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Abstract. We present a convolutional network capable of inferring a 3D
representation of a previously unseen object given a single image of this
object. Concretely, the network can predict an RGB image and a depth
map of the object as seen from an arbitrary view. Several of these depth
maps fused together give a full point cloud of the object. The point cloud
can in turn be transformed into a surface mesh. The network is trained
on renderings of synthetic 3D models of cars and chairs. It successfully
deals with objects on cluttered background and generates reasonable
predictions for real images of cars.

Keywords: 3D from single image, deep learning, convolutional net-
works

1 Introduction

The ability to infer a 3D model of an object from a single image is necessary for
human-level scene understanding. Despite the large success of deep learning in
computer vision and the diversity of tasks being approached, 3D representations
are not yet in the focus of deep networks. Can we make deep networks learn
such 3D representations?

In this paper, we present a simple and elegant encoder-decoder network that
infers a 3D model of an object from a single image of this object, see Figure 1. We
represent the object by what we call ”multi-view 3D model” – the set of all its
views and corresponding depth maps. Given an arbitrary viewpoint, the network
we propose generates an RGB image of the object and the depth map. This
representation contains rich information about the 3D geometry of the object,
but allows for more efficient implementation than voxel-based 3D models. By
fusing several views from our multi-view representation we get a full 3D point
cloud of the object, including parts invisible in the original input image.

While technically the task comes with many ambiguities, humans are known
to be good in using their prior knowledge about similar objects to guess the
missing information. The same is achieved by the proposed network: when the
input image does not allow the network to infer the parts of an object – for
example, because the input only shows the front view of a car and there is no
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Fig. 1. Our network infers an object’s 3D representation from a single input image. It
then predicts unseen views of this object and their depth maps. Multiple such views
are fused into a full 3D point cloud, which is further optimized to obtain a mesh.

information about its back – it fantasizes the most probable shape consistent
with the presented data (for example, a standard sedan car).

The network is trained end-to-end on renderings of 3D models from the
ShapeNet dataset [1]. We render images on the fly during network training,
with random viewpoints and lighting. This makes the training set very diverse,
thanks to the size of ShapeNet, and effectively infinite. We make the task more
challenging and realistic by pasting the object renderings on top of random back-
ground images. In this setup, the network learns to automatically segment out
the object. Moreover, we show that networks trained on synthetic images of this
kind yield reasonable predictions for real-world images without any additional
adaptation.

Contributions. First, we largely improve on the visual quality of the gener-
ated images compared to previous work. Second, we achieve this with a simpler
and thus more elegant architecture. Finally, we are the first who can apply the
network to images with non-homogeneous background and natural images.

2 Related work

Unseen view prediction Our work is related to research on modeling image trans-
formations with neural-network-based approaches. These often involve multi-
plicative interactions, for example gated RBMs [2], gated autoencoder [3] or
Disentangling Boltzmann Machines [4]. These approaches typically do not scale
to large images, although they potentially could by making use of architectures
similar to convolutional DBNs [5]. They are also typically only applicable to
small transformations.

Transforming autoencoders [6] are trained to generate a transformed version
of an input image given the desired transformation. When applied to the NORB
dataset of 96 × 96 pixel stereo image pairs of objects, this approach can apply
small rotations to the input image.

The multi-view perceptron [7] is a network that takes a face image and a
random vector as input and generates a random view of this face together with
the corresponding viewpoint. In contrast, our model can generate directly the
desired view without the need for random sampling. Kulkarni et al. [8] trained a
variant of a variational autoencoder with factored hidden representations, where



Multi-view 3D Models from Single Images with a Convolutional Network 3

certain dimensions are constrained to correspond to specific factors of variations
in the input data, such as viewpoint and lighting. This method is conceptually
interesting and it allows to generate previously unseen views of objects, but the
quality of predictions made by our network is significantly better, as we show in
the experimental section.

A simplified version of unseen view prediction is predicting HOG descrip-
tors [9] instead of images. Chen et al. [10] pose the problem as tensor comple-
tion. Su et al. [11] find object parts similar to those of a given object in a large
dataset of 3D models and interpolate between the desired views of these. These
methods do not learn a 3D representation of the object class but approximate
unseen views by linear combinations of models from a fixed dataset.

Dosovitskiy et al. [12] trained an ’up-convolutional’ network to generate an
image of a chair given the chair type and a viewpoint. This method is restricted
to generating images of objects from the training set or interpolating between
them. Applying the method to a new test image requires re-training the network,
which takes several days. While the decoder part of our network is similar to
the architecture of Dosovitskiy et al., our network also includes an encoder part
which infers the high-level representation from a given input image. Hence, at
test time we can generate unseen views and depth maps of new objects by simply
forward propagating an image of the object through the network. Our approach
also yields more accurate predictions.

Most closely related is the concurrent work by Yang et al. [13, 14]. They train
a recurrent network that can rotate the object in the input image: given an image,
it generates a view from a viewpoint differing by a fixed increment. This makes
the approach restricted to generating a discrete set of views, while we are able
to vary the angle continuously. In the approach of Yang et al., one might train
the network with a small angle increment and predict views at finer quantization
levels than the 15 degrees used by the authors. However, this would require more
recurrent iterations for performing large rotations. It would be slow and probably
would lead to error accumulation. Our network does not have such restrictions
and produces an arbitrary output view in a single forward pass. Moreover, it
can generate a full 3D point cloud, can deal with non-homogeneous background,
and the generated images are of much better quality.

3D from single image Inferring a 3D model of an object from a single image is
a long-standing, very difficult task in computer vision. A general approach is to
use certain models of lighting, reflectance and object properties to disentangle
these factors given a 2D input image [15]. When reconstructing a specific object
class, prior knowledge can be exploited. For example, morphable 3D models [16],
[17] are commonly used for faces. Kar et al. [18] extended this concept to ob-
ject categories with more variation, such as cars and chairs, and combined it
with shape-from-shading to retrieve also the high frequency components of the
shape. For building their morphable 3D model they rely on ideas from Vicente et
al. [19], who showed that the coarse 3D structure can be reconstructed from mul-
tiple images of the same object class (but different object instances) and some
keypoint annotation. In contrast to Kar et al. [18], our approach does not use
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an explicit 3D model. A 3D model representation for the object class is rather
implicit in the weights of the convolutional network.

Aubry et al. [20] proposed an approach for aligning 3D models of objects
with images of these objects. The method makes use of discriminative part de-
tectors and works on complicated real scenes. On the downside, this is a nearest-
neighbor kind of method: it selects the best fitting 3D models from a fixed set
of models. This limits the generalization capability of the method and makes it
proportionally slower if the model collection grows in size.

Huang et al. [21] reconstruct 3D models from single images of objects by
jointly analyzing large collections of images and 3D models of objects of the
same kind. The method yields impressive results. However, it jointly processes
large collections of images and models with a nearest neighbor approach and
hence cannot be applied to a new image at test time that is different from all
models in the dataset.

Eigen et al. [22] trained convolutional networks to predict depth from single
images of indoor scenes. This is very different from our work in that we predict
depth maps not only for the current viewpoint, but also for all other viewpoints.
Wu et al. [23] trained 3D Convolutional Deep Belief Networks capable of gen-
erating a volumetric representation of an object from a single depth map. This
method requires a depth map as input, while our networks only take a single
RGB image.

3 Model description

We train a network that receives an input pair (xi, θi), where xi is the input
image and θi the desired viewpoint, and aims to estimate a pair (yi, di), where
yi is the 2D projection of the same object from the requested viewpoint and
di is the depth map of this projection. While the input images xi may have
complicated background, the targets yi always have monotonous background. θi
is a vector defining the viewpoint; it consists of two angles – azimuth θazi and
elevation θeli – and the distance r from the object center. Angles are given by
their sine and cosine to deal with periodicity. The viewpoint of the input image
is not given to the network. This makes the task more difficult since the network
must implicitly infer the viewpoint from the input image.

The network is trained by minimizing the loss function L which is a weighted
sum of two terms: squared Euclidean loss for the RGB image and L1 loss for the
depth image:

L =
∑
i

||yi − ŷi||22 + λ ||di − d̂i||1, (1)

where ŷi and d̂i are the outputs of the network and λ is the weighting coefficient.
We used λ = 0.1 in our experiments.

3.1 Architecture

The architecture of our encoder-decoder network is shown in Figure 2. It is simple
and elegant. The encoder part (blue in the figure) processes the input image to
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Fig. 2. The architecture of our network. The encoder (blue) turns an input image into
an abstract 3D representation. The decoder (green) processes the angle, modifies the
encoded hidden representation accordingly, and renders the final image together with
the depth map.

obtain a hidden 3D representation zobj of an object shown in the image. The
decoder part (green in the figure) then takes zobj and the desired viewpoint as
inputs and renders the final output image.

During training, the network is always presented with pairs of images showing
two views of the same object together with the viewpoint of the output view.
Objects are randomly sampled from a large database of 3D models, and pairs of
views are randomly selected.

Technically, the encoder part propagates an input image through a standard
ConvNet architecture, which consists of 5 convolutional layers with stride s =
2 in each layer and one fully connected layer in the end. The decoder part
independently processes the angle in 3 fully connected (FC) layers, then merges
the resulting code with the output of the encoder and performs joint processing in
3 more FC layers. Finally, it renders the desired picture using 5 up-convolutional
layers (also known as ”deconvolutional”). We experimented with deeper and
wider networks, but did not observe a significant difference in performance.

The up-convolutional layers perform upsampling+convolution, opposite to
the standard convolution+pooling. During upsampling, each pixel is replaced
with a 2× 2 block containing the original pixel value in the top left corner and
zeros everywhere else. For both convolutional and up-convolutional layers of the
network we use 5× 5 filters for outer layers and 3× 3 filters for deeper layers.

The Leaky ReLU nonlinearity with the negative slope 0.2 is used after all
layers, except for the last one, which is followed by the tanh.

3.2 Multi-view 3D to point cloud and mesh

The multi-view 3D model provided by the network allows us to generate a point
cloud representing the object, which in turn can be transformed into a mesh.
To achieve this, for a single input we generate multiple output images from
different viewpoints together with their corresponding depth maps. The camera
parameters are known: both internal (focal length, camera model) and external
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Fig. 3. Train-test split of cars. Sample renderings and their nearest neighbors are
shown. Each row shows on the left a rendering of a query model from the test set
together with several HOG space nearest neighbors from the training set. The two
query models on the right are ’difficult’ ones.

(camera pose). This allows us to reproject each depth map to a common 3D
space and obtain a single point cloud.

As a post-processing step we can turn the point cloud into a dense surface
model with the method of Pock et al. [24]. This method uses depth information
together with the point normals to compute the final mesh. As the normal in-
formation is missing in our case (although it potentially could also be estimated
by the network), we approximate it by providing the direction to the camera for
each point. Since the normals are optimized anyway by the fusion method, this
approximation yields good results in practice.

3.3 Dataset

We used synthetic data from the ShapeNet dataset [1] for training the networks.
The dataset contains a large number of 3D models of objects belonging to dif-
ferent classes. The models have been semi-automatically aligned to a consistent
orientation using a hierarchical approach based on [25]. We mainly concentrated
on car models, but we also trained a network on chairs to show generality of
our approach and to allow a comparison to related methods. We used 7039 car
models and 6742 chair models.

3D models were rendered using our self-developed real-time rendering frame-
work based on the Panda3D rendering engine1. This allowed us to generate
training images on the fly, without the need to store huge amounts of training
data on the hard drive. We randomly sampled azimuth angles in the range from
0◦ to 360◦, elevation angles in the range from −10◦ to 40◦, and the distance to
the object from 1.7 to 2.3 units, with a car length being approximately equal to
3 units.

We took special care to ensure the realism of the renderings, since we would
like the network to generalize to real input images. As in Su et al. [26], we
randomly sampled the number of light sources from 2 to 4, each with random
intensity and at random location. When overlaying the rendering on top of the
background, we performed alpha compositioning to avoid sharp transition. It

1 https://www.panda3d.org
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was implemented by smoothing the segmentation mask with a Gaussian filter
with the standard deviation randomly sampled between 1 and 1.3. Additionally,
we smoothed the car image with a Gaussian filter with the standard deviation
randomly sampled between 0.2 and 0.6.

Since we used a large amount of models, some of which may happen to be
similar, simple random train-test splitting does not enable a reliable evaluation.
To mitigate this problem we clustered objects according to their similarity and
then took some of the clusters as the test set. We are mostly interested in split-
ting the objects according to their shape, so we used the distance between the
2D HOG descriptors [9] of the corresponding images as similarity measure. To
make this measure more robust, we considered three different viewpoints for
each object and used the sum of three distances as the final distance measure.
After constructing a matrix of pairwise distances, we clustered the models using
agglomerative clustering with average linkage.

For cars we selected a single cluster consisting of 127 models as the test set.
Models from this group we refer to as ’normal test cars’. In addition, we picked
20 more models from the training set that have the highest distance from ’normal
cars’ and added them to the test set. Those are referred to as ’difficult test cars’.
Example models from the test set and their corresponding nearest neighbors
from the training set are shown in Figure 3. For chairs we picked three clusters
as the test set comprising a total of 136 models.

4 Experimental evaluation

Network training details We used Tensorflow [27] for training the networks.
The objective was optimized using the Adam method [28] with β1 = 0.9 and
β2 = 0.999. We initialized the weights of our network by sampling a Gaussian
with corrected variance as described in [29]. The learning rate was equal to
0.0001.

We did not perform data augmentation, as we observed that it does not
result in better generalization but leads to slower convergence. It seems there is
already enough variation in the training data.

4.1 Unseen view prediction

We trained the networks to generate previously unseen views of objects from a
single input image, therefore this is the first task we test on. Exemplary results
for cars are shown in Figure 4. The network predicts the desired view for both
normal and difficult (top right) cars, without (top row) and with (bottom row)
background. The shape and the color of the car are always correctly estimated.
Predictions for the difficult car are more blurry, since this car is dissimilar from
models the network has been trained on.

Compared to the ground truth, the predictions are slightly blurry and lack
some details. Apart from the fact that the problem is heavily ill-posed, this is
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Fig. 4. Predictions of the network (top row for each model) and the corresponding
ground truth images (bottom row for each model). The input to the network is in the
leftmost column for each model. The top right model is a ”difficult” car.

Fig. 5. Depth map predictions (top row) and the corresponding ground truth
(bottom row). The network correctly estimates the shape.

likely to be a consequence of using squared Euclidean error as the loss func-
tion: if the network is uncertain about the prediction, it averages over potential
images, resulting in blur. This could be mitigated for example by adversarial
training, first proposed by Goodfellow et al. [30]. We experimented in this di-
rection (see supplementary material for details), and indeed the images become
slightly sharper, but at the cost of introduced noise, artifacts and very sensitive
training. Therefore, we stick with the squared Euclidean loss.

Comparison with a nearest neighbor baseline We compare the network
with a simple nearest neighbor (NN) baseline approach. We maximally simplify
the task for the baseline approach: unlike the network it knows the input im-
age viewpoint and there is no background. Given an input image with known
viewpoint, the baseline searches the training set for the model which looks most
similar from this viewpoint according to some metric. The prediction is simply
the rendering of this model from the desired viewpoint. We tried three different
metrics for the NN search: Euclidean distance in RGB space, Euclidean distance
in HOG space, and a weighted combination of these.
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Color Depth

Normal Difficult Normal Difficult

NN HOG 0.028 0.039 0.0058 0.0225

NN HOG+RGB 0.020 0.036 0.0058 0.0221

NN RGB 0.018 0.034 0.0064 0.0265

Network 0.013 0.028 0.0057 0.0207

Table 1. Average error of predicted unseen views with our network and with the
nearest neighbor baseline.

Table 1 reports average errors between the ground truth images and the
predictions generated either with the baseline method or with our network. The
error measure is Euclidean distance between the pixel values, averaged over the
number of pixels in the image, the number of input and output viewpoints, the
number of models and the maximum per pixel distance (443.4 for RGB and
65535 for depth). We separately show results for normal and difficult cars.

The network outperforms the baselines on both tasks, even though it is not
given the input viewpoint. NN search can yield cars that look alike from the
input view but may be very different when viewed from another angle. The
network, in contrast, learns to find subtle cues which help to infer the 3D model.
Another clear disadvantage of the NN search is that it can only return what is in
the dataset, whereas the network can recombine the information of the training
set to create new images.

Comparison with existing work We compared our results to several existing
deep learning approaches that generate unseen views of images.

Except for a comparison to Dosovitskiy et al. [12], for which code was avail-
able, all comparisons are only on a qualitative basis. There are two reasons:
first, there was no code to run other existing methods. Second, it is unclear
which quantitative measure would be best to judge the quality of generated im-
ages. The best quantitative experiment would be a study with human observers,
who have to assess which images look better. Since the differences in the quality
of the results is mostly so obvious that quantitative numbers would not provide
additional information, the lack of code is not a problem.

In order to compare with the Inverse Graphics Network (IGN) of Kulkarni
et al. [8] we selected from our test set chair models similar to those Kulkarni
et al. used for testing and showed in their paper. We also used the same input
viewpoint. The results are shown in Figure 6. In all cases our network generates
much more accurate predictions. Unlike IGN, it always predicts the correct view
and generates visually realistic and detailed images. It captures fine details like
bent legs in the top example or armrests in the second example.

We also compared to Dosovitskiy et al. [12]. This approach allows the pre-
diction of all views of a chair model given only a single view during training.
However, 1) it requires several days of training to be able to predict unseen
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Fig. 6. Our results (black background)
compared with those from IGN [8]
(white background) on similar chair
models. The leftmost image in each row
is the input to the network. In all cases
our results are much better.

Fig. 7. Comparison of our approach
(top row for each model) with novel
view prediction results from Dosovit-
skiy et al. [12] (bottom row for each
model). The estimates of our network
are more accurate and consistent, and
it does not require re-training for each
new model.

views of a new chair and 2) it is not explicitly trained to predict these unseen
views, so there is no guarantee that the predictions would be good. We used the
code provided by the authors to perform comparisons shown in Figure 7. For
each model the top row shows our predictions and the bottom row those from
Dosovitskiy et al. While in simple cases the results look qualitatively similar (top
example), our approach better models the details of the chair style (chair legs
in the bottom example). This is supported by the numbers: the average error of
the images predicted by our network is 0.0208 on the chairs dataset, whereas the
network of Dosovitskiy et al. has an average error of 0.0308. The error measure
is the same as in the baseline comparison.

Finally, we qualitatively compared our results with the recent work of Yang et
al. [14]. Here we show the results on cars, which we found to be more challenging
than chairs. Figure 8 shows predictions by Yang et al. (top row for each model)
and our work (bottom row for each model). For both models the leftmost column
shows the input image. We picked the cars from our dataset that most resemble
the cars depicted in Yang et al. [14]. Since images generated by their method are
64× 64 pixels, we downsampled our results to this resolution to make the visual
comparison fair. Our predictions look much more realistic and significantly less
blurred. The method of Yang et al. occasionally averages several viewpoints (for
example, the third column from the left for the top model in Figure 8), while
our method always generates sharp images as seen from the desired viewpoint.

Natural input images To verify the generalization properties of our network,
we fed it with images of real cars downsampled to the size of 128×128 pixels. The
results are shown in Figure 9 . We do not have ground truth for these images
so only the output of the network is shown. The quality of the predictions is
slightly worse than for the (synthetic) test cars. The reasons may be complicated
reflections and camera models different from ones we used for rendering. Still,
the network estimates the shape and the color well.
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Fig. 8. Predictions from Yang et al. [14] (top row for each model) compared to our
predictions (bottom row for each model) on similar car models. The leftmost image in
each row is the input to the network. Our network generates more realistic and less
blurred images.

Fig. 9. Network predictions for natural input images. The net correctly estimates the
shape and color.

We observed that the realistic rendering procedure we implemented is impor-
tant for generalization to real images. We show in the supplementary material
that simpler rendering leads to complete failure on real data.

We emphasize that this is the first time neural networks are shown to be
able to infer 3D representations of objects from real images. Interesting avenues
of future research include deeper study of the network’s performance on real
images, as well as joint training on synthetic and real data and applications of
transfer learning techniques. However, these are beyond the scope of this paper.

4.2 3D model prediction

We verified to which extent the predicted depth maps can be used to reconstruct
full 3D surfaces. Figure 5 shows two exemplary depth maps generated by our
network together with the corresponding ground truth. The overall quality is
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Fig. 10. 3D model reconstructions of a ”normal” (left) and a ”difficult” (right) car.

similar to that of predicted images: the shape is captured correctly while some
fine details are missing.

In Figure 10 we show 3D models obtained by fusing 6 predicted depth maps
(θel = 20◦, θaz = {0◦, 60◦, 120◦, 180◦, 240◦, 300◦}). Already the raw point clouds
represent the shape and the color well, even for the ”difficult” model (right).
Dense depth map fusion removes the noise and a smooth surfaces, yet also de-
stroys some more details due to the regularizer involved. For more results on 3D
models we refer to the video in the supplemental material.

4.3 Analysis of the network

Viewpoint dependency Since the prediction task is ambiguous, the quality
of predictions depends on how informative the input image is with regard to the
desired output view. For our network we can observe this tendency, as shown
in Figure 11 . If the input viewpoint reveals much about the shape of the car,
such as the side-view input, the generated images match the ground truth quite
well. In case of less informative input, such as the front-view input, the network
has to do more guesswork and resorts to predicting the most probable answer.
However, even if the input image is weakly informative, all the predicted views
correspond to a consistent 3D shape, indicating that the network first extracts a
3D representation from the image and then renders it from different viewpoints.

In Figure 12 we quantify the prediction quality depending on the input and
output views. The matrix shows the Euclidean distance between the generated
and ground truth images for different input (y-axis) and output views (x-axis)
averaged over the whole test set. Each column is normalized by its sum to com-
pensate for different numbers of object pixels in different views. Several interest-
ing patterns can be observed. The prediction task gets harder if the input view
is very different from the output view, especially if the input elevation is small:
top right and bottom left corners of the matrix are higher than the rest. Local
patterns show that for each elevation it is easier to predict images with the same
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Fig. 11. The more informative the in-
put view is, the better the network
can estimate the ground truth image.
For uninformative inputs it simply in-
vents some model which is still inter-
nally consistent.

Fig. 12. Distance from ground truth
for different input and output views.
Shown are all combinations of elevation
(E) and azimuth (A) angles with a 30◦

step. It is harder to predict views that
are significantly different from the in-
put.

or similar azimuth angles. Diagonal blue stripes show that it is easier to predict
similar or symmetric views.

Object interpolation The hidden object representation extracted by the net-
work is not directly interpretable. One way to understand it is to modify it and
see how this affects the generated image. In the experiment shown in Figure 13,
we encoded two extremely different models (a car and a bus) into feature vectors
fcar and fbus, linearly interpolated between these fint = αfcar + (1 − α)fbus,
and decoded the resulting feature vectors. We also tried extrapolation, that is,
α < 0 and α > 1.

The first and most important observation is that all generated views form
consistent shapes, which strongly indicates that the interpolation modifies the
3D representation, which is then rendered from the desired viewpoint. Second,
extrapolation also works well, exaggerating the ’carness’ or the ’busness’ of the
models. Third, we observed that the morphing is not uniform: there is not much
happening for α values close to 0 and 1, most of the changes can be seen when
α is around 0.5.

Internal representation In order to study the properties of the internal rep-
resentation of the network, we ran the t-SNE embedding algorithm [31] on the
1024-dimensional vectors computed for a random subset of models from the
training set with fixed viewpoint. t-SNE projects high-dimensional samples to a
2D space such that similar samples are placed close to one another. The results
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Fig. 13. Morphing a car into a bus by interpolating between the feature representations
of those two models. All the intermediate models are consistent.

Fig. 14. t-SNE embedding in latent 1024-dimensional space. Cars are grouped accord-
ing to their shape and color.

of this experiment are shown in Figure 14. Both shape and color are important,
but shape seems to have more weight: similar shapes end up close in the 2D
space and are sorted by color within the resulting groups.

In Section 3 of the supplementary material we also show that different input
views of the same object lead to very similar intermediate representations.

5 Conclusions

We have presented a feed-forward network that learns implicit 3D representa-
tions when being trained on the task to generate new views from a single input
image. Apart from rendering any desired view of an object, the network allows
us to also generate a point cloud and a surface mesh. Although the network was
trained only on synthetic data, it can also take natural images as input. Clearly,
natural images are harder for the network since the training data does not yet
fully model all variations that appear in such images. In future work we will
investigate ways to improve the training set either by more realistic renderings
or by ways to mix in real images.
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