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Abstract—Robust semantic scene understanding of unstruc-
tured environments is critical for robots operating in the real
world. Several inherent natural factors such as shadows, glare
and snow make this problem highly challenging, especially using
RGB images. In this paper, we propose the use of multispectral
and multimodal images to increase robustness of segmentation
in real-world outdoor environments. Deep Convolutional Neural
Network (DCNN) architectures define the state of the art in
various segmentation tasks, however, architectures that incorpo-
rate fusion has not been sufficiently explored. We explore early
and late fusion architectures for dense pixel-wise segmentation
from RGB, Near-InfraRed (NIR) channels, and depth data. We
identify data augmentation strategies that enable training of
very deep fusion models using small datasets. We qualitatively
and quantitatively evaluate our approach and show it exceeds
several other state of the art architectures. In addition, we
present experimental results for segmentation under challenging
real-world conditions. Demo and dataset is publicly available at
http://deepscene.cs.uni-freiburg.de.

I. INTRODUCTION

Semantic scene understanding is a cornerstone for au-
tonomous robot navigation in real-world environments. Thus
far, most research on semantic scene understanding has been
focused on structured environments, such as urban road scenes
and indoor environments, where the objects in the scene
are rigid and have distinct geometric properties. During the
DARPA grand challenge, several techniques were developed
for offroad perception using both cameras and lasers [20].
However, for navigation in unstructured outdoor environments
such as forests, robots must make more complex decisions. In
particular, there are obstacles that the robot can drive over,
such as tall grass or bushes, but these must be distinguished
safely from obstacles that the robot must avoid, such as
boulders or tree trunks.

In forested environments, one can exploit the presence of
chlorophyll in certain obstacles as a way to discern which
obstacles can be driven over [3]. However, the caveat is the
reliable detection of chlorophyll using monocular cameras.
This detection can be enhanced by additionally using the NIR
wavelength (0.7 − 1.1µm), which provides a high fidelity
description on the presence of vegetation. Potentially, NIR im-
ages can also enhance border accuracy and visual quality. We
aim to explore the correlation and de-correlation of visible and
NIR images frequencies to extract more accurate information
about the scene.

Fusion of multiple modalities and spectra has not been
sufficiently explored in the context of semantic segmentation.
We can classify fusion strategies into early and late fusion
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Fig. 1. Two examples of segmentation in extreme lightning conditions. First
row in presence of poor illumination and corresponding segmentation mask.
The second row shows a scene in presence of saturation and how our approach
successfully segments it.

approaches. Each of these approaches have their own ben-
efits and drawbacks. Early fusion consists of providing the
multiple modalities of sensors in the network’s input and let
the training adjust these modalities to better segmentation.
The major benefit of early fusion is minimal computational
burden. Late fusion approaches train each sensor in a dedicated
network and later fuse the output of such networks in a
combined prediction. This methods can potentially learn better
specific complementary features and may yield a more robust
segmentation.

In this paper, we address this problem by leveraging deep
up-convolutional neural networks and techniques developed
in the field of photogrammetry using multispectral cameras
to obtain a robust pixel-accurate segmentation of the scene.
Specifically, this paper presents the following contributions:

• Introduce a first-of-a-kind multispectral and multimodal
segmentation dataset.

• Extensive evaluation of early and late fusion segmentation
approaches.

• Developed an inexpensive system to capture RGB, NIR,
and depth data using two monocular cameras.

We first evaluate the segmentation using our UpNet archi-
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Fig. 2. Depiction of our UpNet architecture. Up-convolutional layers have size C × Ncl, where Ncl is the number of classes and C is a scalar factor of
filter augmentations. The contractive segment of the network contain convolution and pooling layers, while the expansive segment of the network contain
upsampling and convolution layers.

tecture, individually trained on various spectra and modalities
contained in our dataset, then identify the best performing
modalities and fuse them using various DCNN fusion architec-
ture configurations. We show that the fused result outperforms
segmentation using only RGB data.

The rest of the paper is organized as follows. We first
review the related work in Section II and describe our network
architectures in Section III. We detail our data collection
methodology in Section IV and the results from our exper-
iments in Section V. Finally, in Section VI we discuss the
conclusions and future work.

II. RELATED WORKS

Recently deep learning approaches have achieved state of
the art performance in semantic segmentation. Such techniques
perform segmentation on the whole image and are capable
of end-to-end learning [13, 15, 12, 1]. Long et al. [13]
proposed the so-called fully convolutional network (FCN)
which is one of the first attempts that use previous layers
for refining the segmentation. FCNs do not require any pre
or post-processing methods and allow the network to refine
the coarse segmentation mask to the same resolution of the
input. Oliveira et al. [15] applied a similar approach to human
part segmentation and proposed improvements with regard to
segmentation of occluded parts, over-fitting and data augmen-
tation strategies. Liu et al. [12] propose a FCN called ParseNet
which models global context directly, such approaches have
also demonstrated near state-of-the-art results. Kendall et al.
[1] proposed a variation of the FCN architecture focusing on
increasing the performance. The main contribution resides on
the use of the pooling indices computed in the max-pooling
step to perform upsampling. This approach eliminates the need
for learning to upsample and reduces the systems memory
requirement. However, approaches such as UpNet [15] and
ParseNet [12] achieve better performance.

Although there are numerous traditional learning ap-
proaches relating to recognition from RGB-D data, there are
limited amount of DCNN approaches that have explored the
use of multiple modalities or spectra. Eitel et al. [4] proposed
a late-fusion approach that employ two streams of DCNNs
which are first individually trained to classify using a certain
modality, and a stack of inner product layers are used in the
end to fuse features from both networks. They fuse an RGB
image and a colorized depth image for object recognition
applications. In a similar approach [18], the authors use a pre-
trained two stream ImageNet network for object recognition
from RGB-D images. Bo et al. [2] proposed an approach called
hierarchical matching pursuit, which uses hierarchical spare
coding to learn features from multimodal data. In [16], the au-
thors use recurrent neural networks to combine convolutional
filters for object classification from RGB-D data. A popular
HHA encoding scheme was introduced in [7] where a CNN
trained on RGB images is first used to extract features from
depth data and the information is encoded into three channels.
For each pixel they encode the height above the ground, the
horizontal disparity and the pixelwise angle between a surface
normal and the gravity.

In contrast to these multimodal object recognition ap-
proaches, we employ a late-fused convolution technique to
learn highly discriminative features even after the fusion, for
semantic segmentation. To the best of our knowledge this is
the first work to explore both multimodal and multispectral
images for end-to-end semantic segmentation.

III. TECHNICAL APPROACH

In this section we first describe our base network architec-
ture for segmenting unimodal images and then explore fusion
architectures that learn from multimodal and multispectral
images. We represent the training set as S = {(Xn, Yn), n =
1, . . . , N}, where Xn = {xj , j = 1, . . . , |Xn|} denotes



the raw image, Yn = {yi, j = 1, . . . , |Xn|}, yj ∈ {0, C}
denotes the corresponding groundtruth mask with C classes,
θ are the parameters of the network and f(xj ; θ) is the
activation function. The goal of our network is to learn features
by minimizing the cross-entropy (softmax) loss that can
be computed as L(u, y) = −

∑
k

ykloguk. Using stochastic

gradient decent, we then solve

argmin
θ

N∑
i=1

L((f(xi; θ)), yi). (1)

Our UpNet architecture has a similar form as that of
the recently proposed fully convolutional neural networks
[13, 15]. The architecture follows this general principle of
being composed of two main components, a contraction seg-
ment and an expansion segment. Given an input image, the
contraction segment generates a low resolution segmentation
mask. We use the 13-layer VGG [19] architecture as basis for
this contraction segment and initialize the layer parameters
from the pretrained VGG network. The expansion segment
consists of five up-convolutional refinement layers that refine
the coarse segmentation masks generated by the contraction
segment. Each up-convolutional refinement is composed of
one up-sampling layer followed by a convolution layer. We
add a rectified linear unit (ReLU) after each up-convolutional
refinement. To avoid overfitting, we use dropout after the first
refinement layer. The base UpNet architecture is shown in
figure 2.

The inner-product layers of the VGG-16 architecture has
4096 filters of 7x7 size, which is primarily responsible for
relatively slow classification times. We reduce the number
of filters to 1024 and the filter size to 3x3 to accelerate
the network. There was no noticeable performance drop
due to this change. The architecture in [15] has a one-to-
one mapping between the number of filters and classes in
expansion segment. However, the recently proposed U-nets
[17] architecture has demonstrated improved performance by
having variable number of filters as in the contraction segment.
We experimented with this relationship and now use a C×Ncl
mapping scheme, where C is a scalar constant and Ncl is the
number of classes in the dataset. This makes the network learn
more feature maps per class and hence increases the efficiency
in the expansion segment. In the last layer we use the number
of filters as Ncl in order to calculate the loss only over the
useful classes.

We use a multi-stage training techinique to train our model.
We use the Xavier [6] weight initialization for the convolution
layers and a bilinear weight initialization for the deconvolution
layers. We train our network with a initial learning rate λ0 of
10−9 and with the poly learning rate policy as

λn = λ0 ×
(
1−N
Nmax

)c
(2)

where λn is the current learning rate, N is the iteration
number, Nmax is the maximum number of iterations and c

is the power. We train the network using stochastic gradient
decent (SGD) with a momentum of 0.9 for 300, 000 iterations
for each refinement stage. We train our segmentation network
individually on RGB, NIR and depth data, as well as on
various combinations of these spectra and modalities, as shown
in section V. To provide a more informative and sharper
segmentation, we introduce two strategies to make the network
learn the integration of multiple spectra and modalities:
• Channel Stacking: The most intuitive paradigm of fusing

data using DCNNs is by stacking them into multiple
channels and learning combined features end-to-end.
However, previous efforts have been unsuccessful due to
the difficulty in propagating gradients through the entire
length of the model [13].

• Late-Fused-Convolution: In the late-fused-convolution
approach, each model is first learned to segment using a
specific spectrum/modality. Afterwards, the feature maps
are summed up element-wise before a series of convolu-
tion, pooling and up-convolution layers. This approach
has the advantage as features in each model may be
good at classifying a specific class and combining them
may yield a better throughput, even though it necessitates
heavy parameter tuning.

Our experiments provide an in-depth analysis of the advan-
tages and disadvantages of each of these approaches in the
context of semantic segmentation.

IV. DATA COLLECTION

As there existing datasets are not available with RGB, NIR
and depth data, we extensively gathered data using our Viona
autonomous mobile robot platform. The platform shown in
figure 3 is equipped with a Bumblebee2 stereo vision camera
and a modified dashcam with the NIR-cut filter removed
for acquiring RGB and NIR images respectively. We use
a Wratten 25A filter in the dashcam to capture the NIR
wavelength in the blue and green channels. Both cameras
are software time synchronized and frames were captured at
20Hz. In order to match the images captured by both cameras,
we first compute SIFT [14] correspondences between the
images using the Difference-of-Gaussian detector to provide
similarity-invariance and then filter the detected keypoints with
the nearest neighbours test, followed by requiring consistency
between the matches with respect to an affine transforma-
tion. The matches are further filtered using Random Sample
Consensus (RANSAC) [5] and the transformation is estimated
using the Moving Least Squares method by rendering through
a mesh of triangles. We then transform the RGB image with
respect to the NIR image and crop to the intersecting regions
of interest. Although our implementation uses two cameras,
it is the most cost-effective solution compared to commercial
single multispectral cameras.

We collected data on three different days to have enough
variability in lighting conditions as shadows and sun angles
play a crucial role in the quality of acquired images. Our
raw dataset contains over 15, 000 images sub-sampled at 1Hz,
which corresponds to traversing about 4.7km each day. Our



Fig. 3. The Viona autonomous mobile robot platform equipped with
bumblebee stereo cameras and a modified dashcam with the NIR-cut filter
removed.

benchmark contains 325 images with pixel level groundtruth
annotations which were manually annotated. As there is an
abundant presence of vegetation in our environment, we can
compute global-based vegetation indices such as Normalized
Difference Vegetation Index (NDVI) and Enhanced Vegetation
Index (EVI) to extract consistent spatial and global infor-
mation. NDVI is resistant to noise caused due to changing
sun angles, topography and shadows but is susceptible to
error due to variable atmospheric and canopy background
conditions [9]. EVI was proposed to compensate for these
defects with improved sensitivity to high biomass regions and
improved detection though decoupling of canopy background
signal and reduction in atmospheric influences. For all the
images in our dataset, we calculate NDVI as

NDV I =
ρnir − ρred
ρnir + ρred

(3)

where ρnir is the reflectance at the NIR wavelength
(0.7− 1.1µm) and ρred is the reflectance at the red wave-
length (0.6− 0.7µm). EVI can be computed as

EV I = G× ρnir − ρred
ρnir + (C1 × ρred − C2 × ρblue) + L

(4)

where ρblue is the reflectance at the blue wavelength
(0.45− 0.52µm), G is the gain factor, L is a soil adjustment
factor, C1 and C2 are coefficients used to correct for aerosol
scattering in the red band by the use of the blue band.

Although our dataset contains images from the Bumblebee
stereo pair, the processed disparity images were substantially
noisy due to several factors such as rectification artifacts,
motion blur, etc. We compared the results from semi-global
matching [8] to a DCNN approach that predicts depth from
single images and found that for an unstructured environment
such as ours, the DCNN approach gave better results. In our
work, we use the approach from Liu et. al, [11] that employs
a deep convolutional neural field model for depth estimation
by constructing unary and pairwise potentials of conditional
random fields. Let an image x model the conditional proba-

bility of n superpixels of depth y = [y1, . . . , yn] ∈ Rn by the
density function

Pr(y|x) = 1

Z(x)
exp(−E(y, x)) (5)

where E is the energy function and Z is the partition
function. The energy function is given as a combination of
unary potentials V over the superpixels in N and edges S in
x.

E(x, y) =
∑
p∈N

U(yp, x) +
∑

(p,q)∈S

V (yp, yq, x) (6)

Z(s) =

∫
y

exp(−E(y, x))dy (7)

A unified DCNN framework learns the value of U and V .
The network is composed of a unary component, a pairwise
component and CRF loss layer. The unary component is
consists of a CNN that regresses depth values of superpixels,
while the pairwise component outputs a a vector containing the
similarities for each of the neighbouring superpixels. The CRF
loss layer minimizes the negative log likelihood by taking the
outputs of the unary and pairwise components. The depth of
the new image is predicted by solving the maximum posteriori
inference problem.

y∗ = argmax
y

Pr(y|x) (8)

For our prediction we use the network pretrained on the
Make3D dataset. Fig. 4 shows some examples from our
benchmark from each spectrum and modality.

(a) RGB (b) NIR

(c) NDVI (d) NRG

(e) EVI (f) DEPTH
Fig. 4. Sample images from our dataset showing various spectra and
modalities.



V. EXPERIMENTAL RESULTS

We use the Caffe [10] deep learning framework for the
DCNN implementation and ROS for capturing and synchro-
nizing the images. Training our network on a NVIDIA Titan
X GPU took about 7 days.

A. Baseline Comparison

To compare with the state-of-the-art, we train models using
the RGB RSC set from our dataset which contains 60, 900
RGB images with Rotation, Scale and Color augmentations
applied. We selected the baseline networks by choosing the top
three end-to-end deep learning approaches from the PASCAL
VOC 2012 leaderboard. We explored the parameter space to
achieve the best baseline performance. We found the poly
learning rate policy to converge much faster and yield a slight
improvement in performance. The metrics shown in Tab. I
correspond to Mean Intersection over Union (IoU), Mean Pixel
Accuracy (PA), Precision (PRE), Recall (REC), False Positive
Rate (FPR), False Negative Rate (FNR).

TABLE I
PERFORMANCE OF OUR PROPOSED MODEL IN COMPARISON TO THE

STATE-OF-THE-ART

Baseline IoU PA PRE REC FPR FNR

FCN-8 [13] 77.46 90.95 87.38 85.97 10.32 12.12
SegNet [1] 74.81 88.47 84.63 86.39 13.53 11.65
ParseNet [12] 83.65 93.43 90.07 91.57 8.94 7.41

Ours Fixed lr 84.90 94.47 91.16 91.86 7.80 7.40
Ours Poly lr 85.31 94.47 91.54 91.91 7.40 7.30

Figure 5 shows the forward pass time comparisons of
our network and other state-of-the-art models. The results
demonstrate that our network outperforms all the state-of-the-
art approaches and with a runtime of almost twice as fast as
the second best technique.
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Fig. 5. Comparison of forward pass times with various state-of-the-art
networks.

B. Parameter Estimation

To increase the effective number of training samples, we
employ data augmentations including scaling, rotation, color,
mirroring, cropping, vignetting, skewing, and horizontal flip-
ping. We evaluated the effect of augmentation using three
different subsets in our benchmark: RSC (Rotation, Scale,
Color), Geometric augmentation (Rotation, Scale, Mirroring,
Cropping, Skewing, Flipping) and all aforementioned augmen-
tations together. Tab. II shows the results from these experi-
ments. Data augmentation helps train very large networks on
small datasets. However, on the present dataset it has a smaller
impact on performance than on PASCAL VOC or human body
part segmentation [15]. In our network, we replace the dropout
in the VGG architecture with spatial dropout which gives
us an improvement of 5.7%. Furthermore, we initialize the
convolution layers in the expansion part of the network with
Xavier initialization, which makes the convergence faster and
also enables us to use a higher learning rate. This yields a 1%
improvement.

TABLE II
COMPARISON ON THE EFFECTS OF AUGMENTATION ON OUR BENCHMARK.

Sky Trail Grass Veg Obst IoU PA

ParseNet 87.78 81.82 85.20 88.70 46.51 83.65 93.43
Ours Aug.RSC 90.46 84.51 86.72 90.66 44.39 84.90 94.47
Ours Aug.Geo 89.60 84.47 86.03 90.40 42.23 84.39 94.15
Ours Aug.All 90.39 85.03 86.78 90.90 45.31 85.30 94.51

Scaling scales the image by a factor between 0.7 and 1.4.
Rotation is applied with a up to 30 degrees range clockwise
and anti-clockwise. Color augmentation is performed adding
a value between −0.1 and 0.1 to the hue value channel of
the HSV representation. Cropping provides C different crops,
C/2 crops at the original image and C/2 crops with images
horizontally flipped. The Skewing augmentation is calculated
with a value ranging from 0 to 0.1. The final augmentation
performs vignetting with a scale ranging from 0.1 and 0.6.

C. Comparison of Fusion Approaches

In this section, we report results on segmentation using indi-
vidual spectrum and modalities, namely RGB, NIR, depth, and
fusion with its combinations. Segmentation using RGB yields
best results among all the individual spectra and modalities we
experimented with. The low representational power of depth
images causes poor performance in the grass, vegetation and
trail classes, bringing down the mean IoU. The results in
Tab. III demonstrate the need for fusion. Multispectrum chan-
nel fusion such as NRG (Near-Infrared, Red, Green) shows
greater performance when compared to their individual coun-
terparts and better recognition of obstacles. The best channel
fusion we obtained was using a three channel input, composed
of grayscaled RGB, NIR and depth data. It achieved an IoU of
86.35% and most importantly a considerable gain (over 13%)
on the obstacle class, which is the hardest to segment in our
benchmark. Figure 6 presents the input grayscale RGB, NIR



TABLE III
COMPARISON OF DEEP MULTISPECTRUM AND MULTIMODAL FUSION APPROACHES. D, N, E REFER TO DEPTH, NIR AND EVI RESPECTIVELY. CF AND

LFC REFER CHANNEL FUSION AND LATE-FUSED-CONVOLUTION.

Sky Trail Grass Veg Obst IoU FPR FNR

RGB 90.46 84.51 86.72 90.66 44.39 84.90 7.80 7.40
NIR 86.08 75.57 81.44 87.05 42.61 80.22 10.22 9.60
DEPTH 88.24 66.47 73.35 83.13 46.13 76.10 12.76 11.14

NRG 89.88 85.08 86.27 90.55 47.56 85.23 7.70 7.10
EVI 88.00 83.40 84.59 87.68 44.9 83.25 8.70 8.10
NDVI 87.79 83.86 83.57 87.45 48.19 83.39 8.62 8.00
3CF RGB-N-D 89.23 85.86 86.08 90.32 61.68 86.35 7.50 6.20
4CF RGB-N 89.64 83.37 85.83 90.67 59.85 85.79 7.00 7.20
5CF RGB-N-D 89.40 84.30 85.84 89.40 60.62 86.00 7.20 6.80

LFC RGB-N 90.67 83.31 86.19 90.30 58.82 85.94 7.50 6.56
LFC RGB-D 90.21 79.14 83.46 88.67 57.73 84.04 9.40 6.55
LFC RGB-E 90.92 85.75 87.03 90.50 59.44 86.90 7.00 5.76
LFC NRG-D 90.34 80.64 84.81 89.08 56.60 84.77 7.58 7.65

(a) RGB-NIR-D (b) Grass (c) Road

(d) Vegetation (e) Sky (f) Obstacle
Fig. 6. Activation maps for various classes from the last layer of our channel-
stacking fusion network. Figure (a) shows our channel-stacked input consisting
of RGB, NIR and DEPTH data. Figures (b), (c), (d), (e) and (f) shows the
activation maps for each of the classes in our dataset. High activations are
shown in red and low activations as shown in blue.

and depth image and the equivalent activation maps. These
maps correspond to the specific activations of the network
to each class. As can be seen the network correctly presents
high values, shown in red, to the correct classes. Additionally
the channel fusion architecture only requires 15ms more per
forward pass when compared to the RGB version. While an
efficient approach the overall best performance was obtained
with the late-fused-convolution of RGB and EVI, achieving a
mean IoU of 86.9% and comparably top results in individual
class IoUs as well. This approach also had the lowest false
positive and false negative rates.

1) Qualitative Evaluation: We performed a series of stress
testing experiments in a variety of weather conditions to
evaluate the robustness of our approach in real-world envi-
ronments. Specifically, we collected an additional dataset in
a previously unseen place in low lighting, extreme shadows
and snow. Fig. 7 shows some qualitative results from this

subset. It can be seen that each of the spectra performs well in
different conditions. Segmentation using RGB images shows
remarkable detail, although being easily susceptible to lighting
changes. NIR images on the other hand show robustness to
lighting changes but often show false positives between the sky
and trail classes. EVI images are good at detecting vegetation
but show a large amount of false positives for the sky.

VI. CONCLUSIONS

We presented a deep architecture for semantic segmentation
of outdoor environments. Our network outperformed several
state-of-the-art architectures for segmentation using a single
modality or spectra. We compared the performance of two
deep architectures for fusion of multiple modalities and spec-
tra. Our late-fused convolution approach outperforms channel
stacking achieving the lowest false detections. The results fur-
ther demonstrate our hypothesis of fusing the NIR wavelength
with RGB to obtain robust segmentation unstructured outdoor
environments.

Future work will include extending our late-fused convolu-
tion network. Currently the network only has one convolution
layer after the fusion, adding a pooling and up-convolution
layer would introduce more invariance and discriminability
to the filters learned after the fusion. Recently adaptive fu-
sion strategies demonstrated improved performance for fusing
multiple modalities for detection tasks, however they have
not been explored in the context of semantic segmentation.
It would be of interest to evaluate such architectures in
comparison to channel stacking and late-fused convolution.
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