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Contributions:
« Dataset schedules
« Stacking multiple networks
 Small displacements and real data

Results:
Performance on-par with
other methods but
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Goal: Improving optical flow estimation with FlowNet

at 8 to 140fps
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Architecture Datasets Sshort || Stong  Sfine
Chairs 4.45 - -

Chairs - 4.24 4.21

FlowNetS Things3D - 5.07 4.50

mixed - 4.52 4.10

Chairs —+Things3D - 4.24 3.79
Chairs 3.77 -

FlowNetC Chairs —Things3D - 3.58 3.04

Observations:

e Best results can only be achieved when training

first on Chairs and then on Things3D

* FlowNetC outperforms FlowNetS

* By modifying dataset schedules,

results improve by 25-30%

Stacking Networks
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State-of-the-art approaches rely on
iterative methods. We stack two
FlowNetS and make the following

observations:

(2)

Stack Training Warping | Warping Loss after EPE on Chairs | EPE on Sintel
architecture enabled included | gradient test train clean

Netl | Net2 enabled | Netl | Net2 (3)
Netl v - -~ - v = 3.01 3.79
Netl + Net2 X v X — - v 2.60 4.29
Netl + Net2 v v X - X v 2.55 4.29
Netl + Net2 | v X - o v 2.38 3.94 (4)
Netl + W + Net2 X v v - — v 1.94 2.93
Netl + W + Net2 v v v v X v 1.96 3.49
Netl + W + Net2 v v v v v v 1.78 3.33

(1) Just stacking networks over-fits

Including warped images as
Input to the second network
always improves results

Adding intermediate losses helps
when training end-to-end

Best results are obtained when
keeping the first network fixed and
only training the second network
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Network Forward Pass Time
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Number of Channels Multiplier
Number of Networks
| 2 3 4
Architecture S SS SSS
Runtime 7ms 14ms | 20ms —
EPE 4.55 3.22 3.12
Architecture S SS
Runtime 18ms | 37ms — —
EPE 3.79 2.50
Architecture C CS CSS CSSS
Runtime 17ms | 24ms | 31ms | 36ms
EPE 3.02 2.65 2.51 2.49
Architecture C CS CSS
Runtime 33ms | 51ms 69ms —
EPE 3.04 2.20 2.10

We scale the network
by multiplying the num-
bers of channels by a
constant. Using a
factor of 0.375
(FlowNet-s) yields
much faster networks
with only slightly higher
error.

We then stack net-
works of different con-
figurations and sizes
obtaining runtimes
from 7-140fps. Stack-
Ing more than three
networks does not
prove useful. The best
result I1s obtained by
stacking a FlowNetC
with two FlowNetS on
top.
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Displacement magnitude

(zoom 1nto orange box)

* Analyzing the UCF dataset as one candidate of real-world data
reveals that it on average has very small displacements

* We create an according dataset named ChairsSDHom

« Additionally, we cover the problem with featureless and feature-
poor backgrounds by introducing samples with motionless blank
and weak gradient backgrounds

Tonmoy Saikia

saikiat@cs.uni-freiburg.de

Margret Keuper

keuper@cs.uni-freiburg.de

Alexey Dosovitskiy

dosovits@cs.uni-freiburg.de

FlowNet2 Architecture
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We take the best stack
configuration and add

a network dedicated to
small displacements

W —> | Flow

Resulting flow fields
are smooth with crisp
motion boundaries and
performance is on-par
with state-of-the-art
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FlowNet2 outper-
forms any other
method in terms of
accuracy vs. speed

Achieved accuracy
on motion seg-
mentation and ac-
tion recognition Is
now comparable to
other methods

Motion Seg. Action Recog.
F-Measure | Extracted Accuracy
Objects

LDOF-CPU 79.51% 28/65 79.91%]
DeepFlow 80.18% 29/65 81.89%
EpicFlow 78.36% 27/65 78.90%
FlowFields [2] 79.70% 30/65 -
FlowNetS [11] 56.87%* 3/62* 55.27%
FlowNet2-css-ft-sd 77.88% 26/65 -~
FlowNet2-CSS-ft-sd 79.52% 30/65 79.64 %
FlowNet2 79.92 % 32/65 79.51%
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