue. Its support depends on the point’s
input scale σi.

which are defined as

Edatau(u) =

∫

1

s

∑

n

wn|u− fn| dx (10)

Edatav(v) =

∫

∑

m

wm‖v − gm‖ dx (11)

Ecoupling(u,v) =

∫

‖∇u− v‖2 dx (12)

Esmooth(v) =

∫

s‖Jv‖ dx. (13)

The norm ‖ · ‖ denotes the Frobenius norm. It is not
squared, i.e., measurements can be ignored if the ma-
jority of data points contradict them. This makes the
energy robust to erroneous points in the input data.

The term Ecoupling couples the functions u and v.
The squared term ensures that v stays close to the
gradient of the signed distance function and vice versa.

Finally, the smoothness term Esmooth adds a regular-
ization to the vector field v by penalizing its Jacobian
Jv. The norm is nonquadratic, i.e., Esmooth favours
piecewise constant vector fields corresponding to pla-
nar surfaces. This preserves discontinuities in the vec-
tor field, for instance, at object edges or corners. This
type of regularization has been used in (Pock et al,
2011). A quadratic version of this regularization was
used in (Calakli and Taubin, 2011).

To make the energy functional aware of the recon-
struction scale we introduce the scale function s in (10)
and (13). s defines the scale of the reconstruction at
each position. Low values result in a reconstruction

Figure 5. Two of the 27 possible cell configurations af-
ter rotation normalization. Top Triangulation of a cubic
cell with 5 tetrahedra (left), exploded view (center), corre-
sponding octree (right). Bottom Triangulation of a non-
convex cell with 6 tetrahedra (left), exploded view (center),
corresponding octree (right).

with a high spatial resolution while high values corre-
spond to a coarse reconstruction. The scale function
relates the signed distance values of u and fn in the
energy Edatau to the reconstruction scale. Without
knowing the reconstruction scale we cannot tell if a
deviation of one meter between u and fn is significant
or not. We can also see s as a spatially varying weight-
ing parameter, giving more weight to the data term in
regions with higher resolution. In Esmooth we increase
the smoothing strength proportional to the scale to ob-
tain a coarser reconstruction and decrease it to obtain
a reconstruction with fine details. The functions v, gm

and ∇u describe directions and therefore are scale in-
dependent. While the vectors in gm are forced to unit
length, we do not enforce this for v and ∇u to keep the
functional convex.

5. Problem Discretization

To find the minimizer of (9), we discretize the func-
tional using a finite element and finite volume dis-
cretization. Finite element discretization has also been
used in (Calakli and Taubin, 2011) for the octree vox-
els, which is a primal sampling as shown in Fig. 3(d).
We create a discrete problem with a finite dimensional
search space based on the dual sampling of the octree,
as shown in Fig. 3(e). Dual sampling describes the do-
main by sampling functions at the center of each octree
node. This leads to a smaller number of degrees of free-
dom and reduces complexity.

We use the following approximations for the func-
tions u and v in the coupling term (12) and the smooth-

ness term (13)

u(x) ≈ũ(x) =

N
∑

k

Ukφk(x)

v(x) ≈ṽ(x) =

N
∑

k

Vkφk(x),

(14)

where N is the number of nodes and Uk, Vk are the
discrete degrees of freedom of the respective approx-
imations. The global shape functions Φk define the
interpolation of the approximate functions ũ and ṽ.
Each shape function is 1 at its own node and 0 at all
other nodes. We describe each global shape function as
a composition of local shape functions defined on the
tetrahedral elements. The local shape functions defined
on the tetrahedra are the linear barycentric coordinate
functions.

For the data terms (10) and (11) we use the approx-
imations

u(x) ≈û(x) =

N
∑

k

UkIk(x)

v(x) ≈v̂(x) =
N
∑

k

VkIk(x)

(15)

with the indicator functions Ik as shape functions. Ik
is 1 inside the cubic voxel and 0 otherwise. Setting up
the linearized system requires us to compute the vol-
ume integrals over the shape functions. For the shape
functions φk we must compute the integrals over the
tetrahedra, while the volume integral for Ik is simply
the volume of the voxel.

5.1. Tetrahedral Mesh Generation

Before triangulation (the generation of the tetrahe-
dral mesh) we compute the dual octree. We use the
parallel algorithm presented by Lewiner et al (2010)
to create the cells of the dual octree. Fig. 3(c) shows
the dual of a quadtree. Creating the dual swaps the
roles of vertices and cells of the octree. Each vertex in
the primal octree becomes a cell in the dual, and each
vertex in the dual becomes a cell in the primal; see
Fig. 3(d,e) for the positions of primal and dual vertices
of a quadtree.

We can generate a triangulation by decomposing the
cells of the dual octree. In the 2D quadtree example,
as shown in Fig. 3(c), we can create a triangulation by
splitting cells with four vertices into two triangles.

For octrees, the decomposition of the polyhedral
cells into tetrahedra is more involved. This is due to
the nonplanar faces with four vertices of some dual
cells. Choosing a triangulated surface for a nonplanar

face makes at least one of the adjacent cells noncon-
vex. Since the triangulation of nonconvex polyhedra
is a NP-complete problem (Ruppert and Seidel, 1992),
we use a lookup table approach and precompute the
triangulation for all possible cell configurations.

We normalize the possible configurations for rota-
tions to keep the lookup table down to 27 entries.
Fig. 5 shows the triangulation for two of the 27 config-
urations of the polyhedral cells. The range of the cre-
ated tetrahedra per configuration is 2-6. To compute
the triangulations, we have used a naive algorithm as
initialization. For the failure cases we have manually
generated the tetrahedral decomposition. We encode
the configurations in a compact 32-bit key. The key
uses quantized edge lengths of the cell and the octree
level of the vertices.

Our lookup table guarantees a tetrahedral mesh
without holes and without intersecting tetrahedra un-
der the assumption that the octree is balanced as de-
scribed in Section 3.1.

6. Energy Minimization

Two difficulties arise with the minimization of en-
ergy (9). First, the energy functional consists of nondif-
ferentiable functions and nonlinear terms. Second, the
problem size requires a minimization algorithm that
makes best use of the available memory and comput-
ing resources.

We first address differentiability by regularizing the
nonsquared data terms (10), (11), and the smooth-
ness term (13). For the data term Edatau we replace
the absolute value in (10) with its regularized version
|a|δ =

√
a2 + δ2. The function |a|δ is differentiable

everywhere and has similar properties as the Huber
norm. In case of the data term (10), we set the param-
eter δ individually to the histogram bin widths of the
voxels. This avoids quantization artifacts in the recon-
struction. Analogously, we replace the Frobenius norm
with a modified version. We set δ = 10−3 for (11) and
(13).

To deal with nonlinearity we use an iterative re-
weighted least squares approach. Within each itera-
tion we solve a linearized least squares problem using
a parallel Gauss-Jacobi scheme. We iterate over the
dual cells to process all tetrahedra. This results in bet-
ter cache efficiency since the data of the cell vertices
is used several times by the up to six tetrahedra per
cell. To allow parallel iteration over the cells, we cre-
ate a partitioning with a simple heuristic.We count the
number of vertices that can be reached from a node in
the octree and start with the root node as first par-
tition. We then iteratively replace the node with the
largest number of vertices with its children until the

n1 n2,3

n4

+ -

++

p1,2

p3,4

m

q pi iso surface zero crossing on edge
ni estimated surface normals
m center of gravity of the

intersections pi

q optimized vertex position

Figure 6. Computation of the vertex position. The point
q minimizes the distances to the planes defined by (ni,pi)
and to the point m. Each edge intersecting the surface adds
two plane equations to the quadratic error function (16).

desired number of partitions is met.
To speed up convergence we employ a coarse-to-fine

scheme on top. Transitions from a coarser grid to a
finer grid use the shape functions φk for interpolation.
Our lookup table approach allows us to update the
grid in-place and avoids high memory peaks during grid
transitions.

7. Surface Extraction

Once the signed distance function u is computed we
can extract the surface as the zero level set. We use
the dual contouring algorithm proposed by Ju et al
(2002). The algorithm can be applied to adaptive grids
and additional information can be used to improve the
vertex placement. We use the additional information
about the surface orientation from the vector function
v to compute vertex positions.

We compute the improved vertex position q as the
minimizer of the quadratic error function

q = argmin
x

(

1

N

N
∑

i

〈ni,x− pi〉2 + ‖x−m‖2
)

.

(16)
For each edge intersecting the surface, we add two
plane constraints with the intersection point pi and the
normals of the adjacent edge vertices ni. The normals
ni equal the degrees of freedom Vk of the respective
dual vertex.

The point m is the center of gravity of the edge in-
tersections pi. In degenerate cases, where the normals
ni are very similar, m stabilizes the solution and avoids
vertex positions far away from the cell. Since m does
not depend on the normals, it can be used for algo-
rithms without normal information. Fig. 6 compares
the positions of q and m.

8. Results

We present results on synthetic and real data
sets. For the real data sets we use the Multi-View-

Original Ours Ours* Ours**

Input points FSSR PSR SSD

Figure 7. Reconstruction of a synthetic cube. Origi-
nal/Input points: The input data is cube modelled with
2454 points. The image shows only the front facing points
for better clarity. Ours: Our reconstruction solving the
QEF (16) to compute vertex positions (3070 verts, 6140
tris). Ours*: Our reconstruction using the center of mass
m to place vertices (3070 verts, 6140 tris). Ours**: Our
reconstruction using extended marching cubes (Kobbelt
et al, 2001) (3440 verts, 6876 tris). FSSR: Floating Scale
Surface Reconstruction using marching cubes as in (Kazh-
dan et al, 2007) (5099 verts, 10194 tris). PSR: Poisson sur-
face reconstruction also using (Kazhdan et al, 2007) (2934
verts, 5864 tris). SSD: Smoothed Signed Distance recon-
struction using dual marching cubes (Schaefer and Warren,
2004) (2992 verts, 5980 tris). The maximum octree depth
was set to 5 for PSR, SSD and our method.

a

b

c

d

Figure 8. Effect of vertex positions being computed by
solving (16) on a real data set. Left: Reconstruction with
limited octree depth of 9 using dual contouring with im-
proved vertex positions. Right: Close-up views comparing
the reconstruction of edges using the center of mass (a),(c)
and the improved vertex positions using normal informa-
tion (b),(d). Using normal information to compute vertex
positions leads to a more faithful reconstruction of edges
and improves visual quality.

Environment (Fuhrmann et al, 2014) and (Goesele
et al, 2007) to create point clouds with scale informa-
tion. Camera parameters have been computed with
(Wu et al, 2011; Wu, 2013).

We compare to common state of the art methods
like Poisson Surface Reconstruction (PSR) (Kazhdan

and Hoppe, 2013), Smoothed Signed Distance Recon-
stuction (SSD) (Calakli and Taubin, 2011), Floating
Scale Surface Reconstruction (FSSR) (Fuhrmann and
Goesele, 2014) and the implementation of Jancosek and
Pajdla (2011) (CMPMVS). We show that our method
achieves state of the art performance on single scale as
well as multiscale data sets. In addition, our method
compares favourably on data sets with many erroneous
points, thus making our method applicable to a wider
range of reconstruction problems.

Sharp Features We compare surface meshes gener-
ated with vertices placed at the average of the inter-
sections m and the improved position q as shown in
Fig. 6 on synthetic and real data. Fig. 7 shows the re-
constructed meshes of a synthetic cube for PSR, FSSR,
SSD and our method. PSR and FSSR use the marching
cubes implementation of Kazhdan et al (2007). SSD
uses the dual marching cubes algorithm by Schaefer
and Warren (2004). Our reconstructions use dual con-
touring with and without normal information. We also
show that the estimated normals can be used with the
extended marching cubes algorithm by Kobbelt et al
(2001). PSR and SSD yield a cube with rounded edges
and corners. FSSR exaggerates the edges, which is
an artifact of the large radius of the basis functions.
Our reconstruction using the point m for positioning
the vertices gives a similar result as SSD. Our recon-
struction with dual contouring and the improved vertex
positions gives the best reconstruction. The mesh gen-
erated with extended marching cubes yields also sharp
corners and edges but shows some artifacts on the cube
faces, which stem from imperfections in the signed dis-
tance function. The dual contouring approach uses
up to eight values which makes the vertex positions
less prone to disturbances in the signed distance field.
Fig. 8 shows the effect of the improved vertex postition
on real data.

Surface Extrapolation We show that the combina-
tion of the regularizer (13) acting on the vector field v

and the coupling term (12) allows to extrapolate sur-
faces. This property is especially useful in cases where
the data is incomplete as can be seen in Fig. 12. We
show the effect for different α1, α2 in Fig. 9.

Multiscale Data Sets Fig. 10 shows a comparison
of reconstructions on the citywall data set provided
with the MVE tool (Fuhrmann et al, 2014). Our
method generates a dense, high detail surface for all
scales.

Following (Fuhrmann and Goesele, 2014), we show
the behaviour of SSD, FSSR and our method for differ-

Duration

Octree generation
Density estimation 74.6 min

Balancing 7.9 min
Histograms 782.4 min

Surface comp.
Dual grid generation 19.9 min
Energy minimization 3678.0 min

Dual contouring 16.3 min

Other 23.5 min

Total 4602.9 min

Table 1. Runtime breakdown for the Breisach data set.
The most time consuming part during octree generation is
the computation of the histograms, which takes about 17
percent of the total runtime. About 80 percent of the time
is spent on energy minimization. The dual grid generation
is very fast thanks to the balancing criterion and the lookup
table approach. The remaining time consists mainly of disk
I/O and other operations.

ent point densities in Fig. 11. FSSR and our method
correctly handle the regions with high density to re-
duce noise, while SSD adapts to the noise. The exper-
iment shows also the importance of regularization in
multiscale data sets. Our smoothness and data terms
complement each other giving a more uniform recon-
struction.

Next we demonstrate that our method can be ap-
plied to large scenes. The Breisach data set shown in
Fig. 12 contains 1.5 billion points and models an area
of about 10000m2. Reconstruction with our method
took about 77 hours on a machine with 24 cores (Intel
X7460 CPU @ 2.66GHz, 2008) with a peak memory
consumption of 64.0 GB. See Table 1 for more details
on the runtime. We were able to reconstruct the scene
with FSSR in only 71 hours with a memory peak of
164.5 GB on the same machine. Remember that our
method performs a global optimization on the whole
octree with robust data terms. We could not recon-
struct the scene with PSR, SSD due to limited memory
and CMPMVS1 did not generate a surface mesh.

We used our method to compute a dense reconstruc-
tion of the roman forum from an internet photo collec-
tion. We use the data set and the sparse reconstruction
from (Wilson and Snavely, 2014) and (Goesele et al,
2007) to compute the point cloud. The point cloud
shows strong differences in density as most points de-
scribe the individual buildings while only a small set
describes the surroundings. Fig. 13 shows our recon-
struction as a single connected mesh. We could recon-
struct this scene with FSSR but the individual build-
ings are separated and most of the ground is lost.

1We used CMPMVS 0.6.0 with the largeScale option.

Input points

α1 = 0.2

α2 = 0.2

α1 = 5

α2 = 0.2

α1 = 1

α2 = 1

α1 = 0.2

α2 = 5

α1 = 5

α2 = 5

α1 = 1

v = 0

Figure 9. Influence of the smoothness parameters. The input data is a cone modelled with 479 points. There are no points
at the bottom of the cone. The red line indicates the same height in all images. Both parameters influence the pointiness of
the tip and how the cone surface is extended towards the bottom. λ1 = λ2 = 10 for all experiments. Larger regularization
values α2 yield a rounder tip than smaller values. The effect is strongest if we choose a large α1 which couples the vector
field v and the signed distance function u. Our method extends the cone surface towards the bottom. In all cases the
slope of the surface below the red line is getting shallower. This is due to the average of all input point normals is pointing
upwards. With a stronger regularization α2 the bending of the surface starts closer to the cone defined by the points. The
last column shows the effect of setting v to zero. In this case the coupling term becomes a regularizer which prefers small
surfaces and the cone must be closed at the bottom.

Accuracy

90% Thr. 97% Thr. 99% Thr.

PSR 0.36 0.56 0.84
SSD 0.38 0.56 0.75
FSSR 0.40 0.63 0.84
Ours 0.42 0.61 0.78
Ours* 0.43 0.61 0.78

Table 2. Accuracy on the MVS Middlebury Temple Full

data set for different threshold levels. Ours: This mesh
was generated with dual contouring and uses the normal in-
formation to compute optimized vertex positions. Ours*:
This mesh does not make use of the normal information.

Temple Data Set We show that our method is
competitive with respect to accuracy on the standard
benchmark (Seitz et al, 2006). To give a fair compar-
ison, all methods have been evaluated on the Temple

full data set using the same input point samples. The
results in Table 2 show that our approach achieves a
similar performance as the tested state of the art meth-
ods. They also show that making use of the normal
information in the surface extraction improves the ac-
curacy. At the time of writing, our method is ranked
11th for the 90% threshold with normals and ranked
15th without normals. For the other threshold levels
both variants get adjacent ranks.

Noise Robustness We demonstrate the robustness
to noise by reconstructing a car in Fig. 14. The point
cloud contains many erroneous measurements and a
high noise ratio due to reflections and transparent sur-
faces. The robust terms in our energy model suppress
noise and preserve details better than the other meth-
ods.

9. Conclusion

We have presented a global method for surface re-
construction from point cloud data with scale informa-
tion that is efficient enough to handle billions of points.
The method is robust to noise and can fill-in missing
data in the reconstruction. It combines good proper-
ties of previous methods and is, thus, applicable to a
wider range of scenes. Our software is publicly avail-
able online2.

Acknowledgements We acknowledge funding by the
ERC Starting Grant VideoLearn and the EU project
Trimbot2020.

References

Bailer C, Finckh M, Lensch HPA (2012) Scale Robust
Multi View Stereo. In: Fitzgibbon A, Lazebnik S,
Perona P, Sato Y, Schmid C (eds) Computer Vision

2http://lmb.informatik.uni-freiburg.de/people/

ummenhof/multiscalefusion

http://lmb.informatik.uni-freiburg.de/people/ummenhof/multiscalefusion
http://lmb.informatik.uni-freiburg.de/people/ummenhof/multiscalefusion

Overview (ours)

PSR CMPMVS FSSR Ours

Figure 10. Reconstruction of the Citywall data set from (Fuhrmann et al, 2014) with 256 million points. Overview:
Colored reconstruction of the whole scene with our method. The annotations mark the three close-up views which are
(top to bottom) the city model, the fountain and the lion heads. PSR: The reconstruction with PSR contains many noise
artifacts. Some artifacts could be removed with the provided clean-up tool in exchange for causing holes in the reconstruction
as seen in the city model. The reconstruction of the lion heads is too smooth due to a maximum octree depth of 14. Memory
limits did not permit a reconstruction using a deeper octree. CMPMVS: The CMPMVS software correctly models most
of the empty space between the houses in the city model. Some surfaces near the fountain show noise artifacts and seem
to model noise. The resolution of the underlying tetrahedral net was chosen too coarse to reconstruct the lion heads with
all details. Note that the CMPMVS software computes its own depth maps at full image resolution to generate its own
input point cloud. FSSR: FSSR generates a detailed reconstruction of the scene but has problems with holes in the city
model and shows artifacts in the basin of the fountain. The artifacts are linked with the rest of the scene and cannot be
removed easily. Of all methods, FSSR shows the best reconstruction near the mouths of the lion heads. Ours: Our method
generates a surface without holes for the city model and preserves most of the concave structure between the houses. The
basin of the fountain has some small artifacts. In contrast to FSSR, the view to the bottom of the basin is not blocked by
reconstruction artifacts. The lion heads show all details but the surface of the taps of the lions is slightly underestimated.
We set λ1,2 = 1, α1,2 = 2 for this data set. Results for SSD are not shown because the method did not finish after multiple
days.

FSSR

SSD Ours

Figure 11. Reconstruction of a plane with three regions,
each with a different uniform point density. The scale value
assigned to the points corresponds to the sampling density
of the central region. Gaussian white noise was added to
the points’ position and normal. Top left: Input point
cloud. FSSR: With increasing density, FSSR effectively
cancels out noise. In the low density region it suffers from
a too sparse sampling. SSD: SSD adapts the scale to the
point density and therefore models the noise in the high
density region. In the low density region noise is suppressed
by using a coarser scale for reconstruction. Ours: Our
reconstruction looks more even in the high density region
than that of the other methods. The high density leads to
a strong data term but is also effective to cancel out noise.
In the low density region the smoothness term dominates
and the reconstruction looks smoother than with SSD.

ECCV 2012, no. 7574 in Lecture Notes in Computer
Science, Springer Berlin Heidelberg, pp 398–411

Blacker TD, Meyers RJ (1993) Seams and wedges in
plastering: A 3-D hexahedral mesh generation al-
gorithm. Engineering with Computers 9(2):83–93,
DOI 10.1007/BF01199047

Bolitho M, Kazhdan M, Burns R, Hoppe H (2007)
Multilevel Streaming for Out-of-core Surface Recon-
struction. In: Proceedings of the Fifth Eurographics
Symposium on Geometry Processing, Eurographics
Association, Aire-la-Ville, Switzerland, Switzerland,
SGP ’07, pp 69–78

Calakli F, Taubin G (2011) SSD: Smooth Signed Dis-
tance Surface Reconstruction. Computer Graphics
Forum 30(7):1993–2002, DOI 10.1111/j.1467-8659.
2011.02058.x

Curless B, Levoy M (1996) A volumetric method for
building complex models from range images. In: Pro-
ceedings of the 23rd annual conference on Com-
puter graphics and interactive techniques, ACM,
New York, NY, USA, SIGGRAPH ’96, pp 303–312,
DOI 10.1145/237170.237269

FSSR Ours

a

b

c

d

Figure 12. Reconstruction of the Breisach data set with 1.5
billion points. We have thresholded the FSSR result with
the provided clean-up tool to remove clutter from the scene.
A higher threshold starts to dissolve the reconstructed sur-
faces. Our method is able to reasonably fill holes in the
reconstruction like the ground in (b) or the roof in (a). An
extreme example is shown in (c), where FSSR just recon-
structs the outline of the house. In regions without data
the regularization can extend surfaces in a wrong way like
the walls as seen in (a) at the bottom. The artifacts that
can be seen in the left column of (a),(b) and (d) partially
stem from misaligned depth samples, which are problematic
for local methods like FSSR. Our method is more robust to
such small misalignments due to the regularization. We set
λ1,2 = α1,2 = 1 for this data set.

Estellers V, Scott M, Tew K, Soatto S (2015) Ro-
bust Poisson Surface Reconstruction. In: Aujol JF,
Nikolova M, Papadakis N (eds) Scale Space and Vari-
ational Methods in Computer Vision, no. 9087 in
Lecture Notes in Computer Science, Springer Inter-
national Publishing, pp 525–537

Frahm JM, Fite-Georgel P, Gallup D, Johnson T,
Raguram R,Wu C, Jen YH, Dunn E, Clipp B, Lazeb-
nik S, Pollefeys M (2010) Building Rome on a Cloud-
less Day. In: Daniilidis K, Maragos P, Paragios N
(eds) Computer Vision ECCV 2010, no. 6314 in

Figure 13. Dense reconstruction of the roman forum with our method. The input point cloud contains 638 million samples.
Left: Wireframe rendering. Sights like the arch have a very high resolution in the octree and in the resulting surface mesh.
The density of the triangle mesh changes smoothly due to the balancing criterion we imposed on the octree. Center:
Colored reconstruction. Right: Close-up of the arch and temple.

Lecture Notes in Computer Science, Springer Berlin
Heidelberg, pp 368–381

Fuhrmann S, Goesele M (2011) Fusion of depth maps
with multiple scales. In: Proceedings of the 2011
SIGGRAPH Asia Conference, ACM, New York, NY,
USA, SA ’11, pp 148:1–148:8, DOI 10.1145/2024156.
2024182

Fuhrmann S, Goesele M (2014) Floating Scale Sur-
face Reconstruction. ACM Trans Graph 33(4):46:1–
46:11, DOI 10.1145/2601097.2601163

Fuhrmann S, Langguth F, Goesele M (2014) MVE - A
Multi-View Reconstruction Environment. In: Pro-
ceedings of the Eurographics Workshop on Graphics
and Cultural Heritage (GCH)

Gargantini I (1982) Linear octtrees for fast process-
ing of three-dimensional objects. Computer Graphics
and Image Processing 20(4):365–374, DOI 10.1016/
0146-664X(82)90058-2

Goesele M, Snavely N, Curless B, Hoppe H, Seitz S
(2007) Multi-View Stereo for Community Photo Col-
lections. In: IEEE 11th International Conference on
Computer Vision, 2007. ICCV 2007, pp 1–8, DOI
10.1109/ICCV.2007.4408933

Hiep VH, Keriven R, Labatut P, Pons JP (2009) To-
wards high-resolution large-scale multi-view stereo.
In: IEEE Conference on Computer Vision and Pat-
tern Recognition, 2009. CVPR 2009, pp 1430–1437,
DOI 10.1109/CVPR.2009.5206617

Hirschmüller H (2005) Accurate and efficient stereo
processing by semi-global matching and mutual in-
formation. In: 2005 IEEE Computer Society Con-
ference on Computer Vision and Pattern Recogni-
tion (CVPR’05), vol 2, pp 807–814 vol. 2, DOI
10.1109/CVPR.2005.56

Jancosek M, Pajdla T (2011) Multi-view reconstruc-
tion preserving weakly-supported surfaces. In: 2011
IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp 3121–3128, DOI 10.1109/
CVPR.2011.5995693

Ju T, Losasso F, Schaefer S, Warren J (2002) Dual
Contouring of Hermite Data. In: Proceedings of the
29th Annual Conference on Computer Graphics and
Interactive Techniques, ACM, New York, NY, USA,
SIGGRAPH ’02, pp 339–346, DOI 10.1145/566570.
566586

Kazhdan M, Hoppe H (2013) Screened Poisson Sur-
face Reconstruction. ACM Trans Graph 32(3):29:1–
29:13, DOI 10.1145/2487228.2487237

Kazhdan M, Klein A, Dalal K, Hoppe H (2007) Uncon-
strained Isosurface Extraction on Arbitrary Octrees.
In: Proceedings of the Fifth Eurographics Sympo-
sium on Geometry Processing, Eurographics Associ-
ation, Aire-la-Ville, Switzerland, Switzerland, SGP
’07, pp 125–133

Kobbelt LP, Botsch M, Schwanecke U, Seidel HP
(2001) Feature Sensitive Surface Extraction from
Volume Data. In: Proceedings of the 28th An-
nual Conference on Computer Graphics and Inter-
active Techniques, ACM, New York, NY, USA, SIG-
GRAPH ’01, pp 57–66, DOI 10.1145/383259.383265

Labatut P, Pons JP, Keriven R (2009) Robust and
Efficient Surface Reconstruction From Range Data.
Computer Graphics Forum 28(8):2275–2290, DOI
10.1111/j.1467-8659.2009.01530.x

Lewiner T, Mello V, Peixoto A, Pesco S, Lopes H
(2010) Fast Generation of Pointerless Octree Duals.
Computer Graphics Forum 29(5):1661–1669, DOI
10.1111/j.1467-8659.2010.01775.x

Li X, Andersen DG, Kaminsky M, Freedman MJ
(2014) Algorithmic Improvements for Fast Concur-

Input point cloud

FSSR SSD

PSR CMPMVS

Ours Ours

Figure 14. Top: Input point cloud used for FSSR, SSD,
PSR and our method. FSSR: The FSSR method shows
strong artifacts. We used a scale parameter of 8 and applied
the provided clean-up tool to threshold the mesh. Choos-
ing a higher threshold dissolves the car. SSD: The SSD
method loses details such as the side mirror. The roof of
the car is too high and the object boundary to the floor is
blurred. PSR: The surface generated with PSR has noise
artifacts. The provided clean-up tool removes the roof of
the car and the background. Smaller thresholds introduce
wrong geometry on top of the car and clutter. CMPMVS:
The reconstruction with CMPMVS recovers the side mir-
ror but also generates a bumpy surface for most of the car.
There is also a dent in the hood. There is a clear bound-
ary between the ground and the car. Note that CMPMVS
does compute its own input point cloud with plane sweep-
ing stereo and semi global matching Hirschmüller (2005),
which tends to generate a denser point cloud. Ours: Our
reconstruction generates a mesh with smooth surfaces and
details such as the side mirror. The boundary between car
and ground exhibits an edge in the mesh. We set λ1,2 = 1
and α1,2 = 5 to give more weight to the regularization for
this data set.

rent Cuckoo Hashing. In: Proceedings of the Ninth
European Conference on Computer Systems, ACM,
New York, NY, USA, EuroSys ’14, pp 27:1–27:14,
DOI 10.1145/2592798.2592820

Manson J, Petrova G, Schaefer S (2008) Streaming Sur-
face Reconstruction Using Wavelets. In: Proceed-
ings of the Symposium on Geometry Processing, Eu-
rographics Association, Aire-la-Ville, Switzerland,
Switzerland, SGP ’08, pp 1411–1420

Marchal L (2009) Advances in Octree-Based All-
Hexahedral Mesh Generation: Handling Sharp Fea-
tures. In: Clark BW (ed) Proceedings of the 18th
International Meshing Roundtable, Springer Berlin
Heidelberg, pp 65–84

Mavriplis DJ (1995) An Advancing Front Delaunay
Triangulation Algorithm Designed for Robustness.
Journal of Computational Physics 117(1):90–101,
DOI 10.1006/jcph.1995.1047

Müller M, Charypar D, Gross M (2003) Particle-
based Fluid Simulation for Interactive Applica-
tions. In: Proceedings of the 2003 ACM SIG-
GRAPH/Eurographics Symposium on Computer
Animation, Eurographics Association, Aire-la-Ville,
Switzerland, Switzerland, SCA ’03, pp 154–159

Pock T, Zebedin L, Bischof H (2011) TGV-Fusion. In:
Calude CS, Rozenberg G, Salomaa A (eds) Rainbow
of Computer Science, no. 6570 in Lecture Notes in
Computer Science, Springer Berlin Heidelberg, pp
245–258

Ruppert J, Seidel R (1992) On the difficulty of tri-
angulating three-dimensional Nonconvex Polyhedra.
Discrete & Computational Geometry 7(1):227–253,
DOI 10.1007/BF02187840

Sagawa R, Nishino K, Ikeuchi K (2005) Adaptively
merging large-scale range data with reflectance prop-
erties. IEEE Transactions on Pattern Analysis and
Machine Intelligence 27(3):392–405, DOI 10.1109/
TPAMI.2005.46

Schaefer S, Warren J (2004) Dual marching cubes:
primal contouring of dual grids. In: 12th Pacific
Conference on Computer Graphics and Applica-
tions, 2004. PG 2004. Proceedings, pp 70–76, DOI
10.1109/PCCGA.2004.1348336

Seitz S, Curless B, Diebel J, Scharstein D, Szeliski R
(2006) A Comparison and Evaluation of Multi-View
Stereo Reconstruction Algorithms. In: 2006 IEEE
Computer Society Conference on Computer Vision

and Pattern Recognition, vol 1, pp 519–528, DOI
10.1109/CVPR.2006.19

Shewchuk JR (1998) Tetrahedral Mesh Generation by
Delaunay Refinement. In: Proceedings of the Four-
teenth Annual Symposium on Computational Geom-
etry, ACM, New York, NY, USA, SCG ’98, pp 86–95,
DOI 10.1145/276884.276894

Ummenhofer B, Brox T (2015) Global, Dense Mul-
tiscale Reconstruction for a Billion Points. In:
IEEE International Conference on Computer Vision
(ICCV)

Wilson K, Snavely N (2014) Robust Global Transla-
tions with 1dsfm. In: Fleet D, Pajdla T, Schiele B,
Tuytelaars T (eds) Computer Vision ECCV 2014,
no. 8691 in Lecture Notes in Computer Science,
Springer International Publishing, pp 61–75

Wu C (2013) Towards Linear-Time Incremental Struc-
ture from Motion. In: 2013 International Confer-
ence on 3D Vision - 3DV 2013, pp 127–134, DOI
10.1109/3DV.2013.25

Wu C, Agarwal S, Curless B, Seitz S (2011) Multicore
bundle adjustment. In: 2011 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR),
pp 3057–3064, DOI 10.1109/CVPR.2011.5995552

Zach C (2008) Fast and high quality fusion of depth
maps. In: Proceedings of the International Sym-
posium on 3D Data Processing, Visualization and
Transmission (3DPVT), vol 1

	. Introduction
	. Related Work
	. Octree Generation
	. Octree Balancing
	. Point Aggregation

	. Energy Model
	. Problem Discretization
	. Tetrahedral Mesh Generation

	. Energy Minimization
	. Surface Extraction
	. Results
	. Conclusion

