
Non-smooth Non-convex Bregman Minimization:

Unification and new Algorithms

Peter Ochs, Jalal Fadili, and Thomas Brox

July 10, 2017

Abstract

We propose a unifying algorithm for non-smooth non-convex optimization. The algorithm
approximates the objective function by a convex model function and finds an approximate
(Bregman) proximal point of the convex model. This approximate minimizer of the model
function yields a descent direction, along which the next iterate is found. Complemented
with an Armijo-like line search strategy, we obtain a flexible algorithm for which we prove
(subsequential) convergence to a stationary point under weak assumptions on the growth
of the model function error.
Special instances of the algorithm with a Euclidean distance function are, for example,
Gradient Descent, Forward–Backward Splitting, ProxDescent, without the common re-
quirement of a “Lipschitz continuous gradient”. In addition, we consider a broad class of
Bregman distance functions (generated by Legendre functions) replacing the Euclidean
distance. The algorithm has a wide range of applications including many linear and
non-linear inverse problems in image processing and machine learning.

1 Introduction

When minimizing a non-linear function f on the Euclidean vector space RN , it is a funda-
mental strategy to successively minimize approximations to the actual objective function.
We refer to such an approximation as model (function). A common model example in smooth
optimization is linearization (first order Taylor approximation)

fx̄(x) = f(x̄) + 〈x− x̄,∇f(x̄)〉 (1)

around a point x̄, where 〈·, ·〉 denotes the inner product on RN . However, in general, the
minimization of a linear function does not provide a finite solution, unless, for instance, the
domain is compact. Therefore, the model is usually complemented by a proximity measure
D(x, x̄), which favors a solution close to x̄. For the Euclidean norm | · | on RN as proximity

Contribution and Related Work

measure D(x, x̄) = 1
2τ
|x− x̄|2 with τ > 0, the next iterate xk+1 is computed as minimizer x̃

of the following model around the current iterate x̄ = xk:

x̃ = argmin
x∈RN

f(x̄) + 〈x− x̄,∇f(x̄)〉+
1

2τ
|x− x̄|2 .

In this case, there is a closed-form solution, which leads to the well-known Gradient Descent
step

xk+1 = xk − τ∇f(xk) .

Since sequential minimization of model functions does not require the smoothness of the
objective, f may also be non-smooth and non-convex. The crucial aspect is the “approxi-
mation quality”, which is controlled by a growth function ω : R+ → R+ and the requirement
that the model function satisfies the model assumption

|f(x)− fx̄(x)| ≤ ω(|x− x̄|) ∀x . (2)

Drusvyatskiy et al. [15] refer to such model functions as Taylor-like models. The difference
between algorithms lies in the choice of the growth function.

For example, the Gradient Descent model function (1) with a continuously differentiable
function f satisfies ω(0) = ω′(0) = 0 and requires a line search strategy to determine a
suitable step size. If ∇f is also L-Lipschitz continuous, then a growth function of type
ω(t) = L

2
t2 can be used, and step sizes can be controlled analytically.

A large class of algorithms, which are widely popular in machine learning, can be cast
in the same framework. This includes algorithms such as Forward–Backward Splitting [20]
(Proximal Gradient Descent), ProxDescent [19, 16], and many others. They all obey the
same growth in (2) as Gradient Descent. This allows for a unified analysis of all these al-
gorithms, which is a key contribution of this paper. Moreover, we allow for a broad class
of (iteration dependent) Bregman proximity functions (e.g. generated by common entropies
such as Boltzmann–Shannon, Fermi–Dirac, and Burg’s entropy), which leads to new algo-
rithms. To be generic in the choice of the objective, the model, and the Bregman functions,
the algorithm is complemented with an Armijo-like line search strategy. Subsequential con-
vergence to a stationary point is established for different types of growth functions.

The above mentioned algorithms are ubiquitous in applications of machine learning, com-
puter vision, image/signal processing, and compressed sensing as we illustrate in Section 5
and our numerical experiments in Section 6. Due to the unifying framework the flexibility
of these methods is considerably increased further.

2 Contribution and Related Work

For smooth functions, Taylor’s approximation is unique. However, for non-smooth functions,
there are only “Taylor-like” model functions [25, 24, 15]. Each model function yields an-
other algorithm. Some model functions [25, 24] could also be referred to as lower-Taylor-like

— 2 —

Preliminaries and Notation

models, as there is only a lower bound on the approximation quality of the model. Noll et
al. addressed the problem by bundle methods based on cutting planes, which differs from
our setup.

The goal of Drusvyatskiy et al. [15] is to measure the proximity of an approximate so-
lutions of the model function to a stationary point of the original objective, i.e., a suitable
stopping criterion for non-smooth objectives is sought. On the one hand, their model func-
tions may be non-convex, unlike ours. On the other hand, their growth functions are more
restrictive. Considering their abstract level, the convergence results may seem satisfactory.
However, several assumptions that do not allow for a concrete implementation are required.
This is in contrast to our framework.

We assume more structure of the subproblems: They are given as the sum of a model
function and a Bregman proximity function. With this mild assumption on the structure, the
algorithm can be implemented and the convergence results apply. We present the first
implementable algorithm in the abstract model function framework and prove
subsequential convergence to a stationary point.

Our algorithm generalizes ProxDescent [16, 19] with convex subproblems, which
is known for its broad applicability. We provide more flexibility by considering Bregman
proximity functions, and our backtracking line-search need not solve the subprob-
lems for each trial step.

The algorithm and convergence analysis is a far-reaching generalization of Bonettini
et al. [9], which is similar to the instantiation of our framework where the model function
leads to Forward–Backward Splitting. The proximity measure of Bonettini et al. [9] is
assumed to satisfy a strong convexity assumption. Our proximity functions can be
generated by a broad class of Legendre functions, which includes, for example, the
non-strongly convex Burg’s entropy [11, 2] for the generation of the Bregman proximity
function.

3 Preliminaries and Notation

Throughout the whole paper, we work in a Euclidean vector space RN of dimension N ∈ N
equipped with norm | · | and standard inner product 〈·, ·〉.

Variational analysis. We work with functions f : RN → R, R := R∪{±∞}. The domain
of f is dom f := {x ∈ RN | f(x) < +∞} and a function f is proper, if it is nowhere −∞ and
dom f 6= ∅. It is lower semi-continuous (or closed), if lim infx→x̄ f(x) ≥ f(x̄) for any x̄ ∈ RN .
Let int Ω denote the interior of Ω ⊂ RN . We use the notation of f -attentive convergence

x
f→ x̄ ⇔ (x, f(x)) → (x̄, f(x̄)), and the notation k

K→ ∞ for some K ⊂ N to represent
k →∞ where k ∈ K.

— 3 —

Preliminaries and Notation

As in [15], we introduce the following concepts. For a closed function f : RN → R and a
point x̄ ∈ dom f , we define the slope of f at x̄ by

|∇f |(x̄) := lim sup
x→x̄, x 6=x̄

[f(x̄)− f(x)]+
|x− x̄|

,

where [s]+ = max(s, 0). It is the maximal instantaneous rate of decrease of f at x̄. For a
differentiable function, it coincides with the norm of the gradient |∇f(x̄)|. Moreover, the
limiting slope

|∇f |(x̄) := lim inf
x

f→x̄
|∇f |(x)

is key. For a convex function f , we have |∇f |(x̄) = infv∈∂f(x̄) |v| where ∂f(x̄) is the (convex)
subdifferential ∂f(x̄) := {v ∈ RN | ∀x : f(x) ≥ f(x̄) + 〈x− x̄, v〉} whose domain is given
by dom ∂f := {x ∈ RN | ∂f(x) 6= ∅}. A point x̄ is a stationary point of the function f if
|∇f |(x̄) = 0 holds. Obviously, if |∇f |(x̄) = 0 then |∇f |(x̄) = 0. We define the set of (global)
minimizers of a function f by

Argmin
x∈RN

f(x) := {x ∈ RN | f(x) = inf
x̄∈RN

f(x̄)} ,

and the (unique) minimizer of f by argminx∈RN f(x) if Argminx∈RN f(x) consists of a single
element. As shorthand, we also use Argmin f and argmin f .

Definition 1 (Growth function [15]). A differentiable univariate function ω : R+ → R+

is called growth function if it satisfies ω(0) = ω′(0) = 0 and ω′(t) > 0 for t > 0. If, in
addition, equalities limt↘0 ω

′(t) = limt↘0 ω(t)/ω′(t) = 0 hold, we say that ω is a proper
growth function.

Bregman distance. In order to introduce the notion of a Bregman function [10], we first
define a set of properties for functions to generate nicely behaving Bregman functions.

Definition 2 (Legendre function [3, Def. 5.2]). The proper, closed, convex function
h : RN → R is

(i) essentially smooth, if ∂h is both locally bounded and single-valued on its domain,

(ii) essentially strictly convex, if (∂h)−1 is locally bounded on its domain and h is strictly
convex on every convex subset of dom ∂h, and

(iii) Legendre, if h is both essentially smooth and essentially strictly convex.

Note that we have the duality (∂h)−1 = ∂h∗ where h∗ denotes the conjugate of h.

Definition 3 (Bregman distance [4, Def. 1.1]). Let h : RN → R be proper, closed,
convex and Gâteaux differentiable on int domh 6= ∅. The Bregman distance associated with
h is the function

Dh : RN×RN → [0,+∞] , (x, x̄) 7→

{
h(x)− h(x̄)− 〈x− x̄,∇h(x̄)〉 , if x̄ ∈ int domh ;

+∞ , otherwise .

— 4 —

Preliminaries and Notation

In contrast to the Euclidean distance, the Bregman distance is lacking symmetry.
We focus on Bregman distances that are generated by Legendre functions from the fol-

lowing class:

L :=

h : RN → R

∣∣∣∣∣
h is a proper, closed, convex

Legendre function that is

Fréchet differentiable on int domh

 .

To control to variable choice of Bregman distances throughout the algorithm’s iterations, we
introduce the following relation for h1, h ∈ L :

h1 � h ⇔ ∀x ∈ domh : ∀x̄ ∈ int domh : Dh1(x, x̄) ≥ Dh(x, x̄) .

As a consequence of h1 � h, we have domDh1 ⊂ domDh.
In order to conveniently work with Bregman distances, we collect a few properties.

Proposition 4. Let h ∈ L and Dh be the associate Bregman distance.

(i) Dh is strictly convex on every convex subset of dom ∂h with respect the first argument.

(ii) For x̄ ∈ int domh, it holds that Dh(x, x̄) = 0 if and only if x = x̄.

(iii) For x ∈ RN and x̄, x̂ ∈ int domh the following three point identity holds:

Dh(x, x̄) = Dh(x, x̂) +Dh(x̂, x̄) + 〈x− x̂,∇h(x̂)−∇h(x̄)〉 .

Proof. (i) and (ii) follow directly from the definition of h being essentially strictly convex.
(iii) is stated in [4, Prop. 2.3]. It follows from the definition of a Bregman distance.

Associated with such a distance function is the following proximal mapping.

Definition 5 (Bregman proximal mapping [4, Def. 3.16]). Let f : RN → R and Dh be
a Bregman distance associated with h ∈ L . The Dh-prox (or Bregman proximal mapping)
associated with f is defined by

P h
f (x̄) := argmin

x
f(x) +Dh(x, x̄) . (3)

In general, the proximal mapping is multi-valued, however for a convex function, the
following lemma simplifies the situation.

Lemma 6. Let f : RN → R be a proper, closed, convex function that is bounded from
below, and h ∈ L such that int domh∩ dom f 6= ∅. Then the associated Bregman proximal
mapping P h

f is single-valued on its domain and maps to int domh ∩ dom f .

Proof. The single-valuedness is proved in [4, Cor. 3.25(i)]. The second part is [4, Prop.
3.23(v)(b)].

— 5 —

Line Seach Based Bregman Minimization Algorithms

Proposition 7. Let f : RN → R be a proper, closed, convex function that is bounded from
below, and h ∈ L such that int domh ∩ dom f 6= ∅. For x̄ ∈ int domh, x̂ = P h

f (x̄), and any
x ∈ dom f the following inequality holds:

f(x) +Dh(x, x̄) ≥ f(x̂) +Dh(x̂, x̄) +Dh(x, x̂) .

Proof. The statement is proved in [13, Lem. 3.2].

For examples and more useful properties of Bregman functions, we refer the reader to
[2, 4, 5, 23].

Miscellaneous. We make use of little-o notation f ∈ o(g) (or f = o(g)), which indicates
that the asymptotic behavior of a function f is dominated by that of the function g. Formally,
it is defined by

f ∈ o(g) ⇔ ∀ε > 0: f(x) ≤ ε|g(x)| for |x| sufficiently small.

Note that a function ω is in o(t) if, and only if ω is a growth function.

4 Line Seach Based Bregman Minimization Algorithms

In this paper, we solve optimization problems of the form

min
x∈RN

f(x) (4)

where f : RN → R is a proper, closed function on RN . We assume that Argmin f 6= ∅ and
f := min f > −∞. The main goal is to develop a provably convergent algorithm that finds

a stationary point x of (4) in the sense of the limiting slope |∇f |(x) = 0.
We analyze abstract algorithms that sequentially minimize convex models of the objective

function.

4.1 The Abstract Algorithm

For each point x̄, we consider a proper, closed, convex model function fx̄ : RN → R with

|f(x)− fx̄(x)| ≤ ω(|x− x̄|) , (5)

where ω is a growth function as defined in Definition 1. The model assumption (5) is an
abstract description of a (local) first order oracle. For examples, we refer to Section 5.

Before delving further into the details, we need a bit of notation. Let

fhx̄,z̄(x) := fx̄(x) +Dh(x, z̄) and fhx̄ := fhx̄,x̄ ,

— 6 —

The Abstract Algorithm

where h ∈ L . Note that fhx̄ (x̄) = f(x̄). Moreover, the following quantity defined for generic
points x̄, x and x̃ will be important:

∆h
x̄(x, x̃) := fhx̄ (x)− fhx̄ (x̃) . (6)

For x̃ = x̄, it measures the decrease of the surrogate function fhx̄ from the current iterate x̄
to any other point x. Obviously, the definition implies that ∆h

x̄(x, x) = 0 for all x.

Algorithm. We consider the following Algorithm 1.

Algorithm 1 (Inexact Bregman Proximal Minimization Line Search).

• Basic prerequisites: Fix γ ∈ (0, 1) and h ∈ L . Let

• (xk)k∈N and (ỹk)k∈N be sequences in RN ;

• (fxk)k∈N be a sequence of model functions with infk∈N infx fxk(x) > −∞;

• (hk)k∈N be a sequence in L with hk � h;

• (ηk)k∈N be a sequence of positive real numbers.

• Initialization: Select x0 ∈ dom f ∩ int domh.

• For each k ≥ 0: Generate the sequences such that the following relations hold:

∆hk
xk

(ỹk, xk) < 0 with ỹk ∈ int domh (7)

xk+1 = xk + ηk(ỹk − xk) ∈ int domh (8)

f(xk+1) ≤ f(xk) + γηk∆
hk
xk

(ỹk, xk) (9)

If (7) cannot be satisfied, then the algorithm terminates.

The algorithm starts with a feasible point x0. At each iteration, it computes a point ỹk that
satisfies (7), which is an inexact solution of the Bregman proximal mapping

x̃k = P hk
fxk

(xk) := argmin
x∈RN

fxk(x) +Dhk(x, xk) (10)

that, at least, improves the (model) value compared to xk. Thanks to the class of Legendre
functions L , this proximal mapping is well-defined and single-valued on its domain. The
exact version of the algorithm solves the proximal mapping exactly for the global optimal
solution. The optimal solution of the proximal mapping will always be denoted by x̃k instead
of ỹk, which refers to an approximate solution. The direction ỹk − xk can be considered as
a descent direction for the function f . Given this direction, the goal of (8) and (9) is the
estimation of a step size ηk (by line search, cf. Algorithm 2) that reduces the value of the
objective function. In case that the proximal mapping has a solution but the first relation
(7) can only be satisfied with equality, we will see that xk = ỹk must be a stationary point
of the objective, hence, the algorithm terminates.

— 7 —

The Abstract Algorithm

Remark 8. Instead of performing backtracking on the objective values as in Algorithm 1,
backtracking on the scaling of the Bregman distance in (7) is also possible. For a special
model function, this leads to ProxDescent [19, 16] (with Euclidean proximity function). If a
scaled version of (7) yields a descent on f , we can set ηk = 1, and accept this point. However,
this can be expensive when the proximal subproblem in (7) is hard to solve, since each trial
step requires to solve the subproblem. In order to break the backtracking, the new objective
value must be computed anyway. Therefore, a computational advantage of the line search
(8) and (9) is to be expected (cf. Section 6.1).

Algorithm 2 (Line Search for Algorithm 1).

• Basic prerequisites: Fix δ, γ ∈ (0, 1), η̃ > 0, and k ∈ N.

• Input: Current iterates xk ∈ int domh and ỹk satisfy (7).

• Solve: Find the smallest j ∈ N such that η̃j := η̃δj satisfies (8) and (9).

• Return: Set the feasible step size ηk for iteration k to η̃j.

Algorithm 1–2 is well defined as the following lemmas show.

Lemma 9 (Well-definedness). Let ω in (5) be a growth function. Algorithm 1 is well-
defined, i.e., for all k ∈ N, the following holds:

(i) there exists ỹk that satisfies (7) or xk = x̃k and the algorithm terminates;

(ii) xk ∈ dom f ∩ int domh; and

(iii) there exists ηk that satisfies (8) and (9).

Proof. (i) For xk ∈ int domh, Lemma 6 shows that P hk
fxk

maps to int domhk ∩ dom fxk ⊂
int domh ∩ dom f and is single-valued. Thus, for example, ỹk = x̃k satisfies (7). Otherwise,
xk = x̃k, which shows (i). (ii) Since x0 ∈ dom f ∩ int domh and f(xk+1) ≤ f(xk) by (9)
it holds that xk ∈ dom f for all k. Since xk ∈ int domh and ỹk ∈ domh, for small ηk also
xk+1 ∈ int domh, hence xk+1 ∈ dom f ∩ int domh. Inductively, we conclude the statement.
(iii) This will be shown in Lemma 10.

Lemma 10 (Finite termination of Algorithm 2). Consider Algorithm 1 and fix k ∈ N.
Let ω in (5) be a growth function. Let δ, γ ∈ (0, 1), η̃ > 0, h̄ := hk, and x̄ := xk, ỹ := ỹk be
such that ∆h̄

x̄(ỹ, x̄) < 0. Then, there exists j ∈ N such that η̃j := η̃δj satisfies

f(x̄+ η̃j(ỹ − x̄)) ≤ f(x̄) + γη̃j∆
h̄
x̄(ỹ, x̄) .

— 8 —

Finite Time Convergence Analysis

Proof. This result is proved by contradiction. Define v := ỹ − x̄. By our assumption in (5),
we observe that

f(x̄+ η̃jv)− f(x̄) ≤ fx̄(x̄+ η̃jv)− f(x̄) + o(η̃j) . (11)

Using Jensen’s inequality for the convex function fx̄ provides:

fx̄(x̄+ η̃jv)− fx̄(x̄) ≤ η̃jfx̄(x̄+ v) + (1− η̃j)fx̄(x̄)− fx̄(x̄) = η̃j ·
(
fx̄(x̄+ v)− fx̄(x̄)

)
. (12)

Now, suppose γ∆h̄
x̄(ỹ, x̄) < 1

η̃j
(f(x̄+ η̃jv)− f(x̄)) holds for any j ∈ N. Then, using (11) and

(12), we conclude the following:

γ∆h̄
x̄(ỹ, x̄) < fx̄(x̄+ v)− fx̄(x̄) + o(η̃j)/η̃j

≤ fx̄(x̄+ v)− fx̄(x̄) +Dh̄(ỹ, x̄) + o(η̃j)/η̃j

= (f h̄x̄ (ỹ)− f h̄x̄ (x̄)) + o(η̃j)/η̃j = ∆h̄
x̄(ỹ, x̄) + o(η̃j)/η̃j ,

which for j →∞ yields the desired contradiction, since γ ∈ (0, 1) and ∆h̄
x̄(ỹ, x̄) < 0.

4.2 Finite Time Convergence Analysis

First, we study the case when the algorithm terminates after a finite number of iterations,
i.e., there exists k0 ∈ N such that (7) cannot be satisfied. Then, the point ỹk0 is a global

minimizer of f
hk0
xk0

and ∆
hk0
xk0

(ỹk0 , xk0) = 0. Moreover, the point xk0 turns out to be a stationary
point of f .

Lemma 11. For x̄ ∈ dom f and a model fx̄ that satisfies (5), where ω is a growth function,
the following holds:

|∇fx̄|(x̄) = |∇f |(x̄) .

Proof. It holds that

|∇fx̄|(x̄) = lim sup
x→x̄
x 6=x̄

[fx̄(x̄)− fx̄(x)]+
|x− x̄|

= lim sup
x→x̄
x 6=x̄

[f(x̄)− f(x)]+ + [f(x)− fx̄(x)]+
|x− x̄|

= |∇f |(x̄) ,

since [f(x)− fx̄(x)]+ ≤ o(|x− x̄|).

Proposition 12 (Stationarity for finite time termination). Consider the setting of
Algorithm 1. Let ω in (5) be a growth function. Let k0 ∈ N be fixed, and set x̃ = ỹk0 ,
x̄ = xk0 , h̄ = hk0 , and x̄, x̃ ∈ dom f ∩ int domh. If ∆h̄

x̄(x̃, x̄) ≥ 0, then x̃ = x̄, ∆h̄
x̄(x̃, x̄) = 0,

and |∇f |(x̄) = 0, i.e. x̄ is a stationary point of f .

— 9 —

Asymptotic Convergence Analysis

Proof. Since x̃ is the unique solution of the proximal mapping, obviously ∆h̄
x̄(x̃, x̄) = 0 and

x̃ = x̄. Moreover, x̃ is the minimizer of f h̄x̄ , i.e. we have

0 = |∇f h̄x̄ |(x̃) = |∇f h̄x̄ |(x̄) = lim sup
x→x̄
x 6=x̄

[fx̄(x̄)− fx̄(x)−Dh̄(x, x̄)]+
|x− x̄|

= |∇fx̄|(x̄) = |∇f |(x̄) ,

where we used that h̄ is Fréchet differentiable at x̄ and Lemma 11.

4.3 Asymptotic Convergence Analysis

We have established stationarity of the algorithm’s output, when it terminates after a finite
number of iterations. Therefore, without loss of generality, we now focus on the case where
(7) can be satisfied for all k ∈ N. We need to make the following assumptions.

Assumption 1. The sequence (ỹk)k∈N satisfies fhkxk (ỹk) ≤ inf fhkxk + εk for some εk → 0.

Remark 13. Assumption 1 states that asymptotically (for k →∞) the Bregman proximal
mapping (10) must be solved accurately. In order to obtain stationarity of a limit point,
Assumption 1 is necessary, as shown by Bonettini et al. [9, after Thm. 4.1] for a special
setting of model functions.

Assumption 2. Let h ∈ L . Let (xk)k∈N and (x̄k)k∈N be bounded sequences with xk ∈
int domh and x̄k ∈ int domh, and (hk)k∈N be a such that hk � h. Then the following holds:

xk − x̄k → 0 ⇔ Dhk(xk, x̄k)→ 0 .

Remark 14. (i) Assumption 2 states that (asymptotically) a vanishing Bregman distance
reflects a vanishing Euclidean distance. This is a natural assumption and satisfied, e.g.,
by most entropies such as Boltzmann–Shannon, Fermi–Dirac, and Burg entropy.

(ii) The equivalence in Assumption 2 is satisfied, for example, when there exists c ∈ R
such that c h � hk holds for all k ∈ N and the following holds:

xk − x̄k → 0 ⇔ Dh(xk, x̄k)→ 0 .

Convergence of objective values. By construction, convergence of the objective values
is obvious.

Proposition 15 (Convergence of objective values). Consider the setting of Algorithm 1.
Let ω in (5) be a growth function. The sequence of objective values (f(xk))k∈N is non-
increasing and converging to some f ∗ ≥ f > −∞.

Proof. This statement is a consequence of (9) and (7), and the lower-boundedness of f .

— 10 —

Asymptotic Convergence Analysis

Vanishing model improvement. Asymptotically, under some condition on the step size,
the improvement of the model objective value between ỹk and xk must tend to zero. Since
we do not assume that the step sizes ηk are bounded away from zero, this is a non-trivial
result.

Proposition 16 (Vanishing model improvement). Consider the setting of Algorithm 1.
Let ω in (5) be a growth function. Suppose, either infk ηk > 0 or ηk is selected by the Line
Search Algorithm 2. Then,

n∑
k=0

ηk(−∆hk
xk

(ỹk, xk)) < +∞ holds for all n ∈ N, and ∆hk
xk

(ỹk, xk)→ 0 as k →∞.

Proof. The first part follows from rearranging (9), and summing both sides for n = 0, . . . , k:

γ
n∑
k=0

ηk(−∆hk
xk

(ỹk, xk)) ≤
n∑
k=0

(f(xk)− f(xk+1)) = f(x0)− f(xn+1) ≤ f(x0)− f ∗ .

In the remainder of the proof, we show that ∆hk
xk

(ỹk, xk) → 0, which is not obvious unless
infk ηk > 0. The model improvement is bounded. Boundedness from above is satisfied by
construction of the sequence (ỹk+1)k∈N. Boundedness from below follows from the following
observation and the uniform boundedness of the model functions from below:

∆hk
xk

(ỹk+1, xk) = fhkxk (ỹk+1)− fhkxk (xk) ≥ fhkxk (x̃k+1)− f(xk) ≥ fxk(x̃k+1)− f(x0) .

Therefore, there exists K ⊂ N such that the subsequence ∆hk
xk

(ỹk, xk) converges to some ∆∗

as k
K→ ∞. Suppose ∆∗ < 0. Then, the first part of the statement implies that the step

size sequence must tend to zero, i.e., ηk → 0 for k
K→ ∞. For k ∈ K sufficiently large, the

line search procedure in Algorithm 2 reduces the step length from ηk/δ to ηk. (Note that
ηk can be assumed to be the “first” step length that achieves a reduction in (9)). Before
multiplying with δ, no descent of (9) was observed, i.e.,

(ηk/δ)γ∆hk
xk

(ỹk, xk) < f(xk + (ηk/δ)vk)− f(xk) ,

where vk = ỹk − xk. Using (11) and (12), we can make the same observation as in the proof
of Lemma 10:

γ∆hk
xk

(ỹk, xk) < fxk(xk + v)− fxk(xk) + o(ηk/δ)/(ηk/δ)

≤ fxk(xk + v)− fxk(xk) +Dhk(ỹk, xk) + o(ηk)/ηk

= (fhkxk (ỹk)− fhkxk (xk)) + o(ηk)/ηk

= ∆hk
xk

(ỹk, xk) + o(ηk)/ηk ,

which for ηk → 0 yields a contradiction, since γ ∈ (0, 1) and ∆hk
xk

(ỹk, xk) < 0. Therefore, any
cluster point ∆∗ of (∆hk

xk
(ỹk, xk))k∈K must be 0, which concludes the proof.

— 11 —

Asymptotic Convergence Analysis

4.3.1 Asymptotic Stationarity with a Growth Function

In order to establish stationarity of limit points generated by Algorithm 1 additional assump-
tions are required. We consider three different settings for the model assumption (5): ω in
the model assumption (5) is a growth function (this section), ω is a proper growth function
(Section 4.3.2), and ω is global growth function of the form ω = Dh (Section 4.3.3).

Assumption 3. Let x∗ be a limit point of (xk)k∈N and xk
f→ x∗ as k

K→ ∞ with K ⊂ N.
Then

|∇fxk |(xk) = |∇f |(xk)→ 0 as k
K→∞ .

Remark 17. Assumption 3 is common for abstract algorithms. Attouch et al. [1], for
example, use a relative error condition of the form |∇f |(xk+1) ≤ b|xk+1 − xk|, b ∈ R, which
implies Assumption 3 under mild assumptions (see Corollary 21).

Using this assumption, we can state one of our main theorems, which shows convergence
to a stationary point under various condition. The conditions are easily verified in many
applications (see Section 5).

Theorem 18 (Asymptotic stationarity with a growth function). Consider the setting
of Algorithm 1. Let ω in (5) be a growth function. Moreover, let either infk ηk > 0 or ηk
be selected by the Line Search Algorithm 2. Let (xk)k∈N and (ỹk)k∈N be bounded sequences
such that Assumptions 1 and 2 hold and let fxk obey (5) with growth function ω. Then,
xk − ỹk → 0 and for x̃k = P hk

fxk
(xk), it holds that xk − x̃k → 0 and x̃k − ỹk → 0. Moreover,

f(xk)− f(ỹk)→ 0 and f(x̃k)− f(xk)→ 0 as k →∞. Suppose Assumption 3 is satisfied. If
x∗ is a limit point of the sequence (xk)k∈N, and one of the following conditions is satisfied:

(i) f is continuous on the closure of domh,

(ii) x∗ ∈ int domh,

(iii) x∗ ∈ domh and Dhk(x∗, ỹk)→ 0 as k
K→∞,

(iv) x∗ ∈ cl domh and

• for all x ∈ int domh ∩ dom f holds that Dhk(x, x̃k)−Dhk(x, xk)→ 0 as k
K→∞,

• and for all x ∈ dom f the model functions obey fxk(x)→ fx∗(x) as k
K→∞,

then x∗ is a stationary point of f .

Proof. First, we show that for k →∞ the pairwise distances between the sequences (xk)k∈N,
(ỹk)k∈N, and (x̃k)k∈N vanishes. Proposition 7, reformulated in our notation, can be stated as

∆hk
xk

(x, x̃k) = fhkxk (x)− fhkxk (x̃k) ≥ Dhk(x, x̃k) . (13)

— 12 —

Asymptotic Convergence Analysis

As a direct consequence, using x = ỹk together with Assumptions 1 and 2, we obtain

Dhk(ỹk, x̃k)→ 0 thus x̃k − ỹk → 0 .

Moreover, from Proposition 16, we have ∆hk
xk

(ỹk, xk)→ 0, and from

∆hk
xk

(ỹk, xk) = ∆hk
xk

(ỹk, x̃k)−∆hk
xk

(xk, x̃k) ≤ ∆hk
xk

(ỹk, x̃k)−Dhk(xk, x̃k) , (14)

and Assumptions 1 and 2, we conclude that xk − x̃k → 0, hence also xk − ỹk → 0.

The next step is to show that f(xk) − f(ỹk) → 0 as k → ∞. This follows from the
following estimation:

|f(xk)− f(ỹk)| ≤ |fxk(xk)− fxk(ỹk)|+ ω(|ỹk − xk|)
≤ |fhkxk (xk)− fhkxk (ỹk)|+Dhk(ỹk, xk) + ω(|ỹk − xk|)
= |∆hk

xk
(xk, ỹk)|+Dhk(ỹk, xk) + ω(|ỹk − xk|) ,

(15)

where the right hand side vanishes for k → ∞. Analogously, we can show that f(x̃k) −
f(xk)→ 0 as k →∞.

Let x∗ be the limit point of the subsequence (xk)k∈K for some K ⊂ N. The remainder
of the proof shows that f(ỹk) → f(x∗) as k → ∞. Then f(xk) − f(ỹk) → 0 implies that

xk
f→ x∗ as k

K→ ∞, and by Assumption 3, the slope vanishes, hence the limiting slope
|∇f |(x∗) at x∗ also vanishes, which concludes the proof.

(i) implies f(ỹk)→ f(x∗) as k →∞ by definition. For (ii) and (iii), we make the following
observation:

f(ỹk)−ω(|ỹk−xk|) ≤ fhkxk (ỹk) = fhkxk (x̃k)+(fhkxk (ỹk)−fhkxk (x̃k)) ≤ fhkxk (x∗)+∆hk
xk

(ỹk, x̃k) , (16)

where x̃k ∈ P hk
fxk

(xk). Taking “lim sup
k
K→∞

” on both sides, Dhk(x∗, xk) → 0 (Assump-

tion 2 for (ii) or the assumption in (iii)), and ∆hk
xk

(ỹk, x̃k) → 0 (Assumption 1) shows that
lim sup

k
K→∞

f(ỹk) ≤ f(x∗). Since f is closed, f(ỹk)→ f(x∗) holds.

We consider (iv). For all x ∈ int domh∩ dom f , we have (13) or, reformulated, fhkxk (x)−
Dhk(x, x̃k) ≥ fhkxk (x̃k), which implies the following:

fxk(x) +Dhk(x, xk)−Dhk(x, x̃k)−Dhk(x̃k, xk) ≥ f(x̃k)− ω(|x̃k − xk|) .

Note that for any x the limits for k
K→∞ on the left hand side exist. In particular, we have

Dhk(x, xk)−Dhk(x, x̃k)−Dhk(x̃k, xk)→ 0 as k
K→∞ ,

by the assumption in (iv), and Assumption 2 together with x̃k − xk → 0. The limit of
fxk(x) exists by assumption and coincides with fx∗(x). Choosing a sequence (zk)k∈N in

int domh ∩ dom f with zk → x∗ as k
K→∞, in the limit, we obtain

f(x∗) ≥ lim
k
K→∞

f(x̃k) =: f ∗ ,

— 13 —

Asymptotic Convergence Analysis

since fx∗(zk) → fx∗(x∗) = f(x∗) for zk → x∗ as k
K→ ∞. Invoking that f is closed, we

conclude the f -attentive convergence f ∗ = lim infk→∞ f(xk) ≥ f(x∗) ≥ f ∗.

Remark 19. Existence of a limit point x∗ is guaranteed by assuming that (xk)k∈N is bounded.
Alternatively, we could require that f is coercive (i.e. f(xk) → ∞ for |xk| → ∞), which
implies boundedness of the lower level sets of f , hence by Proposition 15 the boundedness
of (xk)k∈N.

Remark 20. From Theorem 18, it is clear that also ỹk
f→ x∗ and x̃k

f→ x∗ as k
K→∞ holds.

Therefore, Assumption 3 could also be stated as the requirement

|∇f |(x̃k)→ 0 or |∇f |(ỹk)→ 0 as k
K→∞ ,

in order to conclude that limit points of (xk)k∈N are stationary points.

As a simple corollary of this theorem, we replace Assumption 3 with the relative error
condition mentioned in Remark 17.

Corollary 21 (Asymptotic stationarity with a growth function). Consider the setting
of Algorithm 1. Let ω in (5) be a growth function. Moreover, let either infk ηk > 0. Let
(xk)k∈N and (ỹk)k∈N be bounded sequences such that Assumptions 1 and 2 hold and let fxk
obey (5) with growth function ω. Suppose that for some b > 0 the relation |∇f |(xk+1) ≤
b|xk+1−xk| is satisfied. If x∗ is a limit point of the sequence (xk)k∈N and one of the conditions
(i)–(iv) in Theorem 18 is satisfied, then x∗ is a stationary point of f .

Proof. Theorem 18 shows that ỹk − xk → 0, thus, infk ηk > 0 implies xk+1 − xk → 0 by (8).
Therefore, the relation |∇f |(xk+1) ≤ b|xk+1− xk| shows that Assumption 3 is automatically
satisfied and we can apply Theorem 18 to conclude the statement.

Some more results on the limit point set. In Theorem 18 we have shown that limit
points of the sequence (xk)k∈N generated by Algorithm 1 are stationary, and in fact the se-
quence f -converges to its limit points. The following proposition shows some more properties
of the set of limit points of (xk)k∈N. This is a well-known result [8, Lem. 5] that follows from
xk+1 − xk → 0 as k →∞.

Proposition 22. Consider the setting of Algorithm 1. Let ω in (5) be a growth function
and infk ηk > 0. Let (xk)k∈N and (ỹk)k∈N be bounded sequences such that Assumptions 1, 2
and 3 hold. Suppose one of the conditions (i)–(iv) in Theorem 18 is satisfied for each limit

point of (xk)k∈N. Then, the set S := {x∗ ∈ RN | ∃K ⊂ N : xk → x∗ as k
K→ ∞} of limit

points of (xk)k∈N is connected, each point x∗ ∈ S is stationary for f , and f is constant on
S.

Proof. Theorem 18 shows that ỹk − xk → 0. Thus, boundedness of ηk away from 0 implies
xk+1 − xk → 0 by (8). Now, the statement follows from [8, Lem. 5] and Theorem 18.

— 14 —

Asymptotic Convergence Analysis

4.3.2 Asymptotic Stationarity with a Proper Growth Function

Our proof of stationarity of limit points generated by Algorithm 1 under the assumption
of a proper growth function ω in (5) relies on an adaptation of a recently proved result by
Drusvyatskiy et al. [15, Cor. 5.3], which is stated in Lemma 23 before the main theorem of
this subsection. The credits for this lemma should go to [15].

Lemma 23 (Perturbation result under approximate optimality). Let f : RN → R be
a proper closed function. Consider bounded sequences (xk)k∈N and (ỹk)k∈N with xk− ỹk → 0
for k →∞, and model functions fxk according to (5) with proper growth functions. Suppose
Assumption 1 and 2 hold. If (x∗, f(x∗)) is a limit point of (xk, f(xk))k∈N, then x∗ is stationary
for f .

Remark 24. The setting in [15, Cor. 5.3] is recovered when (xk)k∈N is given by xk+1 = ỹk.

Proof. Theorem 5.1 from Drusvyatskiy et al. [15] guarantees, for each k, the existence of
points ŷk and zk such that the following hold:

(i) (point proximity) The inequalities

|ỹk − zk| ≤
εk
ρk

and |zk − ŷk| ≤ 2 · ω(|zk − xk|)
ω′(|zk − xk|)

hold ,

under the convention 0
0

= 0 ,

(ii) (value proximity) f(ŷk) ≤ f(ỹk) + 2ω(|zk − xk|) + ω(|ỹk − xk|), and

(iii) (near-stationarity) |∇f |(ŷ) ≤ ρk + ω′(|zk − xk|) + ω′(|ŷk − xk|).
Setting ρk =

√
εk, using εk → 0 and the point proximity, shows that |ỹk−zk| → 0. Moreover

|zk − xk| ≤ |zk − ỹk| + |ỹk − xk| → 0, which implies that |zk − ŷk| → 0. Now, we fix a

convergent subsequence (xk, f(xk)) → (x∗, f(x∗)) as k
K→ ∞ for some K ⊂ N. Using (13),

we observe x̃k− ỹk → 0, hence xk− x̃k → 0. From (14) and Assumption 1, we conclude that
∆hk
xk

(ỹk, xk)→ 0, and, therefore f(xk)− f(ỹk)→ 0 using (15). Consider the value proximity.
Combined with the lower semi-continuity of f , it yields

f(x∗) ≤ lim inf
k
K→∞

f(ŷk) ≤ lim sup
k
K→∞

f(ŷk) ≤ lim sup
k
K→∞

f(ỹk) ≤ f(x∗) ,

hence (ŷk, f(ŷk)) → (x∗, f(x∗)) as k
K→ ∞. Near-stationarity implies that |∇f |(ŷk) → 0,

which proves that |∇f |(x∗) = 0, hence x∗ is a stationary point.

Theorem 25 (Asymptotic stationarity with a proper growth function). Consider
the setting of Algorithm 1. Let ω in (5) be a proper growth function. Moreover, let either
infk ηk > 0 or ηk be selected by the Line Search Algorithm 2. Let (xk)k∈N and (ỹk)k∈N be
bounded sequences such that Assumptions 1 and 2 hold. If x∗ is a limit point of the sequence
xk and one of the conditions (i)–(iv) in Theorem 18 is satisfied, then x∗ is a stationary point
of f .

— 15 —

Asymptotic Convergence Analysis

Proof. Propositions 15 and 16, and the proof of f -attentive convergence from Theorem 18
only rely on a growth function. Instead of assuming that the slope vanishes, here we apply
Lemma 23 to conclude stationarity of the limit points.

Of course, Proposition 22 can also be stated in the context here.

4.3.3 Asymptotic Analysis with a Global Growth Function

Suppose, for x̄ ∈ int domh for some h ∈ L , the model error can be estimated as follows:

|f(x)− fx̄(x)| ≤ LDh(x, x̄) ∀x . (17)

Since h is Fréchet differentiable on int domh, the right hand side is a growth function.
Without loss of generality, we restrict ourselves to a fixed function h ∈ L (this section
analyses a single iteration). In order to reveal similarities to well-known step size rules, we
scale h in the definition of fhx̄ to Dh/α = 1

α
Dh with α > 0 instead of Dh. Here, decreasing

objective values can be assured without the line search procedure (see Proposition 26), i.e.,
ηk = 1 is always feasible.

In order to obtain the result of stationarity of limit points (Theorem 18 or 25), we can
either verify by hand that Assumption 3 holds or we need to assume that Dh(x, x̄) is a proper
growth function.

Proposition 26. Consider the setting of Algorithm 1 and let (17) be satisfied.

(i) For points ỹ that satisfy ∆h
x̄(ỹ, x̄) < 0,

1− αL
α

Dh(ỹ, x̄) ≤ f(x̄)− f(ỹ)

holds, where the left-hand-side is strictly larger than 0 for α ∈ (0, 1/L).

(ii) For points x̃ = P h
fx̄

(x̄), the following descent property holds:

1 + ρ− αL
α

Dh(x̃, x̄) ≤ f(x̄)− f(x̃) ,

where the left-hand-side is strictly larger than 0 for α ∈ (0, (1 + ρ)/L), and ρ is the

Bregman symmetry factor defined by ρ := inf{Dh(x,x̄)
Dh(x̄,x)

| (x, x̄) ∈ (int domh)2 , x 6= x̄};
(see [5]).

Proof. The following relations hold:

∆h
x̄(ỹ, x̄) ≤ 0 ⇔ fhx̄ (ỹ) ≤ fhx̄ (x̄) ⇔ fx̄(ỹ) +

1

α
Dh(ỹ, x̄) ≤ fx̄(x̄) = f(x̄) . (18)

Bounding the left hand side of the last expression using (17), we obtain

f(ỹ)− LDh(ỹ, x̄) +
1

α
Dh(ỹ, x̄) ≤ f(x̄) , (19)

— 16 —

A Remark on Convex Optimization

which proves part (i). Part (ii) follows analogously. However, thanks to the three point
inequality from Proposition 7 and optimality of x̃ the rightmost inequality of (18) improves
to

fx̄(x̃) +
1

α
Dh(x̃, x̄) +

1

α
Dh(x̄, x̃) ≤ fx̄(x̄) = f(x̄) ,

and the statement follows.

4.4 A Remark on Convex Optimization

In this section, let f be convex, and consider the following global model assumption

0 ≤ f(x)− fx̄(x) ≤ LDh(x, x̄) . (20)

We establish a convergence rate of O(1/k) for Algorithm 1 with ηk ≡ 1. For Forward–
Backward Splitting, this has been shown by Bauschke et al. [5]. We only require fx̄ to be a
model w.r.t. (20).

Proposition 27. Consider Algorithm 1 with ηk ≡ 1 and model functions that obey (20).

For xk+1 = P
h/α
fxk

(xk) and α = 1
L

, the following rate of convergence on the objective values

holds:

f(xk+1)− f(x) ≤ LDh(x
∗, x0)

2k
(= O(1/k)) .

Proof. The three point inequality in Proposition 7 combined with the model assumption
(20) yields the following inequality:

f(x̃) +
1− αL
α

Dh(x̃, x̄) +
1

α
Dh(x, x̃) ≤ f(x) +

1

α
Dh(x, x̄)

for all x. Restricting to 0 < α ≤ 1
L

, we obtain

f(x̃)− f(x) ≤ 1

α
(Dh(x, x̄)−Dh(x, x̃)) . (21)

Let x∗ be a minimizer of f . We make the following choices:

x = x∗ , x̃ = xk+1 , and x̄ = xk .

Summing both sides up to iteration k and the descent property yield the convergence rate:

f(xk+1)− f(x) ≤ Dh(x
∗, x0)

2αk

α= 1
L=
LDh(x

∗, x0)

2k
. (22)

— 17 —

Examples

5 Examples

We discuss several classes of problems that can be solved using our framework. To apply Al-
gorithm 1, in Section 5.1, we define a suitable model and mention the associated algorithmic
step that arises from exactly minimizing the sum of the model and an Euclidean proximity
measure. However our algorithm allows for inexact solutions and very flexible (also itera-
tion dependent) Bregman proximity functions. Examples are provided in Section 5.2. For
brevity, we define the symbols Γ0 for the set of proper, closed, convex functions and C1 for
the set of continuously differentiable functions.

5.1 Examples of Model Functions

Example 28 (Forward–Backward Splitting). Problems of the form

f = f0 + f1 with f0 ∈ Γ0 and f1 ∈ C1

can be modeled by
fx̄(x) = f0(x) + f1(x̄) + 〈x− x̄,∇f1(x̄)〉 .

This model is associated with Forward–Backward Splitting (FBS) and the error satsifies

|f(x)− fx̄(x)| = |f1(x̄) + 〈x− x̄,∇f1(x̄)〉 | ≤

{
L
2
|x− x̄|2 , if ∇f1 is L-Lipschitz ;

o(|x− x̄|) , otherwise ,

which is the linearization error of the smooth part f1 (cf. (1) for the relation to Gradient
Descent). The first case obeys a global (proper) growth function and the second, more
general case falls into the class of growth functions. In any case, the model satisfies the
model consistency required in Theorem 18(iv). For any x ∈ dom f and x̄→ x∗,

|f0(x) + f1(x̄) + 〈x− x̄,∇f1(x̄)〉 − (f0(x) + f1(x∗) + 〈x− x∗,∇f1(x∗)〉)| → 0

holds, thanks to the continuous differentiability of f1 and continuity of the inner product.

In order to verify Assumption 3, we make use of Remark 20 and show that |∇f |(x̃k)→ 0

as k
K→∞ where K ⊂ N is such that xk

K→ x∗. Note that x̃k satisfies the following relation:

0 ∈ ∂f0(x̃k) +∇f1(xk) +∇hk(x̃k)−∇hk(xk)
⇒ ∇f1(x̃k)−∇f1(xk) +∇hk(xk)−∇hk(x̃k) ∈ ∂f0(x̃k) +∇f1(x̃k) = ∂f(x̃k)

Moreover, we know that x̃k − xk → 0 as k
K→ ∞. Since ∇f1 is continuous, if |∇hk(xk) −

∇hk(x̃k)| → 0 for k
K→ ∞, then Assumption 3/Remark 20 is satisfied. The condition

|∇hk(xk) − ∇hk(x̃k)| → 0 is naturally fulfilled by many Legendre functions, e.g., if ∇hk is
α-Hölder continuous (uniformly w.r.t. k) with α > 0 or uniformly continuous (independent
of k) on bounded sets or continuous at x∗ (uniformly w.r.t. k), and will be discussed in more
detail in Section 5.2.

— 18 —

Examples of Model Functions

Example 29 (Variable metric FBS). We consider an extension of Examples 28. An
alternative feasible model for a twice continuously differentiable function f1 is the following:

fx̄(x) = f0(x) + f1(x̄) + 〈x− x̄,∇f1(x̄)〉+
1

2
〈x− x̄, B(x− x̄)〉 ,

where B := [∇2f1(x̄)]+ is a positive definite approximation to ∇2f1(x̄), which leads to a
Hessian driven variable metric FBS. It is easy to see that the model error satisfies the growth
function ω(s) = o(s). Again, Theorem 18(iv) obviously holds and the same conclusions about
Assumption 3 can be made as in Example 28.

Example 30 (ProxDescent). Problems of the form

f0 + g ◦ F with f0 ∈ Γ0 , F ∈ C1 , and g ∈ Γ0 finite-valued ,

which often arise from non-linear inverse problems, can be approached by the model function

fx̄(x) = f0(x) + g(F (x̄) +DF (x̄)(x− x̄)) ,

where DF (x̄) is the Jacobian matrix of F at x̄. The associated algorithm is connected to
ProxDescent [19, 16]. If g is a quadratic function, the algorithm reduces to the Levenberg–
Marquardt algorithm [21]. The error model can be computed as follows:

|f(x)− fx̄(x)| = |g(F (x))− g(F (x̄) +DF (x̄)(x− x̄))|
≤ `|F (x)− F (x̄)−DF (x̄)(x− x̄)|

≤

{
`L
2
|x− x̄|2 , if DF is L-Lipschitz and g is `-Lipschitz ;

o(|x− x̄|) , otherwise ,

(23)

where ` is the (possibly local) Lipschitz constant of g around F (x̄). Since g is convex and
finite-valued, it is always locally Lipschitz continuous. Since F is continuously differentiable,
for x sufficiently close to x̄, both F (x) and F (x̄) + DF (x̄)(x − x̄) lie in a neighborhood of
F (x̄) where the local Lipschitz constant ` of g is valid, which shows the first inequality in
(23). The last line in (23) shows that, either the error obeys a global proper growth function
or it obeys a growth function ω(s) = o(s). With a similar reasoning, we can show that
Theorem 18(iv) is satisfied.

We consider Assumption 3/Remark 20. Let xk → x∗ as k
K→∞ for K ⊂ N and x̃k−xk →

0. Since g is finite-valued, using [6, Cor. 16.38] (sum-rule for the subdifferential), and [27,
Thm. 10.6], we observe that

0 ∈ ∂f0(x̃k) +DF (xk)
∗∂g(F (xk) +DF (xk)(x̃k − xk)) +∇hk(x̃k)−∇hk(xk) , (24)

where DF (xk)
∗ denotes the adjoint of DF (xk). We can assume that, for k large enough,

F (xk)+DF (xk)(x̃k−xk) and F (x̃k) lie a neighborhood of F (x∗) on which g has the Lipschitz

— 19 —

Examples of Model Functions

constant ` > 0. By [27, Thm. 9.13], ∂g is locally bounded around F (x∗), i.e. there exists a
compact set G such that ∂g(z) ⊂ G for all z in a neighborhood of F (x∗). We conclude that

sup
v∈∂g(F (xk)+DF (xk)(x̃k−xk))

w∈∂g(F (x̃k))

|DF (xk)
∗v −DF (x̃k)

∗w| ≤ sup
v,w∈G

|DF (xk)
∗v −DF (x̃k)

∗w| → 0

for k
K→ ∞ since DF (xk) → DF (x∗) and DF (x̃k) → DF (x∗). Again assuming that

∇hk(x̃k) − ∇hk(xk) → 0 we conclude that the outer set-limit of the right hand side of

(24) is included in ∂f(x̃k) and, therefore, the slope |∇f |(x̃k) vanishes for k
K→∞.

Example 31. Problems of the form

f0 + g ◦ F with f0 ∈ Γ0 , g ∈ C1 , and F = (F1, . . . , FM) is Lipschitz with Fi ∈ Γ0

can be modeled by

fx̄(x) = f0(x) + g(F (x̄)) + 〈F (x)− F (x̄),∇g(F (x̄))〉 .

Such problems appear for example in non-convex regularized imaging problems in the context
of iteratively reweighted algorithms [26]. For the error of this model function, we observe
the following:

|f(x)− fx̄(x)| = |g(F (x))− (g(F (x̄)) + 〈F (x)− F (x̄),∇g(F (x̄))〉)|

=

{
`
2
|F (x)− F (x̄)| , if ∇g is `-Lipschitz ;

o(|F (x)− F (x̄)|) , otherwise ;

=

{
`L
2
|x− x̄| , if ∇g is `-Lipschitz and F is L-Lipschitz ;

o(|x− x̄|) , otherwise ,

which shows the same growth functions are obeyed as in Example 28 and 30. The explana-
tion for the validity of the reformulations are analogue to those of Example 30. It is easy to
see that Theorem 18(iv) holds.

We consider Assumption 3/Remark 20. Let xk → x∗ as k
K→ ∞ for K ⊂ N and x̃k −

xk → 0. Since g is continuously differentiable, the sum-formula for the subdifferential holds.
Moreover, we can apply [27, Cor. 10.09] (addition of functions) to see that x̃k satisfies the
following relation:

0 ∈ ∂f0(x̃k) +
M∑
i=1

∂Fi(x̃k)(∇g(F (xk)))i +∇hk(x̃k)−∇hk(xk) ,

Note that by [27, Thm. 10.49] the subdifferential of g◦F at x̃k is
∑M

i=1 ∂Fi(x̃k)(∇g(F (x̃k)))i.
As in Example 30, using the Lipschitz continuity of F , hence local boundedness of ∂F , and
using the continuous differentiability of g, the sequence of sets

∑M
i=1 ∂Fi(x̃k)(∇g(F (xk)))i −

∂Fi(x̃k)(∇g(F (x̃k)))i vanishes for k
K→ ∞, which implies that the slope |∇f |(x̃k) vanishes

for k
K→∞.

— 20 —

Examples of Bregman functions

5.2 Examples of Bregman functions

Let us explore some of the Bregman functions that are most important to our applications
and show that our assumptions are satisfied.

Example 32 (Euclidean Distance). The most natural Bregman proximity function is the
Euclidean distance

Dh(x, x̄) =
1

2
|x− x̄|2 ,

which is generated by the Legendre function h(x) = 1
2
|x|2. The domain of h is the whole

space RN .
Assumption 2 requires for two sequence (xk)k∈N and (x̄k)k∈N that xk − x̄k → 0⇔ 1

2
|xk −

x̄k|2, which is obviously true. As we have seen for the model functions in Section 5.1,
Assumption 3 is satisfied, if xk− x̄k → 0 implies ∇h(xk)−∇h(x̄k)→ 0, which is clearly true.
Moreover, Condition (ii) in Theorem 18 is satisfied for any limit point, so there is no need
to verify the other conditions in Theorem 18. This guarantees subsequential convergence
to a stationary point for the models in Section 5.1 combined with the Euclidean proximity
measure.

Example 33 (Variable Euclidean Distance). A simple but far-reaching extension of
Example 32 is the following. Let (Ak)k∈N be a sequence of symmetric positive definite
matrices such that the smallest and largest eigenvalues are in (c1, c2) for some 0 < c1 < c2 <
+∞, i.e.

0 < inf
k
〈x,Akx〉 < sup

k
〈x,Akx〉 < +∞ , ∀x ∈ RN .

Each matrix Ak induces a metric on RN via the inner product 〈x,Ax̄〉 for x, x̄ ∈ RN . The
induced norm is a Bregman proximity function

Dhk(x, x̄) =
1

2
|x− x̄|2Ak

:=
1

2
〈x− x̄, Ak(x− x̄)〉 ,

generated analogously to Example 32. Except the boundedness of the eigenvalues of (Ak)k∈N
there are no other restrictions. All the conditions mentioned in Example 32 are easily shown
to be satisfied.

A simple example, which leads to a variable step size method, is the choice Ak = τkI
with c1 < τk < c2, where I denotes the identity matrix.

From now on, we restrict to iteration-independent Bregman distance functions, knowing
that we can flexibly adapt the Bregman distance in each iteration.

Example 34 (Boltzmann–Shannon entropy). The Boltzmann-Shannon entropy is given
by

Dh(x, x̄) =
N∑
i=1

(
x(i)(log(x(i))− log(x̄(i)))− (x(i) − x̄(i))

)

— 21 —

Examples of Bregman functions

where x(i) denotes the i-th coordinate of x ∈ RN . Dh is generated by the Legendre function
h(x) =

∑N
i=1 x

(i) log(x(i)), which has the domain [0,+∞)N . Since h is additively separable,
w.l.o.g., we restrict the discussion to N = 1 in the following.

We verify Assumption 2. Let (xk)k∈N and (x̄k)k∈N be bounded sequences in int domh =
(0,+∞) with xk − x̄k → 0 for k → ∞. For any convergent subsequence xk → x∗ as

k
K→ ∞ for some K ⊂ N also x̄k → x∗ as k

K→ ∞ and x∗ ∈ [0,+∞). Since h is continuous
on cl domh = [0,+∞) (define h(0) = 0 log(0) = 0), Dh(xk, x̄k) → 0 for any convergent
subsequence, hence for the full sequence. The same argument shows that the converse
implication is also true, hence the Boltzmann-Shannon entropy satisfies Assumption 2.

For the model functions from Section 5.1, we show that Assumption 3 holds for x∗ ∈
int domh, i.e. ∇h(xk) − ∇h(x̄k) → 0 for sequence (xk)k∈N and (x̄k)k∈N with xk → x∗ and

xk−x̄k → 0 for k
K→∞ for some K ⊂ N. This condition is satisfied, because∇h is continuous

on int domh, hence lim
k
K→∞
∇h(xk) = lim

k
K→∞
∇h(x̄k) = ∇h(x∗).

Since domh = cl domh, it suffices to verify Condition (iii) of Theorem 18 to guarantee
subsequential convergence to a stationary point. For x∗ ∈ [0,+∞) and a bounded sequence

(ỹk)k∈N in int domh as in Theorem 18, we need to show that Dh(x
∗, ỹk) → 0 as k

K→ ∞ for

K ⊂ N such that ỹk → x∗ as k
K→ ∞. This result is clearly true for x∗ > 0, thanks to the

continuity of log. For x∗ = 0, we observe x∗ log(ỹk)→ 0 for k
K→∞, hence Condition (iii) of

Theorem 18 holds, and subsequential convergence to a stationary point is guaranteed.

Example 35 (Burg’s entropy). For optimization problems with non-negativity constraint,
Burg’s entropy is a powerful distance measure. Burg’s entropy

Dh(x, x̄) =
N∑
i=1

(
x(i)

x̄(i)
− log

(x(i)

x̄(i)

)
− 1

)

is generated by the Legendre function h(x) = −
∑N

i=1 log(x(i)) which is defined on the domain
(0,+∞)N . Approaching 0, the function h grows towards +∞. In contrast to the Bregman
functions in the examples above, Burg’s entropy does not have a Lipschitz continuous gra-
dient, and is therefore interesting for objective functions with the same deficiency.

W.l.o.g. we consider N = 1. Assumption 2 for two bounded sequences (xk)k∈N and
(x̄k)k∈N in (0,+∞) reads

xk − x̄k → 0 ⇔ xk
x̄k
− log

(xk
x̄k

)
→ 1 ,

which is satisfied if the limit points lie in (0,+∞) since xk− x̄k → 0⇔ xk/x̄k → 1 for k
K→∞

and log is continuous at 1.
For the model functions in Section 5.1, Assumption 3 requires ∇h(xk)−∇h(x̄k)→ 0 for

sequence (xk)k∈N and (x̄k)k∈N in int domh with xk → x∗ and xk − x̄k → 0 for k
K→ ∞ for

some K ⊂ N. By continuity, this statement is true for any x∗ > 0. For x∗ = 0, the statement
is in general not true. Also Condition (iv) in Theorem 18 can, in general, not be verified.

— 22 —

Numerical Experiments

Therefore, if a model functions is complemented with Burg’s entropy, the objective should
be continuous on the cl domh. Stationarity of limit points can be obtained as long as they
lie in int domh.

6 Numerical Experiments

Bonettini et al. [9] have applied Forward–Backward Splitting (FBS), a special setting of
our framework (with strongly convex proximity measure), to Student-t regularized image
denoising, deblurring under Poisson noise (in a convex setting), and diffusion based im-
age compression. We solve two problems that are beyond their applicability and several
dictionary learning formulations. The goal of the experiments is to demonstrate the wide
applicability of our algorithmic framework. The applicability of our results follows from the
considerations in Section 5. Actually, the considered objective functions are all continuous,
i.e. Theorem 18(i) is satisfied.

6.1 Robust Non-linear Regression

We consider a simple non-smooth and non-convex regression problem of the form

min
u:=(a,b)∈RP×RP

M∑
i=1

‖Fi(u)− yi‖1 , Fi(u) :=
P∑
j=1

bj exp(−ajxi) , (25)

where (xi, yi) ∈ R×R, i = 1, . . . ,M are noisy non-negative input-output pairs computed by
yi = Fi(u) +ni given some unknown u := (a, b) ∈ RP ×RP and impulse noise ni. Due to the
noise model, the robust `1-norm ‖ · ‖1 is used as data fidelity measure.

We define model functions by linearizing the inner functions Fi as suggested by the model
function in Example 30. Complemented by an Euclidean proximity measure (with τ > 0)
the convex subproblem (7) to be solved inexactly is the following:

ũ = argmin
u∈RP×RP

M∑
i=1

‖Kiu− y�i ‖1 +
1

2τ
|u− ū|2 , y�i := yi − F (ū) +Kiū ,

where Ki := DFi(ū) : RP × RP → R is the Jacobian of Fi at the current parameters ū.
We solve the (convex) dual problem (cf. [12, 14]) with warm starting up to absolute step
difference 10−3.

As mentioned in Remark 8, backtracking on τ could be used (cf. ProxDescent [19]). This
requires to solve the subproblem for each trial step. This is the bottleneck compared to
evaluating the objective. The line search in Algorithm 2 only has to evaluate the objective
value. A representative convergence result in terms of the number of (accumulated) iterations
of the subproblems is shown in Figure 1. For this random example, the maximal noise
amplitude is 12.18, and the maximal absolute deviation of the solution from the ground
truth is 0.53, which is reasonable for this noise level. Algorithm prox-linear-LS requires

— 23 —

Image Deblurring under Poisson Noise

0 1 2 3 4

·105

400

600

800

1,000

1,200

subproblem iterations

ob
je

ct
iv

e
va

lu
e

prox-linear

prox-linear2

prox-linear-LS

Figure 1: Objective value vs. number of
subproblem iterations for (25).

Figure 2: Deblurring and Poisson noise removal by solving
(26). From left to right: clean, noisy, and reconstructed
image (PSNR: 25.86).

significantly fewer subproblem iterations than prox-linear and prox-linear2, for which
the initial τ is chosen such that initially no backtracking is required.

For large scale problems, frequently solving the subproblems can be prohibitively ex-
pensive. Hence, ProxDescent cannot be applied, whereas our algorithm is still practical.

6.2 Image Deblurring under Poisson Noise

Let b ∈ Rnx×ny represent a blurry image of size nx× ny corrupted by Poisson noise. We aim
to recover the clean image by solving the following inverse problem

min
u∈Rnx×ny

f(u) , s.t. ui,j ≥ 0 , f(u) := DKL(b,Au) +
λ

2

nx∑
i=1

ny∑
j=1

log(1 + ρ|(Du)i,j|2) , (26)

where the second term (regularization term) involves spatial finite differences (Du)i,j :=
((Du)1

i,j, (Du)2
i,j)
> in horizontal direction (Du)1

i,j := ui+1,j−ui,j for all (i, j) with i < nx, and
0 otherwise; and vertical direction (Du)2

i,j (defined analogously). The first term (data term)
is the Kullback–Leibler divergence (Bregman distance generated by the Boltzmann–Shannon
entropy ϕ(x) = x log(x)), which, neglecting constant terms, is given by

f1(u) := DKL(b,Au) :=
∑
i,j

(Au)i,j − bi,j log((Au)i,j) ,

with the linear (motion blur) operator A. It is suitable for Poisson noise removal [28]. The
smooth non-convex regularization term in (26) favors “smooth” images with sharp edges
[17, 7, 22] steered by ρ > 0. Their relative importance is weighted by λ > 0.

Even for convex regularization, (26) is hard to minimize. The difficulty comes from the
lack of global Lipschitz continuity of ∇f1(u). A remedy is provided by Bauschke et al. [5].
They have shown that, instead of the global Lipschitz continuity, the key property is the
convexity of Lh−f1 for a Legendre function h and sufficiently large L, which can be achieved

— 24 —

Dictionary Learning

using Burg’s entropy h(u) = −
∑

i,j log(ui,j) ([5, Lem. 7]). For a non-convex regularizer,
the algorithmic framework of Bauschke et al. [5] is not applicable, whereas our framework,
which is a natural generalization to the non-convex setting, is applicable. Due to the lack of
strong convexity of Burg’s entropy also the algorithm of Bonettini et al. [9] cannot be used.

In our framework, the usage of the Kullback–Leibler divergence as data term, the non-
convex regularization term and Burg’s entropy are feasible. The subproblems (7) which
emerge from linearizing the objective f in (26) around the current iterate ū

ũ = argmin
u∈Rnx×ny

〈u− ū,∇f(ū)〉+
1

τ

∑
i,j

(
ui,j
ūi,j
− log

(ui,j
ūi,j

))
can be solved exactly in closed-form ũi,j = ūi,j/(1 + τ(∇f(ū))i,jūi,j) for all i, j. A result for
the successful Poisson noise removal and deblurring is shown in Figure 2.

6.3 Dictionary Learning

The dictionary and representation learning problem is the following. We are given a data
matrix A ∈ RM×N whose M -dimensional columns contain the data vectors and there are N
such data vectors (data points). The goal is to find a descriptive dictionary U ∈ RM×K and
a representation matrix Z ∈ RK×N such that

A = UZ +Q ,

where Q ∈ RM×N contains noise. We assume that Q contains Gaussian noise.

Generic optimization problem. Depending on the goal, we are interested in dictionaries
with different properties. We formulate different optimization problems, all of the following
generic form:

min
U∈U ,Z∈Z

f(U,Z) + g(Z) , f(U,Z) :=
1

2
‖A− UZ‖2

F . (27)

The term f(U,Z) penalizes the data fidelity using the Frobenius norm ‖ · ‖F taking into
account the Gaussian noise model. The sets U , Z, and the function g are defined in a
subsequent paragraph.

Generic algorithm. We apply Algorithm 1 to solve this problem, where the model func-
tions are chosen to linearize the data fidelity function f(U,Z). The subproblems to be solved
in the algorithm have the following form:

(Ũ , Z̃) = argmin
U∈U ,Z∈Z

g(Z)+
〈
Z − Z̄, Ū>(Ū Z̄ − A)

〉
+DhZ (Z, Z̄)

+
〈
U − Ū , (Ū Z̄ − A)Z̄>

〉
+DhU (U, Ū) .

The Bregman distance functions provide the flexibility to approach several different formu-
lations of the constraint sets. In the following, we list different choices for the constraint sets

— 25 —

Dictionary Learning

and explain how to incorporate them into the optimization procedure. Due to the structure
of the optimization problem the variables can be handled separately. The only coupling is
the data fidelity function f , which is linearized and therefore easy to incorporate.

Concrete problems and algorithms. The set of feasible dictionaries U is selected
as one of the following sets:

• Unconstrained dictionary:
U1 = RM×K .

In the unconstrained case, a suitable Bregman function is given by the Euclidean
distance DhU (U, Ū) = 1

2τU
‖U − Ū‖2 with step size parameter τU . The resulting update

step with respect to the dictionary U is a gradient descent step.

• Normalized dictionary:

U2 = {U ∈ RM×K | ∀j :
M∑
i=1

U2
i,j = 1 , ∀j ≥ 2:

M∑
i=1

Ui,j = 0} .

This choice of the constraint set leads to a natural normalization of the dictionary
atoms (columns of U) to zero mean and variance one. Intentionally, we do not enforce
the average of the first column to be zero, in order to allow the dictionary to adapt to
the mean gray level of the data points.

Since the Euclidean projection onto this set is simple, we set DhU (U, Ū) = 1
2τU
‖U−Ū‖2

with step size parameter τU . The subproblem results in a projected gradient descent
step with respect to U . The projection is column-wise achieved by subtracting the
mean, and then normalizing the result by the Euclidean norm of the column.

• Non-negative and normalized dictionary: (simplex constraint)

U3 = {U ∈ RM×K | ∀j :
M∑
i=1

Ui,j = 1 , ∀i, j : Ui,j ≥ 0} .

Using a dictionary with non-negative entries, the “properties” of the data points are
clearly separated. A negative representation coefficient shows that the associated prop-
erty (the dictionary atom) is a negative characterization of this data point, and a
positive representation coefficient shows that the data point contains the property
represented by this coefficient. In order to describe all data points with positive prop-
erties only, the non-negativity constraint of the dictionary can be complemented with
non-negativity of the representation coefficients.

The constraint set U3 is column-wise a unit simplex constraint. This constraint can
conveniently be handled by DhU (U, Ū) = 1

τU

∑
i,j Ui,j(log(Ui,j)− log(Ūi,j))−Ui,j + Ūi,j,

— 26 —

Dictionary Learning

which is the Bregman function generated by the entropy hU(U) = 1
τU

∑
i,j Ui,j log(Ui,j)

with step size parameter τU . The update step with respect to U results in

Ũi,j =
Ūi,j exp(−τUCU)i,j∑M
p=1 Ūp,j exp(−τUCU)p,j

∀i = 1, . . . ,M ; ∀j = 1, . . . , K ,

where we use the abbreviation CU := ∇Uf(Ū , Z̄) for the partial gradient of f with
respect to U . The exponential function is applied entry-wise.

The set of feasible representations Z and the regularization function g(Z) is of
the following type:

• Unconstrained representation:

Z1 = RK×N and g(Z) = 0 .

This case can be handled using a gradient descent step, analogously to the related
dictionary update step.

• Non-negative representation:

Z2 = {Z ∈ RK×N | ∀i, j : Zi,j ≥ 0} and g(Z) = 0 .

This constraint can be used in the update step either by a projected gradient de-
scent step or by a Bregman proximity function DhZ (Z, Z̄) generated by hZ(Z) =
1
τZ

∑
i,j Zi,j log(Zi,j) or, alternatively, hZ(Z) = − 1

τZ

∑
i,j log(Zi,j), with step size pa-

rameter τZ .

• Low rank or sparse representation:

Z3 = RK×N and g(Z) = ‖Z‖ .

Another prominent type of regularization is given by penalizing the representation
matrix by the 1-norm ‖Z‖ = ‖Z‖1, which yields a sparse representation, or the nuclear
norm ‖Z‖ = ‖Z‖∗ (sum of singular values), which leads to a low rank representation.
Both Euclidean proximal mappings are easy to solve. The proximal mapping of the
1-norm is the entry-wise soft thresholding and the proximal mapping of the nuclear
norm is the soft thresholding applied to the singular values of the current representation
matrix.

The above listing shows that several problems can be solved with our algorithm. All
formulations fit into Bregman Forward–Backward Splitting. The difference to our algorithm
is that we can easily combine different Bregman functions and have no restrictions on the
choice of the step size parameters (except positivity). A descent is enforced in the line search
step, which follows the proximal step.

— 27 —

Dictionary Learning

Experiment. We use our algorithm to solve several combinations of the problems listed
above. The data is generated from the MNIST dataset [18]. We extract 300 digits (“1”, . . . ,
“5”) from the training set into the columns of the data matrix A. The sought dictionary
has K = 36 atoms. The reason for choosing only a small subset of the actual data is the
difficulty of the problem that we solve. Although convergence of the algorithm is guaranteed,
we cannot provide any guarantee for the quality of the stationary point that we find. The
latter is a general open problem for all local optimization methods.

The non-convexity of the problem seems to generate several undesirable stationary points
of low quality. Thanks to the (relatively) small size of the matrix A that we use, reasonable
solutions could be found after some parameter tuning. The goal of this experiment is to
show that our algorithm can be easily adapted to solve different but related problems. The
focus is rather on the regularization of the dictionary.

Evaluation. The different regularization properties can be recognized in the visualization
of the dictionaries in Figure 3. As expected the unconstrained and the normalized

dictionaries do not show much regularity, i.e., especially for the normalized dictionary the
digits are hardly visible. There is no need for the dictionary to recognize the underlying
structure of the data (the digits).

The nonnegatively constrained dictionary and the nonneg--nonneg (where also the rep-
resentation is enforced to be non-negative) are clearly different from the other dictionaries.
Both dictionaries show only positive activations of the digits that are represented. In the
first case, either the dictionary element is taken as a part of the digit to be represented
(positive representation coefficient) or is removed from the digit (negative representation
coefficient). In the second case, the non-negativity of the representation coefficients requires
the dictionary to activate only on the digit; there is no way to “subtract” from the digit.
Therefore, this dictionary shows comprises some finer structures.

The normalized--lowrank and normalized--sparse results are obtained by constrain-
ing the optimization problem to normalized dictionaries and requiring additional regularity
of the representation matrices. Especially the second dictionary shows that the sparsity
penalty requires to explain the digits in A with as few as possible dictionary atoms. The
digits can be clearly recognized. A similar observation is true for the low rank representation.
The digits in A are supposed to lie on linear subspaces spanned by the dictionary atoms, i.e.
the digits in A should be explained by dictionary atoms from the same subspace (“cluster”).
A careful inspection of the dictionary atoms confirms this underlying idea.

Of course, due to regularization the reconstruction quality is affected. However, this is
not a major concern depending on the task. Figure 4 shows the reconstructions and their
mean squared error (per digit) with respect to the input digits. Visually, the input digits
are fairly well represented.

This experiment demonstrates the flexible applicability of our algorithm. The problem
of blind image deblurring is closely related to the dictionary learning problem, and can be
approached with our algorithm, too. We can easily incorporate several different regulariza-
tion terms and constraints into (non-linear) inverse problems. It is often unknown a priori

— 28 —

Conclusion

U = U1, Z = Z1, g(Z) = 0 U = U3, Z = Z1, g(Z) = 0 U = U3, Z = Z2, g(Z) = 0

unconstrained nonneg nonneg–nonneg

U = U2, Z = Z1, g(Z) = 0 U = U2, Z = Z3, g(Z) = ‖Z‖∗ U = U2, Z = Z3, g(Z) = ‖Z‖1
normalized normalized–lowrank normalized–sparse

Figure 3: Visualization of the dictionaries with 36 atoms generated while solving (27). The respective type of
regularization is provided below each image, which refers to the concrete problems introduced in Section 6.3.
We refer to the text for more details.

what is the best regularizer for a specific task. With our algorithmic framework, the search
for the best regularizer is easy and convenient.

7 Conclusion

We have presented an algorithmic framework that unifies the analysis of several first order
optimization algorithms in non-smooth non-convex optimization such as Gradient Descent,
Forward–Backward Splitting, ProxDescent, and many more. The algorithm combines se-
quential Bregman proximal minimization of model functions, which is the key concept for
the unification, with an Armijo-like line search strategy. The framework reduces the differ-
ence between algorithms to the model approximation error measured by a growth function.
For the developed abstract algorithmic framework, we establish subsequential convergence

— 29 —

References

MSE: 9.26 MSE: 16.22 MSE: 16.82

unconstrained nonneg nonneg–nonneg

MSE: 9.30 MSE: 32.75 MSE: 14.59

normalized normalized–lowrank normalized–sparse

Figure 4: Visualization of the reconstructions of the digits in A when solving (27). The numbers show the
mean squared error (MSE) per digit.

to a stationary point and demonstrate its flexible applicability in several difficult inverse
problems from machine learning and image processing.

References

[1] H. Attouch, J. Bolte, and B. Svaiter. Convergence of descent methods for semi-algebraic
and tame problems: proximal algorithms, forward–backward splitting, and regularized Gauss–
Seidel methods. Mathematical Programming, 137(1-2):91–129, 2013.

[2] H. Bauschke and J. Borwein. Legendre functions and the method of random Bregman projec-
tions. Journal of Convex Analysis, 4(1):27–67, 1997.

[3] H. Bauschke, J. Borwein, and P. Combettes. Essential smoothness, essential strict convexity,
and Legendre functions in Banach spaces. Communications in Contemporary Mathematics,
3(4):615–647, Nov. 2001.

[4] H. Bauschke, J. Borwein, and P. Combettes. Bregman monotone optimization algorithms.
SIAM Journal on Control and Optimization, 42(2):596–636, Jan. 2003.

— 30 —

References

[5] H. H. Bauschke, J. Bolte, and M. Teboulle. A descent lemma beyond Lipschitz gradient con-
tinuity: First-order methods revisited and applications. Mathematics of Operations Research,
42(2):330–348, Nov. 2016.

[6] H. H. Bauschke and P. L. Combettes. Convex analysis and monotone operator theory in Hilbert
spaces. Springer, 2011.

[7] A. Blake and A. Zisserman. Visual Reconstruction. MIT Press, Cambridge, MA, 1987.

[8] J. Bolte, S. Sabach, and M. Teboulle. Proximal alternating linearized minimization for non-
convex and nonsmooth problems. Mathematical Programming, 146(1-2):459–494, 2014.

[9] S. Bonettini, I. Loris, F. Porta, and M. Prato. Variable metric inexact line-search based
methods for nonsmooth optimization. SIAM Journal on Optimization, 26(2):891–921, Jan.
2016.

[10] L. M. Bregman. The relaxation method of finding the common point of convex sets and
its application to the solution of problems in convex programming. USSR Computational
Mathematics and Mathematical Physics, 7(3):200–217, 1967.

[11] J. Burg. The relationship between maximum entropy spectra and maximum likelihood spectra.
Geophysics, 37(2):375–376, Apr. 1972.

[12] A. Chambolle. An algorithm for total variation minimization and applications. Journal of
Mathematical Imaging and Vision, 20:89–97, 2004.

[13] G. Chen and M. Teboulle. Convergence analysis of proximal-like minimization algorithm using
bregman functions. SIAM Journal on Optimization, 3:538–543, 1993.

[14] P. Combettes, D. Dũng, and B. Vũ. Dualization of signal recovery problems. Set-Valued and
Variational Analysis, 18(3-4):373–404, Dec. 2010.

[15] D. Drusvyatskiy, A. D. Ioffe, and A. S. Lewis. Nonsmooth optimization using Taylor-like
models: error bounds, convergence, and termination criteria. ArXiv e-prints, Oct. 2016. arXiv:
1610.03446.

[16] D. Drusvyatskiy and A. S. Lewis. Error bounds, quadratic growth, and linear convergence of
proximal methods. ArXiv e-prints, Feb. 2016. arXiv:1602.06661.

[17] S. Geman and D. Geman. Stochastic relaxation, Gibbs distributions, and the Bayesian restora-
tion of images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 6:721–741,
1984.

[18] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11):2278–2324, Nov. 1998.

[19] A. Lewis and S. Wright. A proximal method for composite minimization. Mathematical
Programming, 158(1-2):501–546, July 2016.

[20] P. L. Lions and B. Mercier. Splitting algorithms for the sum of two nonlinear operators. SIAM
Journal on Applied Mathematics, 16(6):964–979, 1979.

[21] D. Marquardt. An algorithm for least-squares estimation of nonlinear parameters. Society for
Industrial and Applied Mathematics, 11:431–441, 1963.

[22] D. Mumford and J. Shah. Optimal approximations by piecewise smooth functions and asso-
ciated variational problems. Communications on Pure and Applied Mathematics, 42:577–685,
1989.

— 31 —

References

[23] Q. Nguyen. Forward–Backward Splitting with Bregman Distances. Vietnam Journal of Math-
ematics, pages 1–21, Jan. 2017.

[24] D. Noll. Convergence of non-smooth descent methods using the Kurdyka– Lojasiewicz inequal-
ity. Journal of Optimization Theory and Applications, 160(2):553–572, Sept. 2013.

[25] D. Noll, O. Prot, and P. Apkarian. A proximity control algorithm to minimize nonsmooth and
nonconvex functions. Pacific Journal of Optimization, 4(3):571–604, 2008.

[26] P. Ochs, A. Dosovitskiy, T. Brox, and T. Pock. On iteratively reweighted algorithms for
nonsmooth nonconvex optimization in computer vision. SIAM Journal on Imaging Sciences,
8(1):331–372, 2015.

[27] R. T. Rockafellar. Variational Analysis, volume 317. Springer Berlin Heidelberg, Heidelberg,
1998.

[28] Y. Vardi, L. Shepp, and L. Kaufman. A statistical model for positron emission tomography.
Journal of the American Statistical Association, 80(389):8–20, 1985.

— 32 —

	Introduction
	Contribution and Related Work
	Preliminaries and Notation
	Line Seach Based Bregman Minimization Algorithms
	The Abstract Algorithm
	Finite Time Convergence Analysis
	Asymptotic Convergence Analysis
	Asymptotic Stationarity with a Growth Function
	Asymptotic Stationarity with a Proper Growth Function
	Asymptotic Analysis with a Global Growth Function

	A Remark on Convex Optimization

	Examples
	Examples of Model Functions
	Examples of Bregman functions

	Numerical Experiments
	Robust Non-linear Regression
	Image Deblurring under Poisson Noise
	Dictionary Learning

	Conclusion

