

COMPUTER VISION University of Freiburg http://lmb.informatik.uni-freiburg.de

Eddy llg ilg@cs.uni-freiburg.de

Contributions

Goal: Improving optical flow estimation with FlowNet

Contributions:

- Dataset schedules
- Stacking multiple networks
- Small displacements and real data

Results: Performance on-par with

other methods but at **8 to 140fps**

Dataset Schedules

Architecture	Datasets	$ S_{short} $	S_{long}	S_{fine}
	Chairs	4.45	-	-
FlowNetS	Chairs	-	4.24	4.21
	Things3D	-	5.07	4.50
	mixed	-	4.52	4.10
	Chairs \rightarrow Things 3D	-	4.24	3.79
FlowNatC	Chairs	3.77	-	-
FIOWINEIC	Chairs \rightarrow Things 3D	-	3.58	3.04

Observations:

- Best results can only be achieved when training first on Chairs and then on Things3D
- FlowNetC outperforms FlowNetS
- By modifying dataset schedules, results improve by 25-30%

	Slacking Nelvoi
Image 0	
Image 0 Net 1 Image 1 Image 1 Im	Net 2 Warped

Stack	Trai	ning	Warping	Warping	Loss	after	EPE on Chairs	EPE on Sintel
architecture	ena	bled	included	gradient			test	train <i>clean</i>
	Net1	Net2		enabled	Net1	Net2		
Net1	\checkmark	_	_	_	\checkmark	_	3.01	3.79
Net1 + Net2	×	1	×	—	_	\checkmark	2.60	4.29
Net1 + Net2	\checkmark	1	×	—	×	\checkmark	2.55	4.29
Net1 + Net2	\checkmark	1	×	_	\checkmark	\checkmark	2.38	3.94
Net1 + W + Net2	X	1	\checkmark	—	—	\checkmark	1.94	2.93
Net1 + W + Net2	\checkmark	1	\checkmark	\checkmark	×	\checkmark	1.96	3.49
Net1 + W + Net2	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	1.78	3.33

Stacking Networks

State-of-the-art approaches rely on iterative methods. We stack two FlowNetS and make the following observations:

- (1) Just stacking networks over-fits
- (2) Including warped images as input to the second network always improves results
- (3) Adding intermediate losses helps when training end-to-end
- (4) Best results are obtained when keeping the first network fixed and only training the second network

FlowNet 2.0: Evolution of Optical Flow Estimation with Deep Networks

Nikolaus Mayer mayern@cs.uni-freiburg.de

Tonmoy Saikia saikiat@cs.uni-freiburg.de

Stack Configurations

We scale the network by multiplying the numbers of channels by a constant. Using a factor of 0.375 (FlowNet-**s**) yields nuch faster networks with only slightly higher error.

	Number of Networks			
	1	2	3	4
Architecture	S	SS	SSS	
Runtime	7ms	14ms	20ms	_
EPE	4.55	3.22	3.12	
Architecture	S	SS		
Runtime	18ms	37ms	—	_
EPE	3.79	2.56		
Architecture	c	CS	CSS	CSSS
Runtime	17ms	24ms	$31 \mathrm{ms}$	36ms
EPE	3.62	2.65	2.51	2.49
Architecture	C	CS	CSS	
Runtime	33ms	$51 \mathrm{ms}$	69ms	—
EPE	3.04	2.20	2.10	

We then stack networks of different configurations and sizes obtaining runtimes from 7-140fps. Stacking more than three networks does not prove useful. The best result is obtained by stacking a FlowNetC with two FlowNetS on top.

1506030fpsfpsfpsMPISintel (train final) LDOF (GPU) LDOF DIS-Fast FlowNetC FlowNetS PCA-Flow • CPU FN2-s O PCA-Layers EpicFlow 🛑 DeepFlo FN2-css-ft-sd FlowNet2 FN2-CSS-ft-sd • FlowField 0^0 10^1 10^2 10^3 10^4 10^5 Runtime (milliseconds per frame)

Small Displacements

• Analyzing the UCF dataset as one candidate of real-world data reveals that it on average has very small displacements

We create an according dataset named ChairsSDHom

 Additionally, we cover the problem with featureless and featurepoor backgrounds by introducing samples with motionless blank and weak gradient backgrounds

Margret Keuper

keuper@cs.uni-freiburg.de

Alexey Dosovitskiy dosovits@cs.uni-freiburg.de

FlowNet2 Architecture

Performance

FlowNet2 outperforms any other method in terms of accuracy vs. speed

Achieved accuracy mentation and tion recognition is now comparable to other methods

	Motion	Action Recog.	
	F-Measure	Extracted	Accuracy
		Objects	
LDOF-CPU 7	79.51%	28/65	$79.91\%^{\dagger}$
DeepFlow 32	80.18 %	29/65	81.89 %
EpicFlow 22	78.36%	27/65	78.90%
FlowFields 2	79.70%	30/65	_
FlowNetS 11	$56.87\%^{\ddagger}$	$3/62^{\ddagger}$	55.27%
FlowNet2-css-ft-sd	77.88%	26/65	_
FlowNet2-CSS-ft-sd	79.52%	30/65	79.64%
FlowNet2	79.92%	32/65	79.51%

Acknowledgements

Partially funded by the ERC Starting Grant VideoLearn, the DFG Grant BR 3815/7-1 and the Horizon2020 EU project TrimBot2020

Flow Results Othe FlowFields PCA-Flow FlowNet2 (123ms) Ground Truth (22, 810 ms)EPE: 0.86 EPE: 6.18 Chine . KITTI2015 Ground Truth PCA-Flow