
Noname manuscript No.
(will be inserted by the editor)

Techniques for Gradient Based
Bilevel Optimization with
Nonsmooth Lower Level Problems

Peter Ochs · René Ranftl ·
Thomas Brox · Thomas Pock

Received: date / Accepted: date

Abstract We propose techniques for approximating

bilevel optimization problems with non-smooth and non-

unique lower level problems. The key is the substitution

of the lower level minimization problem with an itera-

tive algorithm that is guaranteed to converge to a min-

imizer of the problem. Using suitable non-linear prox-

imal distance functions, the update mappings of such

an iterative algorithm can be differentiable, notwith-

standing the fact that the minimization problem is non-

smooth. This technique for smoothly approximating the

solution map of the lower level problem raises several

questions that are discussed in this paper.

P. Ochs
Mathematical Image Analysis Group
University of Saarland, Germany
E-mail: ochs@mia.uni-saarland.de

R. Ranftl
Visual Computing Lab
Intel Labs, Santa Clara, CA, United States
E-mail: rene.ranftl@intel.com

T. Brox and P. Ochs
Computer Vision Group
University of Freiburg, Germany
E-mail: {ochs,brox}@cs.uni-freiburg.de

T. Pock
Institute for Computer Graphics and Vision
Graz University of Technology, Austria
and
Digital Safety & Security Department
AIT Austrian Institute of Technology GmbH
1220 Vienna, Austria
E-mail: pock@icg.tugraz.at

1 Introduction

We consider numerical methods for solving bilevel op-

timization problems of the form

min
ϑ
L(x∗(ϑ), ϑ)

s.t. x∗(ϑ) ∈ arg min
x∈RN

E(x, ϑ) ,
(1)

where L is a function penalizing the differences between

the output of the lower level problem x∗(ϑ) and some

given ground truth data. In addition, L can also contain

a regularizer on the parameter vector ϑ, e.g. a sparsity

prior. The mapping x∗(ϑ) is the solution of an opti-

mization problem (parametrized by ϑ).

In the context of game theory and often also in the

general bilevel literature, the bilevel optimization prob-
lem is represented as a leader–follower problem. The

leader (upper level problem) tries to optimize the next

move (minimization of the upper level problem) under

consideration of the move of an opponent, the follower.

Given some information ϑ to the follower, the leader

tries to anticipate the follower’s next move (minimiza-

tion of the lower level problem).

In the context of machine learning or computer vi-

sion, bilevel problems can be seen as a formalization of

parameter learning problems. The objective of the up-

per level problem L is usually denoted loss function. It

invokes some prior assumptions to the parameter ϑ and

measures the discrepancy between the solution x∗(ϑ) of

an energy minimization problem for a given parameter

ϑ and some ground truth. The lower level problem cor-

responds to an energy model that solves a specific task,

e.g. multi-label segmentation.

In this paper, we focus on a class of problems that

allows for non-smooth, convex functions x 7→ E(x, ϑ)

in the lower level problem, e.g. sparse models based on

ar
X

iv
:1

60
2.

07
08

0v
1

 [
m

at
h.

O
C

]
 2

3
Fe

b
20

16

2 Peter Ochs et al.

−1 −0.5 0 0.5 1

0

0.2

0.4

0.6

0.8

1

ϑ

L
(x

∗
(ϑ

))

analytic

(a) Loss functions for (2).

−1 −0.5 0 0.5 1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

ϑ

L
(x

∗
(ϑ

),
ϑ
)

analytic

(b) Loss functions for (3).

Fig. 1 Problem in bilevel optimization problems containing
non-smooth lower level problems with multiple solutions.

the `1-norm. Such models have become very popular

in the computer vision, image processing and machine

learning communities since they are robust with respect

to noise and outliers in the input data.

Due to the possibly high dimensionality of the pa-

rameter vector, we pursue the minimization of the bilevel

problem (1) using gradient based methods. Hence, a

descent direction of L with respect to ϑ must be de-

termined. Its estimation involves the Jacobian of the

solution map x∗(ϑ) with respect to the parameter vec-

tor ϑ, which causes three kind of problems:

(i) The solution mapping x∗(ϑ) is defined implicitly (as

a minimizer of the lower level problem).

(ii) The solution of the lower level problem might have

multiple solutions.1

(iii) The lower level problem can be non-smooth and

hence, derivatives cannot be computed in the origi-

nal sense of smooth functions.

(i) In some cases, there is an explicit solution to

the lower problem (depending on the parameter ϑ).

Then (1) reduces to a single level problem and the to-

tal derivative dL/dϑ can be obtained by the standard

chain rule (assuming sufficient smoothness). However,

this is rarely possible. If there is no explicit solution, but

the lower level objective function is sufficiently smooth

in both arguments and the problem is unconstrained,

the lower level problem can be replaced by its optimal-

ity condition ∇xE(x, ϑ) = 0 with respect to x. Under

suitable conditions, the implicit function theorem (cf.

Section 5.1) provides an explicit formula for the deriva-

tive of x∗(ϑ) with respect to ϑ. However, this approach

is limited since most popular models are non-smooth,

and by smoothing these models often lose their nice

properties.

(ii) Let us briefly discuss the problems arising from a

lower level problem with non-unique solution. Consider

1 Note that the bilevel problem as in (1) is not well-defined
in this case. We discuss some details in Section 4.

the bilevel problem

min
ϑ∈R

(x∗(ϑ)− 1)2

s.t. x∗(ϑ) ∈ arg min
x∈[0,1]

ϑx ,
(2)

with lower level solution

x∗(ϑ) =


0, if ϑ > 0 ;

1, if ϑ < 0 ;

[0, 1], if ϑ = 0 ;

and

L(x∗(ϑ)) =


1, if ϑ > 0 ;

0, if ϑ < 0 ;

[0, 1], if ϑ = 0 .

The loss function is shown in Figure 1(a). The deriva-

tive of the loss function with respect to ϑ vanishes for

all ϑ 6= 0. Therefore a gradient based method will get

stuck almost everywhere. Similar situations will arise

also in high dimensional problems such as multi-label

segmentation. Since small changes in the input data

(pixel likelihoods) do not change the segmentation re-

sult, the energy landscape of the loss function will have

the form of a high dimensional step function. Any gra-

dient based method will be incapable of determining a

descent direction. This problem can be relaxed to some

extend by averaging many training examples but the

principal problem will not disappear. A similar situa-

tion is to be expected for robust models that, by def-

inition, are not affected by small perturbations of the

input data (or the parameter ϑ).

Another issue of a non-unique solution map x∗(ϑ)

is the non-existence of a solution for (1), which the fol-

lowing example demonstrates:

min
ϑ∈R

(x∗(ϑ)− 1)2 + ϑ2

s.t. x∗(ϑ) ∈ arg min
x∈[0,1]

ϑx .
(3)

The loss function is shown in Figure 1(b). In terms of

leader–follower, the problem becomes obvious when the

leader picks the wrong response from the follower. As-

sume for ϑ = 0, the leader anticipates x∗(ϑ) = 1
2 ∈

[0, 1]. Then, the solution of the leader’s problem does

not exist, because the leader’s optimization problem is

not lower semi-continuous at 0, and values of ϑ ap-

proaching 0 from the left decrease the value of L to-

wards 0, but L(1
2 , 0) > 0.

(iii) Due to the non-smoothness of the lower level

problem, standard calculus cannot be applied. In vari-

ational (non-smooth) analysis, there are many general-

izations of derivatives, such as the convex subdifferen-

tial, the Fréchet subdifferential, or the limiting subdif-

ferential, etc., and generalizations of the chain rule rely

Bilevel Optimization with Nonsmooth Lower Level Problems 3

on constraint qualifications that are sometimes quite

restrictive and often hard to verify.

In the conference version of this paper [29], we in-

troduced an approach to overcome the smoothness re-

striction in some cases of practical interest. The idea is

to replace the lower level problem by an iterative algo-

rithm that is guaranteed to converge to a solution of

the problem. If the update-mapping of the algorithm is

a smooth functions, the chain rule can be applied to the

composition of these update-mappings recursively and

the exact derivatives with respect to the parameter vec-

tor ϑ can be computed. Algorithms based on Bregman

distances are key for this development. The number of

iterations of the iterative algorithm steers the approxi-

mation quality to the lower level problem. We are going

to argue that the number of iterations can be seen as a

natural “smoothing parameter”.

The convergence analysis of the derivative of the al-

gorithm mapping for an increasing number of iterations

is quite challenging and mainly a theoretical issue. It is

left for future work. Thus, strictly speaking the pro-

posed approach is a heuristic.

From a practical point of view, most iterative al-

gorithms are stopped after performing a small number

of iterations. Once the number of iterations is fixed,

the resulting bilevel optimization problem—the lower

level problem is replaced by the algorithm—seeks for

an optimal ϑ for exactly the chosen algorithm with the

fixed number of iterations. Thus, the descent direction

is based on the derivative of the algorithm for which ϑ

is to be optimized. This is in contrast to an approach

based on the optimality condition of a smooth approx-

imation to the lower level problem. The descent direc-

tion is based on the derivative of the optimality condi-

tion evaluated at the minimum of the lower level prob-

lem, which can only approximately be determined. In

the end, the objective of the lower level problem (with

optimized parameter ϑ) is solved with a smaller number

of iterations in practice. Hence, there are two natural

sources of errors.

Beyond the analysis of the conference paper, we dis-

cuss approximations to the derivative evaluation that

reduce the memory requirements and the computational

cost significantly. We give some more details about the

general implementation of our approach. Moreover, we

consider the limiting case, i.e., the fixed point equation

of an iterative algorithm in the lower level problem.

We point out several applications of our approach

and evaluate it for a multi-label segmentation problem

that is coupled with a convolutional neural network.

−1 −0.5 0 0.5 1

0

0.2

0.4

0.6

0.8

1

ϑ

L
(x

∗
(ϑ

))

analytic
Log−Barrier 0.1000
Log−Barrier 0.0100
Log−Barrier 0.0010
xLog−Barrier 0.1000
xLog−Barrier 0.0100
xLog−Barrier 0.0010

(a)

−1 −0.5 0 0.5 1

0

0.2

0.4

0.6

0.8

1

ϑ

L
(x

∗
(ϑ

))

analytic
Euclidean 1
Euclidean 5
Euclidean 10
Euclidean 20
Euclidean 50
Bregman 1
Bregman 5
Bregman 10
Bregman 20
Bregman 50

(b)

Fig. 2 Approximations to (2) and (3) by adding a log barrier
to the lower level problem or by approximating the lower level
problem with an iterative algorithm.

2 Outline

In the related work section, we arrange our approach

in the general bilevel optimization literature, point out

connection to structured support vector machines, and

discuss applications in computer vision and machine

learning. Section 4 presents the details of the general

bilevel optimization problem that is addressed in this

paper. Section 5 is focused on the estimation of a de-

scent direction that can be used in gradient based al-

gorithms for solving the bilevel optimization problem.

The approach in Section 5.1 requires a smooth approxi-

mation of the lower level problem. To solve the problem

in (2), the technique in Section 5.1 can be applied, for

instance, to

x∗(ϑ) ∈ arg min
x∈R

ϑx− µ(log(x) + log(1− x))

or

x∗(ϑ) ∈ arg min
x∈R

ϑx+ µ(x log(x) + (1− x) log(1− x)) ,

where µ > 0 regulates the approximation quality of the

log-barriers. In Figure 2(a) the first is denoted Log-Bar-

rier and the latter xLog-Barrier. Since, both approx-

imations are sufficiently smooth in (−1, 1), derivatives

can be estimated using the implicit function theorem. In

contrast, our approach in Section 5.2 approximates the

lower level problem by forward–backward splitting with

Bregman proximity functions. In Figure 2(b) Bregman

shows this smooth approximation controlled by the num-

ber of iterations. In the limit, our smooth approxima-

tion solves a non-smooth optimization problem. Euclid-

ean in Figure 2(b) demonstrates that a Euclidean prox-

imity function results in a non-smooth approximation

of the lower level problem. Finally, in Section 5.3, we

consider the fixed point equation of an algorithm as a

substitute of the lower level problem.

In order to simplify the implementation, the ideas

from Section 5 are specialized to the forward–backward

4 Peter Ochs et al.

splitting algorithm and the Chambolle–Pock primal–

dual algorithm, both involving Bregman proximity func-

tions. Section 7 discusses details, examples, and appli-

cations of Bregman proximity functions and of the al-

gorithms introduced in Section 5.

The three approaches from Section 5 are analyzed

in a toy example in Section 8. In Section 9 a large scale

optimization problem with a multi-label segmentation

model parameterized by a convolutional neural network

is presented.

3 Related Work

We propose a simple approximation of the lower level

problem that naturally addresses non-smoothness and

non-uniqueness.

For a non-unique solution map (a set-valued map-

ping) of the lower level problem (1) is not even well-

defined (cf. Remark 1). [13] describes three possible op-

tions to cope with this problem. The optimistic bilevel

optimization problem assumes a cooperative strategy

of leader and follower, i.e., in case of multiple solutions

the follower tries to minimize the upper level objective.

The pessimistic bilevel problem is the other extreme

problem, where the leader tries to bound the damage

that the follower could cause by his move. The selection

function approach assumes that the leader can always

predict the followers choice. Of course, these three ap-

proaches are the same for lower level problems with a

unique output.

Our approach does not fall into any of the three

cases, however the selection function approach is the

closest. The difference is that our approximation changes

the output also at (originally) unique points. Our so-

lution strategy reduces the solution map to be single-

valued, alike the approaches mentioned above.

[13] classifies the following sought optimality condi-

tions2. The primal Karush–Kuhn–Tucker (KKT) trans-

formation replaces the lower level problem by the nec-

essary (and sufficient) optimality condition for a con-

vex function. The equivalence to the original problem is

shown in [14]. The classical KKT transformation sub-

stitutes the lower level problem with the classical KKT

conditions. As a consequence of an extra variable, the

problems are not fully equivalent anymore (see [13]).

This approach, which leads to a non-smooth mathemat-

ical problem with complementary constraints (MPEC),

is the most frequently used one. The third approach is

the optimal value transform, which introduces a con-

2 The classification in [13] applies to the optimistic bilevel
problem.

straint that bounds the lower level objective by the op-

timal value function.

Our approach is—in the limit—motivated by the

first class of the primal KKT transformation. We con-

sider the fixed point equation of an algorithm, which

represents the optimality condition (without introduc-

ing additional variables), and approximate this situa-

tion with finitely many iterations of the algorithm. The

classical KKT conditions are, for example, used in [9,

10,22,34].

As pointed out in the introduction, we focus on gra-

dient based methods, such as gradient descent, L-BFGS

[24], non-linear conjugate gradient [18,1], Heavy-ball

method [39], iPiano [28], and others, for solving the

bilevel optimization problem. In particular, this paper

focuses on the estimation of descent directions. One op-

tion is to numerically approximate the gradient with

finite differences like in [15]. However, we pursue what

is known as algorithmic/automatic differentiation. It is

based on the idea to decompose the derivative evalua-

tion into small parts by means of a chain rule, where

the analytic derivative of each part is known. A whole

branch of research deals with this technique [20]. Obvi-

ously, the idea to differentiate an algorithm in the lower

level problem is not new [36,16]. The difference is that

our algorithm has a smooth update rule while actually

minimizing a non-smooth objective function. Another

idea to approach a non-smooth problem with an itera-

tive algorithm is presented in [11], where a chain rule

for weak derivatives is used (cf. Section 5.4).

In machine learning, parameter learning has a long

tradition. While classical approaches are based on max-

imum likelihood learning, more recent approaches are

based on the Structured Output Support Vector Ma-

chine [37]. Consider again the bilevel optimization prob-

lem (1), where we assume that the function L(x∗(ϑ), ϑ)

is given by

L(x, ϑ) = ∆(x, y) +R(ϑ) ,

where ∆(x∗(ϑ), y) is a loss function that penalizes er-

rors with respect to the ground truth solution y and

R(ϑ) is a convex regularizer on the parameter vector.

Furthermore, we assume that the parameter vector ϑ

depends linearly on the lower level energy, such that

E(x, ϑ) can be written as E(x, ϑ) =
∑n
i=1 ϑiei(x). Ob-

serve that this structure is common to many popular

models in machine learning and computer vision.

Now, the idea is to replace the upper level objective

function by an upper bound. Let x∗ be a minimizer of

Bilevel Optimization with Nonsmooth Lower Level Problems 5

the lower level problem, then for all vectors x̄ one has:

∆(x∗, y) ≤ ∆(x∗, y) + E(x̄, ϑ)− E(x∗, ϑ)

≤ max
x

∆(x, y) + E(x̄, ϑ)− E(x, ϑ) .

Observe that the right hand side is convex in ϑ, since

it is a maximum over linear functions. Hence, the over-

all parameter learning problem has become a convex

problem. Here, x̄ is an arbitrary solution vector which

however should be chosen as close as possible to a min-

imizer x∗ of the lower level problem. Often the choice

x̄ = y is made since one would like to force the energy

of the lower level problem to be at least as good as

the energy of the ground truth solution. Also observe

that in case x∗ = y, i.e. the lower level problem can

reproduce the ground truth solution exactly, the con-

vex upper bound is exact. In case this is not possible

(which is the usual case) the convex upper bound only

provides an approximation to the problem.

The resulting parameter learning problem, can be

solved using a subgradient descent algorithm. In order

to compute subgradients one needs to solve problems

of the form

max
x

∆(x, y)− E(x, ϑ) = −min
x

E(x, ϑ)−∆(x, y).

Hence, it is advisable to pick a loss function ∆(x, y)

that still allows to compute exact solutions of the lower

level problem.

Examples for applications of bilevel optimization

in the computer vision and machine learning commu-

nity are the following. Bilevel optimization was con-

sidered for task specific sparse analysis prior learning

[31] and applied to signal restoration. In [22,9,10] a

bilevel approach was used to learn a model of natu-

ral image statistics, which was then applied to various

image restoration tasks. A variational formulation for

learning a good noise model was addressed in [34] in a

PDE-constrained optimization framework, with some

follow-up works [5,33,6]. In machine learning bilevel

optimization was used to train a SVM [3] and other

techniques [26]. Recently, it was used for the end-to-end

training of a Convolutional Neural Network (CNN) and

a graphical model for binary image segmentation [32]

(cf. Section 9).

Finally, we want to refer to [12] for an annotated

bibliography with many references regarding the theo-

retical and practical development in bilevel optimiza-

tion.

Preliminaries

If not stated different, we will always work in a Eu-

clidean vector space RN of dimension N equipped with

the standard Euclidean norm ‖ · ‖ :=
√
〈·, ·〉 that is

induced by the standard inner product. We use the no-

tation R := R∪ {∞} to denote the extended real num-

bers.

We use the notation [x ∗ a] for x, a ∈ RN to denote

the set {x ∈ RN | ∀i : xi∗ai}, where ∗ ∈ {<,≤,=,≥, >}
is a binary relation on R × R. For example [x ≥ 0]

denotes the non-negative orthant in RN .

4 The Bilevel Problem

The bilevel optimization problem considered in this pa-

per is the following:

min
ϑ∈RP

L(x∗(ϑ), ϑ) + `(ϑ)

s.t. x∗(ϑ) ∈ arg min
x∈RN

E(x, ϑ)
(4)

The function ` : RP → R is assumed to be proper, lower

semi-continuous, convex, and “prox-friendly”3 and the

function L : RN ×RP → R to be continuously differen-

tiable on dom `. The optimization variable is the (pa-

rameter) vector ϑ ∈ RP . It appears implicit and ex-

plicit in the upper level problem. It is implicit via the

solution mapping x∗(ϑ) ∈ RN of the lower level prob-

lem and explicit in ` and in the second argument of

L. The lower level is a minimization problem in the

first variable of a proper, lower semi-continuous func-

tion E : RN × RP → R. For each ϑ ∈ RP the objective

function (energy) x 7→ E(x, ϑ) is assumed to be con-

vex.

Note that our formulation includes constrained opti-

mization problems in the upper and lower level prob-

lem. The functions ` and E are defined as extended-

valued (real) functions. Of course, in order to handle the

constraints efficiently in the algorithm, the constraint

sets should not be too complicated.

In order to solve (4), we can apply iPiano [28], a

gradient-based algorithm that can handle the non-smooth

part `(ϑ). The extension of iPiano in [27, Chapter 6]

allows for a prox-bounded (non-convex, non-smooth)

function `(ϑ). Informally, the update step of this algo-

rithm (for the parameter vector ϑ) reads

ϑk+1 ∈ proxαk`
(
ϑk − αk∇ϑL(x∗(ϑk), ϑk)

+βk(ϑk − ϑk−1)
)
, (5)

3 The associated proximity operator has a closed-form solu-
tion or the solution may be determined efficiently numerically.

6 Peter Ochs et al.

where proxαk` denotes the proximity operator of the

function `, and αk is a step-size parameter and βk steers

the so-called inertial effect of the algorithm (usually

βk ∈ [0, 1]). For details about αk and βk, we refer to

[28,27], where convergence to a stationary point (a zero

in the limiting subdifferntial) is proved under mild as-

sumptions. If the non-smooth term is not present, sev-

eral gradient based solvers can be used, e.g. [24,39,18,

1].

(5) points out the main aspect in applying such a

gradient-based algorithm, namely the evaluation of the

gradient ∇ϑL(x∗(ϑ), ϑ). The remainder of this paper

deals with exactly this problem: computing∇ϑL(x∗(ϑ), ϑ)

with a solution mapping ϑ 7→ x∗(ϑ) of a possibly non-

smooth objective function in the lower level.

Example 1 A simple example of practical interest in im-

age processing is the following image denoising problem

E(x, ϑ) =
1

2
‖x− b‖22 + ϑ‖Dx‖1 ,

where b is a noisy vector (that represents an image) and

Dx computes partial derivatives of the image domain.

Therefore ‖Dx‖1 penalizes variations in the result (im-

age) x.

It can be used in the lower level of a bilevel opti-

mization problem whose goal is to find the parameter

ϑ ≥ 0 that best reconstructs the original image b̄ by

solving the denoising problem minx E(x, ϑ). A suitable

upper level objective function is

L(x∗(ϑ), ϑ) + `(ϑ) =
1

2
‖x∗(ϑ)− b̄‖2 + δ[ϑ≥0](ϑ) .

Remark 1 The formulation (4) of a bilevel optimization

problem only makes sense when arg minx∈RN E(x, ϑ)

yields a unique minimizer. In that case optimality of

the bilevel problem can be derived from standard op-

timality conditions in non-linear programming. If the

lower level problem does not provide a unique solution,

the loss function L actually needs to be defined on the

power set of Rn and a different notion of optimality

needs to be introduced. Since, this results in problems

that are not relevant for this paper, we refer the in-

terested reader to [13]. A common circumvention is to

consider the corresponding optimistic bilevel problem.

5 Computing descent directions

For a given parameter value ϑ ∈ RP , we would like to

compute a descent direction of L in (4) with respect

to ϑ in order to find a numerical solution using some

gradient based method. Obviously, we need the deriva-

tive of the solution map x∗(ϑ) with respect to ϑ. In

the following, we present strategies to approximate the

(possibly non-smooth) lower level problem and to com-

pute a descent direction.

5.1 Derivative of a smoothed lower level problem

If we assume that the objective function of the lower

level problem of (4) is twice continuously differentiable,

we can make use of the implicit function theorem to find

the derivative of the solution map with respect to ϑ.

The optimality condition of the lower level problem is

∇xE(x, ϑ) = 0, which under some conditions implicitly

defines a function x∗(ϑ). Let us define for a moment

F (x, ϑ) = ∇xE(x, ϑ). As we assume that the prob-

lem minxE(x, ϑ) has a solution, there is (x∗, ϑ̄) such

that F (x∗, ϑ̄) = 0. Then, under the conditions that F

is continuously differentiable and (∂F/∂x)(x∗, ϑ̄) is in-

vertible, there exists an explicit function x∗(ϑ) defined

in a (open) neighborhood of x∗. Moreover, the function

x∗(ϑ) is continuously differentiable at ϑ̄ and it holds

that

∂x∗

∂ϑ̄
(ϑ̄) =

(
−∂F
∂x

(x∗(ϑ̄), ϑ̄)

)−1
∂F

∂ϑ̄
(x∗(ϑ̄), ϑ̄) .

Back-substituting F = ∇xE and using the Hessian

HE(x∗(ϑ̄), ϑ̄) := ∂2E
∂x2 (x∗(ϑ̄), ϑ̄) yields

∂x∗

∂ϑ
(ϑ̄) = −(HE(x∗(ϑ̄), ϑ̄))−1 ∂

2E

∂ϑ∂x
(x∗(ϑ̄), ϑ̄) . (6)

The requirement for using (6) from the implicit function

theorem is the continuous differentiability of ∂E/∂x

and the invertibility of HE . Applying the chain rule for

differentiation the total derivative of the loss function

L of (4) w.r.t. ϑ is

dL
dϑ

= −

[
∂L
∂x

H−1
E

]
∂2E

∂ϑ∂x
+
∂L
∂ϑ

, (7)

where the function evaluation at (x∗(ϑ̄), ϑ̄) is dropped

for brevity. A clever way of setting parentheses, as it is

indicated by the squared brackets, avoids explicit inver-

sion of the Hessian matrix. For large problems iterative

solvers are required, however.

5.2 Derivative of iterative algorithms

We can replace the minimization problem in the lower

level of (4) by an algorithm that solves this problem,

i.e., the lower level problem is replaced by an equal-

ity constraint. This approach shows three advantages:

(i) After approximating the lower level of (4) by an al-

gorithm, the approach is exact, in the sense described

Bilevel Optimization with Nonsmooth Lower Level Problems 7

soon; (ii) the update step of the algorithm can be smooth

without the lower level problem to be smooth; (iii) the

output is always unique (when an initialization is fixed),

i.e., it circumvents the (critical) issue of a non-unique

lower level solution.

Remark 2 The limiting-behavior of the derivative of a

sequence of functions—such as the approximation of

the lower level solution mapping with an algorithm with

increasing iteration number—can differ from that of the

sequence of functions itself. Since a rigorous analysis of

this (mainly theoretical) fact is hard and we are not

going to pursue it in this paper, the proposed approach

can be considered heuristic.

Example 2 The sequence x(n)(ϑ) := ϑ exp(−nϑ2) of

functions converges uniformly to the function x∗(ϑ) ≡
0, (x(n))′(ϑ)→ 0 if ϑ 6= 0 and (x(n))′(0)→ 1 as n→∞.

However, obviously the pointwise limit of the deriva-

tives does not coincide with the derivative of the limit

function.

Let A and A(n) : X × RP → X describe one or n

iterations, respectively, of algorithm A for minimizing

E in (4). For simplicity, we assume that the feasible set

mapping ϑ 7→ {x ∈ RN | (x, ϑ) ∈ domL} is constant4,

i.e., the same X is assigned to all ϑ ∈ RP . Note that

X = RN is permitted.

For a fixed n ∈ N, we replace (4) by

min
ϑ
L(x∗(ϑ), ϑ)

s.t. x∗(ϑ) = A(n+1)(x(0), ϑ) ,
(8)

where x(0) is some initialization of the algorithm. The
solution map (of the lower level problem) x∗(ϑ) is the

output of the algorithm A after n + 1 iterations. If we

write down one iteration of the algorithm, i.e., x(n+1)(ϑ) =

A(x(n)(ϑ), ϑ), we have to assume that x(n) depends

on the choice of ϑ. However, this dependency can be

dropped for the first iterate, which emerges from the

initialization.

A suitable algorithm has the properties that x(n)(ϑ)

converges pointwise (for each ϑ) to a solution of the

lower level problem as n goes to infinity, i.e., E(x(n), ϑ) =

E(A(n)(x(0), ϑ), ϑ) → minxE(x, ϑ) for n → ∞. As we

want to consider also Bregman proximity functions in

the algorithm A, the solution for n → ∞ could lie on

bdry(X), despite x(n) ∈ int(X) for all n. However, this

matters only for an asymptotic analysis.

4 More generally, the concept of outer semi-continuity of
the feasible set mapping is needed, otherwise a gradient based
method could converge to a non-feasible point.

An interesting aspect of this approach is that, if A
is (totally) differentiable with respect to ϑ, then, by the

standard chain rule, A(n) is differentiable with respect

to ϑ as well. This way, we obtain a totally differentiable

approximation to the lower level problem of (4), where

the approximation quality can simply be controlled by

the number of iterations. For so-called descent algo-

rithms, it holds that

E(x(n+1), ϑ)−min
x
E(x, ϑ) ≤ E(x(n), ϑ)−min

x
E(x, ϑ) .

A high number of iterations usually better approxi-

mates minxE(x, ϑ) than a small number of iterations.

We use “usually” as not all algorithms are descent al-

gorithms, however a sufficiently high number of iter-

ations will always provide a better approximation to

minxE(x, ϑ).

Nevertheless, also a small number of iterations is in-

teresting for our approach. Once a certain number of it-

erations is fixed, the bilevel optimization problem seeks

for an optimal performance with exactly this chosen

number of iterations. Solving the bilevel optimization

problem accurately with a small number of iterations

n of the (lower level) algorithm can result in a better

performance than a poorly solved (possibly due to local

optimal solutions) bilevel problem with a high number

of iterations in the lower level.

Our approach is well suited for minimizing the bilevel

problem using gradient based methods. The differentia-

tion of L with respect to ϑ in (8) is exact; once selected

an algorithm no additional approximation is required

for computing the derivatives. In contrast, the smooth-

ing approach from Section 5.1 requires the minimization

of a smooth objective function, whose solution can only

be found approximatively. Therefore, the descent direc-

tion that is based on the optimality condition is always

erroneous.

The “smoothing parameter” in our approach is the

number of iterations of the algorithm that replaces the

lower level problem. Since the algorithm’s update map-

ping is assumed to be smooth, i.e., in particular, Lips-

chitz continuous which formally means

‖A(x, ϑ)−A(y, ϑ)‖ ≤ const. ‖x− y‖ ,

the variation of the output after one iterations is lim-

ited. Hence a small number of iterations restricts the

variation of the output less than a high number of

iterations. Additionally, A is assumed to be differen-

tiable, thus Lipschitz continuous, w.r.t. ϑ. Therefore,

intuitively, the higher the number of iterations n the

less smoothness of A(n) can be expected.

Another favorable property is the uniqueness of the

algorithm’s output.

8 Peter Ochs et al.

In terms of leader–follower interpretation of the bilevel

optimization problem, we can describe this property as

follows. Despite, in general, the leader can not uniquely

determine the follower’s reaction to his move, he could

have an intuition on how the follower is going to com-

pute the moves. If the leader has a good estimation of

the follower’s strategy, the leader can well plan his own

moves.

In order to obtain the derivative of the lower level

problem of (8), there are two prominent concepts: for-

ward mode and backward mode. For any vector ξ ∈ RN ,

the forward mode corresponds to evaluating the deriva-

tive as

ξ>
dx(n+1)

dϑ
(ϑ) =

ξ>
[
∂A
∂x

(x(n), ϑ)
dx(n)

dϑ
(ϑ)

]
+ ξ>

∂A
∂ϑ

(x(n), ϑ) , (9)

whereas the backward mode/reverse mode evaluates the

derivative as(
dx(n+1)

dϑ
(ϑ)

)>
ξ

=

(
dx(n)

dϑ
(ϑ)

)> (∂A
∂x

(x(n), ϑ)

)>
ξ


+

(∂A
∂ϑ

(x(n), ϑ)

)>
ξ

 , (10)

where the squared brackets symbolize the different or-

ders of evaluating the terms. In both approaches, re-

placing and evaluating the term dx(n)/dϑ using the pre-

ceding iterate (n− 1) is done in the respective order.

Mathematically both concepts result in the same so-

lution. However, numerically the approaches are very

different. The reverse mode is usually more efficient

when the optimization variable ϑ is high dimensional

(i.e., P is large) and the range of the objective func-

tion L is low dimensional—it is always 1 in our setting.

This corresponds to ξ being a column vector instead

of a derivative matrix. The forward mode is often eas-

ier, since it is executed in the same order as the opti-

mization algorithm itself and can be computed online,

i.e., during the iteration of the algorithm. However, its

downside is that each partial derivative must be initial-

ized and propagated through the iterations. Therefore,

the memory requirement is vastly increasing with the

dimension P . Therefore, we focus on the reverse mode

for evaluating the derivatives.

The backward mode is executed in the reverse or-

der of the iterations of the algorithm and needs the

optimum x∗, which is x(n+1) in our case, for executing

the first matrix vector multiplication. All intermediate

results toward to optimum must be available. The im-

plementation of the backward mode (10) is shown in Al-

gorithm 1. This approach seems to be quite expensive.

However, for a reasonable number of iterations, it is

still practical. Nevertheless, in the following we present

approximations that reduce the cost significantly.

Usually, evaluating only a few matrix-vector prod-

ucts is sufficient to obtain a high quality approximation

of the derivative, i.e., only a few iterations of the reverse

mode are required.

In Section 5.3, we motivate another approximation

that allows us to evaluate all derivatives at the opti-

mum.

5.3 Derivative of fixed point equations

We generalize the result from Section 5.1, where the

lower level problem of (4) is replaced by the first-order

optimality condition of a smooth approximation. The

idea is to consider a different optimality condition. A

point is optimal, if it satisfies the fixed point equation

of an algorithm A : X × RP → X solving the original

lower level problem, i.e., we address the bilevel problem:

min
ϑ
L(x∗(ϑ), ϑ)

s.t. x∗(ϑ) = A(x∗(ϑ), ϑ) ,
(11)

where X ⊂ RN is as in Section 5.2 and we have a fixed

point x∗. This approach is more general than the one

in Section 5.1, since we could actually first smoothly

approximate the lower level problem and then consider

the fixed point equation thereof. On the other hand,

for many algorithms and lower level problems both ap-

proaches are equivalent, because algorithms are often

derived from the first-order optimality condition.

Following the idea of Section 5.2, we can consider

a differentiable fixed point equation without the lower

level problem to be differentiable. An algorithm that

has a differentiable update rule also reveals a differen-

tiable fixed point equation.

Assume that (x∗, ϑ) solves the fixed point equation.

By differentiating the fixed point equation, we obtain

dx

dϑ
(ϑ) =

∂A
∂x

(x∗(ϑ), ϑ)
dx

dϑ
(ϑ) +

∂A
∂ϑ

(x∗(ϑ), ϑ) ,

which can be rearranged to yield

dx

dϑ
(ϑ) =

(
I − ∂A

∂x
(x∗(ϑ), ϑ)

)−1
∂A
∂ϑ

(x∗(ϑ), ϑ) . (12)

Bilevel Optimization with Nonsmooth Lower Level Problems 9

Algorithm 1 Derivative of an abstract algorithm

– Assumptions: A is totally differentiable.
– Initialization at n+ 1:

z(n+1) :=

(
∂L
∂x

(x∗(ϑ), ϑ)

)>
∈ RN and w(n+1) := 0 ∈ RP

– Iterations (n ≥ 0): Update

for n to 0 :
w(n) = w(n+1) +

(
∂A
∂ϑ

(x(n), ϑ)

)>
z(n+1)

z(n) =

(
∂A
∂x(n)

(x(n), ϑ)

)>
z(n+1)

– Final derivative of L in (8) wrt. ϑ:

dL
dϑ

(x∗(ϑ), ϑ) = (w(0))> +
∂L
∂ϑ

(x∗(ϑ), ϑ) .

Assuming the spectral radius of (∂A/∂x)(x∗(ϑ), ϑ) is

smaller than 1, we can approximate the inversion using

the geometric series:

dx

dϑ
(ϑ) =

∞∑
n=0

(
∂A
∂x

(x∗(ϑ), ϑ)

)n
∂A
∂ϑ

(x∗(ϑ), ϑ) ,

where ((∂A/∂x)(x∗(ϑ), ϑ))n means the n-fold matrix

product with itself. Let us approximate this term with

a finite summation of 0, . . . , n0. Then by a simple re-

arrangement, for ξ ∈ RN , we have (by abbreviating

(∂A/∂x)(x∗(ϑ), ϑ) by ∂A/∂x; the same for ∂A/∂ϑ):

ξ>
dx

dϑ
(ϑ) ≈ ξ>

n0∑
n=0

(
∂A
∂x

)n
∂A
∂ϑ

= ξ>
∂A
∂x

(
∂A
∂ϑ

+
∂A
∂x

(
∂A
∂ϑ

+ . . .

))
= ξ>

[
∂A

∂x(n0)

dx(n0)

dϑ

]
+ ξ>

∂A
∂ϑ

.

The difference between the last line in this equation

and (9) and (10) is the evaluation point of the terms.

Where in (9) and (10) the terms for dx(n+1)/dϑ are

evaluated at (x(n)(ϑ), ϑ), here, all terms are evaluated

at (x∗(ϑ), ϑ). Experimentally, this approximation works

also quite well and needs to store only the optimum of

the algorithm, which is an immense reduction of the

memory requirements.

Summarizing, there are two ways to obtain the deriva-

tive of the solution map x∗. The first one is by using

(12) and to do the matrix inversion, or to solve the aris-

ing system of equations when the directional derivative

is required as in Section 5.1. The second approach is

by approximating the inversion of the matrix with an

iterative process like in Section 5.2, where derivatives

are here evaluated at the optimum.

5.4 Weak differentiation of iterative algorithms

The approach in [11] also considers an algorithm replac-

ing the non-smooth lower level problem. Their underly-

ing methodology, however, is based on weak differentia-

bility, which can be guaranteed for Lipschitz continuous

mappings thanks to Rademacher’s theorem. If all iter-

ation mappings are Lipschitz continuous with respect

to the iteration variable and the parameter ϑ, weak dif-
ferentiability follows from the chain rule for Lipschitz

mappings [17, Theorem 4]. For details, we refer to [11],

in particular Section 4. The convergence of the weak

derivatives is also left to future work there.

6 Explicit derivative for exemplary algorithms

The framework of Bregman proximity functions is key

for the idea to approximate a non-smooth optimization

problem by an algorithm with smooth update map-

pings. In this section, we instantiate two such algo-

rithms. Details and examples of Bregman proximity

functions are postponed to Section 7.1. For understand-

ing this section, it suffices to know that Dψ(x, x̄) pro-

vides a distance measure between two points x and x̄,

and it can be used to define a Bregman proximity op-

erator proxψ which generalizes the common proximity

operator that is based on the Euclidean distance.

10 Peter Ochs et al.

6.1 Derivative of forward–backward splitting

Let us consider a simple forward–backward splitting

[23,30] with Bregman proximity function Dψ (e.g. [2]).

It applies to minimization problems of the form

min
x∈RN

f(x) + g(x) ,

where f : RN → R is a continuously differentiable, con-

vex function with Lipschitz continuous gradient and

g : RN → R is a proper, lower semi-continuous, con-

vex function with easy-to-evaluate (Bregman) proxim-

ity operator. The update rule of the forward–backward

splitting that we consider is:

x(n+1) = arg min
x∈RN

g(x;ϑ) + f(x(n);ϑ)

+
〈
∇f(x(n);ϑ), x− x(n)

〉
+

1

α
Dψ(x, x(n))

=: proxψαg

(
∇ψ(x(n))− α∇f(x(n);ϑ);ϑ

)
=: proxψαg

(
y(n)(x(n);ϑ);ϑ

)
,

(13)

where we denote y(n)(x(n);ϑ) := ∇ψ(x(n))−α∇f(x(n);ϑ),

the intermediate result after the forward step, to sim-

plify the notation in the following. The implementation

of the reverse mode for determining the derivative of the

solution map of the lower level problem with respect to

ϑ is given in Algorithm 2.

6.2 Derivative of primal–dual splitting

Since the primal–dual algorithm with Bregman prox-

imity functions from [8] provides a flexible tool for our

purposes, we also want to specify the implementation

of the reverse mode for this algorithm. It applies to the

convex–concave saddle-point problem

min
x

max
y
〈Kx, y〉+ f(x) + g(x)− h∗(y) ,

which is derived from minx f(x) + g(x) +h(Kx), where

f is convex and has a Lipschitz continuous gradient and

g, h are proper, lower semi-continuous convex functions

with simple proximity operator for g and for the convex

conjugate h∗.

Let the forward iteration of the primal–dual algo-

rithm with variables x(n) = (u(n), p(n)) ∈ RNu+Np be

given abstractly as

u(n+1) = PDu(u(n), p(n), ϑ)

:= arg min
u

〈
∇f(u(n)), u− u(n)

〉
+ g(u)

+
〈
Ku, p(n)

〉
+ 1

τDu(u, u(n))

p(n+1) = PDp(2u(n+1) − u(n), p(n), ϑ)

:= arg min
p

h∗(p)−
〈
K(2u(n+1) − u(n)), p

〉
+ 1

σDp(p, p
(n)) ,

(14)

where f, g, h,K can depend on ϑ. The step size pa-

rameter τ and σ must be chosen according to (τ−1 −
Lf)σ−1 ≥ L2 where L = ‖K‖ is the operator norm of

K and Lf is the Lipschitz constant of ∇f .

In order to simplify the application of the chain

rule throughout the primal–dual algorithm, we show

a graphical representation of the information transport

in Figure 3, where we use the following abbreviations

(analogously for PDp):

PD(n)
u := PDu(u(n), p(n), ϑ) ;

PD(n)
p := PDp(2u(n+1) − u(n), p(n), ϑ) ;

∂uPDu :=
∂PDu
∂u

; ∂pPDu :=
∂PDu
∂p

; ∂ϑPDu :=
∂PDu
∂ϑ

.

Remark 3 In Section 6.1, we evaluated the forward and

the backward step separately using the chain rule. Of

course, this could also be done here as well, but would

make the understanding more difficult for the reader.

Based on this graphical representation, we can easily

write down an implementable algorithm in Algorithm 3.

In order to implement the ergodic primal–dual al-

gorithm whose output is the average of all iterates, i.e.,

u∗ = 1
n+1

∑n
i=0 u

(i), it is useful to concern a running

average: denote s
(n)
u := 1

n+1

∑n
i=0 u

(i), then s
(n+1)
u =

1
n+2u

(n+1) + n+1
n+2s

(n)
u . Since taking the derivative is a

linear operation, we can simply estimate the derivative

for the ergodic primal–dual sequence by averaging all

w(n), which can be computed as a running average in

the loop of Algorithm 3.

7 “Smoothing” using Bregman proximity

Splitting based techniques like those in Section 6 usu-

ally handle non-smooth terms in the objective func-

tion via a (non-linear/Bregman) proximal step. Some-

times, (convex) conjugation makes terms in the objec-

tive amenable for simple and differentiable proximal

Bilevel Optimization with Nonsmooth Lower Level Problems 11

Algorithm 2 Derivative of a forward–backward splitting algorithm

– Assumptions: proxψαg and id + α∇f are totally differentiable.

– Initialization at n+ 1:

z(n+1) :=

(
∂L
∂x

(x∗(ϑ), ϑ)

)>
∈ RN and w(n+1) := 0 ∈ RP

– Iterations (n ≥ 0): Update (where derivatives of proxψαg are evaluated at (y(n), ϑ) and

derivatives of ∇f at (x(n);ϑ))

for n to 0 :
w(n) = w(n+1) +

(∂ proxψαg
∂ϑ

)>
+

(
− α

∂(∇f)

∂ϑ

)>(
∂ proxψαg

∂y

)> z(n+1)

z(n) =

(
id− α

∂(∇f)

∂x

)>(
∂ proxψαg

∂y

)>
z(n+1)

– Final derivative of L in (8) wrt. ϑ:

dL
dϑ

(x∗(ϑ), ϑ) = (w(0))> +
∂L
∂ϑ

(x∗(ϑ), ϑ) .

du∗

dϑ

dϑ du(n)

dϑ
dp(n)

dϑ

dϑ du(n−1)

dϑ
dp(n−1)

dϑ
dϑ

dϑ du(n−2)

dϑ
dp(n−2)

dϑ
dϑ

∂uPD
(n)
u ∂pPD

(n)
u

∂ϑPD
(n)
u

∂uPD
(n−1)
u ∂pPD

(n−1)
u

∂ϑPD
(n−1)
u

∂uPD
(n−2)
u ∂pPD

(n−2)
u

∂ϑPD
(n−2)
u

∂pPD
(n−1)
p

∂ϑPD
(n−1)
p

2∂uPD
(n−1)
p

−∂uPD
(n−1)
p

∂pPD
(n−2)
p

∂ϑPD
(n−2)
p

2∂uPD
(n−2)
p

−∂uPD
(n−2)
p

2∂uPD
(n−3)
p

.

.

.

.

.

.

.

.

.

.

.

.

Fig. 3 This graph shows how the information is backprogated to estimate the derivatives in Algorithm 3. The derivatives
at the nodes show what derivative is to be evaluated from this point downwards through the graph. The edges represent
multiplicative (transposed) factors. The final derivative is the sum over all leaf nodes.

mappings. Adding the possibility of considering a pri-

mal, primal–dual, or dual formulation yields many ex-

amples of practical interest.

In the following, we introduce the class of Bregman

functions that can be used in combination with the al-

gorithms in Section 6. Then, we discuss a few exam-

ples that allow to reformulate several non-smooth terms

arising in applications accordingly.

7.1 Bregman proximity functions

We consider Bregman proximity functions [4] with the

following properties. Let ψ : RN → R be a 1-convex

function with respect to the Euclidean norm, i.e., it

is strongly convex with modulus 1, and denote its do-

main by X := domψ. We assume that ψ is continuously

differentiable on the interior of its domain int(X) and

continuous on its closure cl(X).

Then, ψ generates a Bregman proximity function

Dψ : X × int(X)→ R by

Dψ(x, x̄) := ψ(x)− ψ(x̄)− 〈∇ψ(x̄), x− x̄〉 . (15)

12 Peter Ochs et al.

Algorithm 3 Derivative of a primal–dual algorithm

– Assumptions: PDu and PDp are totally differentiable.
– Initialization at n+ 1:

z(n+1) :=

(
∂L
∂u

(u∗(ϑ), ϑ)

)>
∈ RNu , q(n+1) := 0 ∈ RNp

and w(n+1) := 0 ∈ RP

– Iterations (n ≥ 0): Update

for n to 0 :

w(n) = w(n+1) +

(
∂PD(n)

u

∂ϑ

)>
z(n+1) +

(
∂PD(n)

p

∂ϑ

)>
q(n+1)

q(n) =

(
∂PD(n)

u

∂p

)>
z(n+1) +

(
∂PD(n)

p

∂p

)>
q(n+1)

z(n) =

(
∂PD(n)

u

∂u

)>
z(n+1) + 2

(
∂PD(n−1)

p

∂u

)>
q(n) −

(
∂PD(n)

p

∂u

)>
q(n+1)

– Final derivative of L in (8) with A = (PDu,PDp) wrt. ϑ:

dL
dϑ

(u∗(ϑ), ϑ) = (w(0))> +
∂L
∂ϑ

(u∗(ϑ), ϑ) .

For a sequence (xn)n∈N converging to x ∈ X, we require

that limn→∞Dψ(x, xn) = 0. The 1-convexity of ψ im-

plies that the Bregman function satisfies the inequality

Dψ(x, x̄) ≥ 1

2
‖x− x̄‖2 , ∀x ∈ X .

These are actually the kind of Bregman proximity func-

tions that are considered in [8]. Obviously ψ(x) = 1
2‖x‖

2

corresponds to Dψ(x, x̄) = 1
2‖x− x̄‖

2.

In iterative algorithms, the Bregman proximity func-

tion is used via the (nonlinear/Bregman) proximity op-

erator for a proper, lower semi-continuous, convex func-

tion g : X → R

proxψαg(x̄) := arg min
x∈X

αg(x) +Dψ(x, x̄) , (16)

where we define proxαg := prox
1
2‖·‖

2

αg .

There are two kinds of Bregman proximity func-

tions: (i) The function ∇ψ can be continuously ex-

tended to X, i.e., Dψ can be defined on X × X, and

(ii) ψ is differentiable on int(X) (i.e. ∇ψ cannot nec-

essarily be extended to cl(X)) in which case Dψ(x, x̄)

makes sense only on X × int(X) and we need to assure

that proxψαg(x̄) ∈ int(X) for any x̄ ∈ int(X). For this,

we need to assume that ‖∇ψ(x)‖ → ∞ whenever x ap-

proaches a boundary point bdry(X) := cl(X) r int(X)

(which is sometimes referred to as ψ being essentially

smooth [35]).

While evaluating the proximity operator for the first

class leads to non-interior methods, the second class

generates points that lie in int(X). As (ii) is an interior

method, boundary points can only be attained in the

limit. Moreover, for x̄ ∈ bdry(X), (15) would imply

that unless x = x̄ the Bregman distance is +∞ for any

x, which can be represented by δ[x=x̄](x). This would

mean that x̄ ∈ bdry(X) is always a fixed point of this

Bregman proximity operator, which disables the fixed-

point approach in Section 5.3 in this case.

7.2 Examples of Bregman functions

Let us consider a few examples, since the concept of

Bregman proximity functions is central to the contri-

bution of this paper.

Example 3 The Euclidean length ψ(x) = 1
2‖x‖

2
2 is con-

tinuously differentiable on the whole space RN , and

therefore, belongs to class (i) of Bregman proximity

functions.

Example 4 The Bregman proximity function generated

by ψ(x) = 1
2 ((x + 1) log(x + 1) + (1 − x) log(1 − x)) is

defined on the interval (−1, 1) and can be continuously

extended to [−1, 1], and is continuously differentiable

on (−1, 1) with |ψ′(x)| → ∞ when x → ±1. It is 1-

strongly convex.

Example 5 The entropy function ψ(x) = x log(x), which

can be continuously extended to [x ≥ 0], is continu-

ously differentiable on [x > 0] with derivative ψ′(x) =

Bilevel Optimization with Nonsmooth Lower Level Problems 13

log(x) + 1. The derivative cannot be continuously ex-

tended to x = 0. For x→ 0 we have |ψ′(x)| → +∞. Un-

fortunately, this function is not even 1-strongly convex

on [x ≥ 0]. However, the function ax log(x) is 1-strongly

convex when restricted to a bounded subset [0, 1/a],

a > 0. For a = 1, the Bregman function Dψ(x, x̄) =

x(log(x)− log(x̄))− (x− x̄) is generated.

Example 6 The entropy function can also be used in

higher dimensions. Unfortunately, it is hard to assert a

simple evaluation of an associated proximity mapping

in this case. Consider a polyhedral set ∅ 6= X ∈ RN
given by

X = {x ∈ RN | ∀i = 1, . . . ,M : 〈ai, x〉 ≤ bi}

=

M⋂
i=1

{x ∈ RN | 〈ai, x〉 ≤ bi}

for vectors 0 6= ai ∈ RN , and bi ∈ RM , i = 1, . . . ,M .

Then, the generating function

ψ(x) =

M∑
i=1

(bi − 〈ai, x〉) log(bi − 〈ai, x〉)

is designed such that for any point x̄ ∈ int(X) any

other point x 6∈ X is “moved infinitly far away” with

respect to the Bregman distance Dψ(x, x̄). Therefore

‖∇ψ(x)‖ → ∞ for x tending towards a point on the

boundary bdry(X). Nevertheless, ψ is continuous on X

and strongly convex, if X is bounded.

7.3 Examples of smooth Bregman proximity operators

The Bregman proximity functions that we presented are

particularly interesting if the evaluation of the proxi-

mal mapping (16) is a constrained minimization prob-

lem, i.e. the involved function g in proxψg is extended-

valued and +∞ outside the constraint (closed) convex

set X ⊂ RN . The Bregman function can replace or sim-

plify the constraint set. In the following, we consider a

few examples of practical interest. Thanks to (convex)

conjugation the class of functions that are amenable to

our approach is big.

We consider a basic class of functions g(x) = 〈x, c〉+
δX(x) for some c ∈ RN . The associated (non-linear)

proximity operator from (16) is given by

proxψαg(x̄) = arg min
x∈X

α 〈x, c〉+Dψ(x, x̄) .

The corresponding (necessary and sufficient) optimality

condition, which has a unique solution, is

0 ∈ c+∇ψ(x)−∇ψ(x̄) + ∂δX(x)

⇔ ∇ψ(x̄)− c ∈ ∇ψ(x) + NX(x) ,

where NX(x) denotes the normal cone at x of the set X.

Suppose x̄ ∈ int(X). If ψ is chosen such that ‖∇ψ(x)‖ →
+∞ for x → x̃ ∈ bdry(X), then the solution of the

proximal mapping is in int(X). Since NX(x) = 0 for

x ∈ int(X), the optimality condition simplifies to

∇ψ(x̄)− c = ∇ψ(x) , (17)

i.e. the constraint is taken care of by the Bregman prox-

imity function. Summarizing, the goal of our approach

(for this basic function g) consists of determining ψ,

respectively Dψ, such that

– the constraint set can be neglected,

– (17) can be solved efficiently (possibly in closed form),

– and, due to the gradient computation of the algo-

rithm mapping (and the chain rule), the solution

function of (17) is required to be differentiable wrt.

x and ϑ, where possibly c = c(ϑ).

Example 7 For a linear function g(x) = 〈c, x〉+δ[x≥0](x)

the entropy function from Example 5 can be summed-

up for each coordinate to get rid of the non-negativity

constraint. The proximity operator reads:(
prox

∑
j xj log xj

αg (x̄)

)
i

= x̄i exp(−αci) .

A closer look at the iterations of the forward–backward

splitting (FBS) algorithm (13) reveals that this situ-

ation arises for example with c = ∇f(x̄), i.e. in the

iterations of FBS for the minimization of

min
x∈RN

f(x) + δ[x≥0](x) .

A particular instance of this problem is the non-negative

least squares problem, i.e. f(x) = 1
2‖Ax − b‖22 with a

matrix A and a vector b.

Example 8 The most frequent application of the entropy-

prox is for the minimization of a linear function g(x) =

〈c, x〉 over the unit simplex in RN . Since the entropy

moves negative values infinitly far away, projecting a

point x̄ ∈ RN+ onto the unit simplex {x ∈ RN |
∑N
i=1 xi =

1 and xi ≥ 0} reduces to the projection onto the affine

subspace {x ∈ RN |
∑N
i=1 xi = 1}, which can be given

in closed-form, i.e.,(
prox

∑
j xj log xj

αg (x̄)

)
i

=
x̄i exp(−αci)∑N
j=1 x̄j exp(−αcj)

.

This proximal problem arises for example in the multi-

label segmentation problem in Section 9.1 or in Matrix

games (see [8, Section 7.1]).

14 Peter Ochs et al.

Example 9 For the function g(x) = 〈c, x〉+δ[−1≤x≤1](x)

the Bregman function from Example 4 reduces the min-

imization problem in the proximal mapping to an un-

constrained problem. The proximal mapping with ψ(x) =∑
i

1
2 ((xi + 1) log(xi + 1) + (1− xi) log(1− xi)) reads:(

proxψαg(x̄)

)
i

=
exp(−2αci)− 1−x̄i

1+x̄i

exp(−2αci) + 1−x̄i
1+x̄i

.

Obviously, this example can be easily adjusted to any

Cartesian product of interval constraints. The impor-

tance of this exemplary function g becomes clear in the

following.

Functions that are linear on a constraint set also

arise when conjugate functions are considered. For in-

stance the `1-norm can be represented as

‖x‖1 = max
y
〈x, y〉+ δ[−1≤y≤1](y) ,

which in combination with the primal–dual (PD) algo-

rithm (14) results in subproblems (cf. the update step of

the dual variable in (14)) of the type discussed in the

preceding examples, here Example 9. From this per-

spective, optimization problems involving a linear op-

erator D and the `1-norm ‖Dx‖1 are as easy to address.

This idea of conjugation can be put into a slightly

larger framework, as the convex conjugate of any posi-

tively one-homogeneous proper, lsc, convex function is

an indicator function of a closed convex set. Unfortu-

nately, we must assume that projecting onto such a set

is easy (“prox-friendliness”). Therefore, the following

example is restricted to the (additively) separable case.

Example 10 Let g be a (additively) separable, positively

one-homogeneous, proper, lsc, convex functions g(x) =∑N
i=1 gi(xi). Thanks to its properties g coincides with

its bi-conjugate function g∗∗ and we can consider

g(x) = g∗∗(x) =

N∑
i=1

max
yi

xiyi − δYi(yi) ,

where Yi = [ai, bi] is a closed interval in R. Again the

dual update step of (14) involves problems of type of

Example 9 with h∗(y) =
∑
i δYi(yi).

7.4 Example applications

Finally, we present a few examples from image process-

ing, computer vision and machine learning that allow

for an algorithm with a smooth update mapping though

the minimization problem is non-smooth. These prob-

lems might occur as lower level of a bilevel optimization

problem.

Example 11 A potentially interesting minimization prob-

lem for the task of denoising of a vector b (which could

represent an image) is the following:

min
x∈RN

1

2
‖x− b‖22 + λ

Nα∑
i=1

αi ρ

Nβ∑
j=1

βi,jBi,jx

 ,

with ϑ = (λ, α1, . . . , αNα , β1,1, . . . , βNα,Nβ)>, a collec-

tion of basis filters (linear mappings) Bi,j , and a con-

vex penalty function ρ : R → R+. The problem where

ρ(x) = |x| is considered in [22,9], however only a smooth

approximation is solved in the end. Using our idea, we

can apply the primal–dual algorithm (14) like in Exam-

ple 10.

This parameter learning problem can easily be ex-

tended to more complicated “data-terms” as required

for instance in deblurring, i.e., 1
2‖x − b‖22 can be re-

placed by 1
2‖Ax−b‖

2
2 with a matrix A that implements

a convolution of a filter kA with x.

Moreover, the data-term could also be replaced by

a robust (non-smooth) `1-norm. Using the primal–dual

algorithm (14) we can consider again the dualized ver-

sion and thereby reduce the evaluation of the proximity

operator to a constrained problem with a simple set like

in Example 10.

If, even more flexibility is desired, also the data term

can be parametrized, e.g., for learning the noise model.

Learning the noise model with a (simple) total variation

penalty is pursued in [34] by smoothing.

8 Toy example

The bilevel problem that we consider here is a parame-

ter learning problem of a one dimensional non-negative

least-squares problem:

min
ϑ∈R

1

2
(x∗(ϑ)− g)2

s.t. x∗(ϑ) = arg min
x∈R

λ

2
(ϑx− b)2 +

1

2
x2 + δ[x≥0](x) ,

(18)

where ϑ is the optimization variable of the bilevel prob-

lem, b ∈ R is the input of the least squares problem,

and λ is a positive weighting parameter. Given ϑ and

b the lower level problem solves the non-negative least

squares problem. The squared Euclidean loss function

in the upper level problem compares the output of the

lower level problem for some ϑ and b to the ground truth

g := x∗(ϑ∗), which is generated by solving the lower

level problem with some predefined value ϑ∗. The goal

of the bilevel optimization problem is to find ϑ∗ given

b and g.

Bilevel Optimization with Nonsmooth Lower Level Problems 15

−1 0 1 2 3 4
0

0.005

0.01

0.015

0.02

0.025

0.03

ϑ

L
(x

∗
(ϑ

),
ϑ
)

−1 0 1 2 3 4
0

0.05

0.1

0.15

0.2

0.25

ϑ

x
∗
(ϑ

)

Fig. 4 Visualization of the loss function L(x(ϑ), ϑ) for the 1D
example (18) on the left side. The optimum is marked with
a black star. On the right hand side, the solution map of the
lower level problem is shown.

The analytic solution of the lower level problem (the

solution map) is

x∗(ϑ) = max
(

0,
λϑb

1 + λϑ2

)
and is shown on the right hand side of Figure 4. It is ob-

viously a non-smooth function with a non-differentiable

point at ϑ = 0. Plugging the solution map into the

upper level problem shows the actual objective to be

minimized; see the left hand side of Figure 4.

8.1 Experimental setup

In the following experiments, we numerically explore

the gradients computed with the proposed techniques.

We do not consider the actual minimization of the bilevel

problem. The computed gradients could be used by any

(non-convex) first-order gradient based method.

Analytic subdifferential. For ϑ 6= 0 the standard chain

rule from calculus can be applied and we can directly

write down the derivative of the whole problem, namely

dL
dϑ

(x(ϑ)) =
λb(1− λϑ2)

(1 + λϑ2)2
(x(ϑ)− g) .

For ϑ = 0, we consider the derivative

dL
dϑ

(x(ϑ)) = [0, λb(x(0)− g)] ,

where [0, λb] is replaced by [λb, 0] if λb < 0.

Implicit differentiation approach Section 5.1. In order

to apply this technique, we first need to smooth the

lower level problem. Since we want to avoid solutions

x∗(ϑ) = 0, we introduce a log-barrier and replace the

lower level problem by

fµ(x, ϑ) :=
λ

2
(ϑx− b)2 +

1

2
x2 − µ log(x)

for some small µ > 0. Thus, we can drop the non-

negativity constraint. In order to compute the gradient

via the implicit differentiation formula (7), we need to

minimize fµ with respect to x and compute the second

derivatives (we abbreviate the x-derivative with f ′µ and

ϑ-derivative with ∂ϑfµ)

f ′µ(x, ϑ) = λϑ(ϑx− b) + x− µ

x
;

f ′′µ (x, ϑ) = λϑ2 + 1 +
µ

x2
;

∂ϑf
′
µ(x, ϑ) = 2λϑx− λb .

(19)

Then, (7) yields

dL
dϑ

(x∗(ϑ)) = −(x(ϑ)−g)(f ′′µ (x∗(ϑ), ϑ))−1∂ϑf
′
µ(x∗(ϑ), ϑ) .

This approach is denoted Smoothed-impl in the follow-

ing.

Algorithmic differentiation approach Section 5.2. We

consider two algorithms: projected gradient descent and

forward–backward splitting with Bregman proximity func-

tions. Both algorithms are splitting methods that dis-

tribute the objective into a smooth function f and a

nonsmooth function g, which for our example reads

f(x, ϑ) =
λ

2
(ϑx− b)2 +

1

2
x2 and g(x) = δ[x≥0](x) .

Projected gradient descent operates by a gradient de-

scent step with respect to the smooth function f fol-

lowed by a projection onto the (convex) set [x ≥ 0]:

x(n+1) = proj[x≥0](x
(n) − αf ′(x(n), ϑ))

= max(0, x(n) − αf ′(x(n))) .
(20)

Note that the projection onto the convex set can also be

interpreted as solving the proximity operator associated

with the function g.

The second algorithm is obtained by changing the

distance function for evaluating the proximity opera-

tor to the Bregman distance from Example 5 (in the

appendix). It results in

x(n+1) = xn exp(−αf ′(x(n), ϑ)) . (21)

As we assume that x0 ∈ [x > 0] the Bregman proxim-

ity function takes care to not leave the feasible set. The

back-projection can be dropped.

In order to apply Algorithm 1 or 2, we need to com-

pute the second derivatives of the update steps (20)

and (21). The second derivatives of f = fµ with µ = 0

are given in (19). Although, actually (20) is not dif-

ferentiable, it is differentiable almost everywhere, and

in the experiment, we formally applied the chain rule

16 Peter Ochs et al.

−1 0 1 2 3 4
0

0.005

0.01

0.015

0.02

0.025

0.03

ϑ

L
(x

∗
(ϑ

),
ϑ
)

−1 0 1 2 3 4
0

0.005

0.01

0.015

0.02

0.025

0.03

ϑ

L
(x

∗
(ϑ

),
ϑ
)

Fig. 5 Analytic tangents to the upper level objective function
of (18) at ϑ = 0.3 and ϑ = 0. The function is non-smooth and,
thus, at ϑ = 0 there exists many tangent lines.

and assigned an arbitrary subgradient wherever it is not

unique, i.e.,

∂ proj[x≥0]

∂x
(x, ϑ) =


0, if x < 0 ;

1, if x > 0 ;

[0, 1], if x = 0 ;

and
∂ proj[x≥0]

∂ϑ = 0. In the following experiments, this

approach is denoted Proj.GD.

For (21), we use Algorithm 1 and obtain5

∂A
∂ϑ

(x(n), ϑ) = − αx exp(−αf ′(x(n), ϑ))
∂f ′

∂ϑ
(x(n), ϑ)

∂A
∂x

(x(n).ϑ) = exp(−αf ′(x(n), ϑ))

− αx(n) exp(−αf ′(x(n), ϑ))f ′′(x(n), ϑ) .

This approach is denoted Bregman-FB.

Implicit differentiation of fixed points approach Section 5.3.

As explained above, the idea to directly differentiate

the fixed point equation of an algorithm, implies two

techniques. One is by applying Algorithm 1 to (21)

but evaluating all derivatives at the optimum (denoted

Bregman-FB2), and the other is to do the numerical in-

version as in (12) (denoted Bregman-FB-impl).

8.2 Analysis of the 1D example

In the experiments, we focus on the estimation of the

gradient (in Figure 5). Therefore, the step size param-

eters of the individual algorithms are chosen such that

a comparable convergence of the lower level energy is

achieved, if possible.

For Proj.GD, Bregman-FB, and Bregman-FB2 the

chain rule must be applied recursively. We plot the

change of the gradient accumulation along these back-

iterations (of 200 forward-iterations) in bottom of Fig-

ure 6 and the energy evolution in the upper part of

this figure. In this example, we can observe a linear

5 Note that we kept the order of the terms given by the
chain rule, since for multi-dimensional problems the products
are matrix products and are, in general, not commutative.

10
0

10
1

10
2

10
3

10
−20

10
−15

10
−10

10
−5

10
0

iterations

|E
−

E
m

i
n
|

Proj. GD
Proj. GD2
Bregman−FB
Bregman−FB2
Bregman−FB−impl
Smoothed−impl 0.01
Smoothed−impl 0.0001

10
0

10
1

10
2

10
3

10
−6

10
−4

10
−2

10
0

iterations

|E
−

E
m

i
n
|

Proj. GD
Proj. GD2
Bregman−FB
Bregman−FB2
Bregman−FB−impl
Smoothed−impl 0.01
Smoothed−impl 0.0001

10
0

10
1

10
2

10
3

10
−20

10
−15

10
−10

10
−5

10
0

iterations i

‖
w

(n
−

i
) −

d
L

d
ϑ
(x

(n
)
(ϑ

),
ϑ
)‖

Proj. GD
Proj. GD2
Bregman−FB
Bregman−FB2

10
0

10
1

10
2

10
3

10
−5

10
−4

10
−3

10
−2

10
−1

iterations i

‖
w

(n
−

i
) −

d
L

d
ϑ
(x

(n
)
(ϑ

),
ϑ
)‖

Proj. GD
Proj. GD2
Bregman−FB
Bregman−FB2

Fig. 6 The upper row shows the energy decrease along the
forward iterations, and the lower row the convergence to the
respective gradient value along the back-iterations. On the
left hand side the plot is generated with ϑ = 0.3 and on the
right hand side with ϑ = 0. The “-impl” methods do not
appear in the bottom row as no back-iterations are involved.
For ϑ = 0, due to the simple structure of the lower level
problem, projected gradient descent converges exactly in one
iteration, thus it is not shown. The gradient converges linearly
to its final value, which means that often a few back-iterations
are enough to achieve a gradient of good quality.

decrease in the contribution to the respective final gra-

dient value, which shows that back-iterations can be

stopped after a few iterations without making large er-

rors. In low dimensional examples 10–20 back-iterations

are appropriate; for higher dimensional ones 50–100

back-iterations are usually good. However, this depends

on the type of problem, the convergence of the forward-

iterations, and needs to be explored in more depth in

the future.

An interesting aspect of this experiment is that the

approximations Bregman-FB2 and Proj.GD2 seems to

be good, as they show the same gradient accumulation

as Bregman-FB and Proj.GD, respectively. This situa-

tion changes when the number of forward-iterations are

reduced. For about 15 forward-iterations, a difference of

order 10−4 becomes visible (case ϑ = 0.3).

Now, we address the actual convergence of the gra-

dient towards the analytic gradient, with respect to dif-

ferent approximation accuracies (varied by the number

of back-iterations). Figure 7 shows the convergence for

ϑ = 0.3 and Figure 8 for ϑ = 0. Numerically, we observe

convergence to the analytic gradients. As we mentioned

before, a theoretical asymptotic analysis is missing. Sur-

prisingly, all methods perform equally well in the case

ϑ = 0. The estimated gradient lies always in the subd-

ifferential at this point. The range of the subdifferential

is indicated with bright green color in Figure 8. While

Bilevel Optimization with Nonsmooth Lower Level Problems 17

10
0

10
1

10
2

10
3

10
−20

10
−15

10
−10

10
−5

10
0

iterations n

‖
d
L

d
ϑ
(x

(n
)
(ϑ

),
ϑ
)
−

d
L

d
ϑ
(x

∗
(ϑ

),
ϑ
)‖

Proj. GD
Proj. GD2
Bregman−FB
Bregman−FB2
Bregman−FB−impl
Smoothed−impl 0.01
Smoothed−impl 0.0001

10
0

10
1

10
2

10
3

10
−20

10
−15

10
−10

10
−5

10
0

iterations n

‖
d
L

d
ϑ
(x

(n
)
(ϑ

),
ϑ
)
−

d
L

d
ϑ
(x

∗
(ϑ

),
ϑ
)‖

Proj. GD
Proj. GD2
Bregman−FB
Bregman−FB2
Bregman−FB−impl
Smoothed−impl 0.01
Smoothed−impl 0.0001

10
0

10
1

10
2

10
3

10
−20

10
−15

10
−10

10
−5

10
0

iterations n

‖
d
L

d
ϑ
(x

(n
)
(ϑ

),
ϑ
)
−

d
L

d
ϑ
(x

∗
(ϑ

),
ϑ
)‖

Proj. GD
Proj. GD2
Bregman−FB
Bregman−FB2
Bregman−FB−impl
Smoothed−impl 0.01
Smoothed−impl 0.0001

10
0

10
1

10
2

10
3

10
−20

10
−15

10
−10

10
−5

10
0

iterations n

‖
d
L

d
ϑ
(x

(n
)
(ϑ

),
ϑ
)
−

d
L

d
ϑ
(x

∗
(ϑ

),
ϑ
)‖

Proj. GD
Proj. GD2
Bregman−FB
Bregman−FB2
Bregman−FB−impl
Smoothed−impl 0.01
Smoothed−impl 0.0001

10
0

10
1

10
2

10
3

10
−20

10
−15

10
−10

10
−5

10
0

iterations n

‖
d
L

d
ϑ
(x

(n
)
(ϑ

),
ϑ
)
−

d
L

d
ϑ
(x

∗
(ϑ

),
ϑ
)‖

Proj. GD
Proj. GD2
Bregman−FB
Bregman−FB2
Bregman−FB−impl
Smoothed−impl 0.01
Smoothed−impl 0.0001

10
0

10
1

10
2

10
3

10
−20

10
−15

10
−10

10
−5

10
0

iterations n
‖

d
L

d
ϑ
(x

(n
)
(ϑ

),
ϑ
)
−

d
L

d
ϑ
(x

∗
(ϑ

),
ϑ
)‖

Proj. GD
Proj. GD2
Bregman−FB
Bregman−FB2
Bregman−FB−impl
Smoothed−impl 0.01
Smoothed−impl 0.0001

Fig. 7 Convergence of the numerical gradients towards the analytic gradient for ϑ = 0.3. Row-wise, from left to right, the
number of back-iterations is increased: 5, 10, 20, 50, 100, 200. Obviously, the more back-iterations, the more accurate the
computed gradient. The “-impl” methods always perform equally, as no back-iterations are required. Smoothed-impl performs
worst due to the rough approximation. Our methods Bregman-FB, Bregman-FB2, and Bregman-FB-impl are the best; and converge
slightly better than Proj.GD and Proj.GD2.

Proj.GD and Proj.GD2 estimates a gradient from the

boundary of the subdifferential, the other methods es-

timate a subgradient from the interior. However, all of

these values are feasible and belong to the analytic sub-

differential.

9 Application to Multi-Label Segmentation

In this section, we show how the developed abstract

idea can be applied in practice. Before the actual bilevel

learning problem is presented, we introduce a multi-

label segmentation model. We use a convolutional neu-

ral network (CNN) to parametrize the segmentation

model. Alternatively, this construction can be thought

of as having a segmentation model as the final stage

of a deep neural network. In this setting, the bi-level

problem then amounts to finding the parameters of the

CNN such that the loss on training data is minimized.

The presented approach provides a generic recipe to

train such systems in an end-to-end fashion.

9.1 Model

Given a cost tensor c ∈ XNl , where X = RNxNy , that

assigns to each pixel (i, j) and each label k, i = 1, . . . , Nx,

j = 1, . . . , Ny, k = 1, . . . , Nl, a cost cki,j for the pixel

taking label k. We often identify RNx×Ny with RNxNy
by (i, j) 7→ i + (j − 1)Nx to simplify the notation.

The sought segmentation u ∈ XNl
[0,1], where X[0,1] =

[0, 1]NxNy ⊂ X, is represented by a binary vector for

each label. As a regularizer for a segment’s plausibility

we measure the boundary length using the total varia-

tion (TV). The discrete derivative operator ∇ : X → Y ,

where we use the shorthand Y := X×X (elements from

Y are considered as column vectors), is defined as (let

the pixel dimension be 1× 1):

(∇uk)i,j :=

(
(∇uk)xi,j
(∇uk)yi,j

)
∈ Y (= R2NxNy),

Du :=(∇u1, . . . ,∇uNl),

(∇uk)xi,j :=

{
uki+1,j − uki,j , if 1 ≤ i < Nx, 1 ≤ j ≤ Ny
0 , if i = Nx, 1 ≤ j ≤ Ny

(∇uk)yi,j is defined analogously. From now on, we work

with the image as a vector indexed by i = 1, . . . , NxNy.

18 Peter Ochs et al.

50 100 150 200

−0.1

−0.08

−0.06

−0.04

−0.02

0

d
L

d
ϑ
(x

(n
)
(ϑ

),
ϑ
)

iterations n

Proj. GD
Proj. GD2
Bregman−FB
Bregman−FB2
Bregman−FB−impl
Smoothed−impl 0.01
Smoothed−impl 0.0001

50 100 150 200

−0.1

−0.08

−0.06

−0.04

−0.02

0

d
L

d
ϑ
(x

(n
)
(ϑ

),
ϑ
)

iterations n

Proj. GD
Proj. GD2
Bregman−FB
Bregman−FB2
Bregman−FB−impl
Smoothed−impl 0.01
Smoothed−impl 0.0001

50 100 150 200

−0.1

−0.08

−0.06

−0.04

−0.02

0

d
L

d
ϑ
(x

(n
)
(ϑ

),
ϑ
)

iterations n

Proj. GD
Proj. GD2
Bregman−FB
Bregman−FB2
Bregman−FB−impl
Smoothed−impl 0.01
Smoothed−impl 0.0001

50 100 150 200

−0.1

−0.08

−0.06

−0.04

−0.02

0

d
L

d
ϑ
(x

(n
)
(ϑ

),
ϑ
)

iterations n

Proj. GD
Proj. GD2
Bregman−FB
Bregman−FB2
Bregman−FB−impl
Smoothed−impl 0.01
Smoothed−impl 0.0001

50 100 150 200

−0.1

−0.08

−0.06

−0.04

−0.02

0
d
L

d
ϑ
(x

(n
)
(ϑ

),
ϑ
)

iterations n

Proj. GD
Proj. GD2
Bregman−FB
Bregman−FB2
Bregman−FB−impl
Smoothed−impl 0.01
Smoothed−impl 0.0001

50 100 150 200

−0.1

−0.08

−0.06

−0.04

−0.02

0

d
L

d
ϑ
(x

(n
)
(ϑ

),
ϑ
)

iterations n

Proj. GD
Proj. GD2
Bregman−FB
Bregman−FB2
Bregman−FB−impl
Smoothed−impl 0.01
Smoothed−impl 0.0001

Fig. 8 Convergence of the numerical gradients towards the analytic gradient for ϑ = 0. Row-wise, from left to right, the
number of back-iterations is increased: 5, 10, 20, 50, 100, 200. All methods perform equally well, as they lie in the bright green
area that indicates the range of the subdifferential.

Let elements in Y be indexed with j = 1, . . . , 2NxNy.

Let the inner product in X and Y be given, for uk, vk ∈
X and pk, qk ∈ Y , as:

〈
uk, vk

〉
X

:=

NxNy∑
i=1

uki v
k
i ,
〈
pk, qk

〉
Y

:=

2NxNy∑
j=1

pkj q
k
j ,

〈u, v〉XNl :=

Nl∑
k=1

〈
uk, vk

〉
X
, 〈p, q〉Y Nl :=

Nl∑
k=1

〈
pk, qk

〉
Y
.

The (discrete, anisotropic) TV norm is given by ‖Du‖1 :=∑Nl
k=1

∑2NxNy
j=1 |(∇uk)j|, where | · | is the absolute value.

In the following, the iteration variables i = 1, . . . , NxNy
and j = 1, . . . , 2NxNy always run over these index sets,

thus we drop the specification; we adopt the the same

convention for k = 1, . . . , Nl. We define the pixel-wise

nonnegative unit simplex

∆Nl := {∀(i, k) : 0 ≤ uki ≤ 1

and ∀i :
∑
k u

k
i = 1 u ∈ XNl} , (22)

and the pixel-wise (closed) `∞-unit ball around the ori-

gin

B`∞1 (0) := {p ∈ Y Nl | ∀(j, k) : |pkj | ≤ 1} .

Finally, the segmentation model reads

min
u∈XNl

〈c, u〉XNl + ‖WDu‖1 , s.t. u ∈ ∆Nl , (23)

where we use a diagonal matrixW to support contrast-

sensitive penalization of the boundary length.

This model and the following reformulation as a

saddle-point problem are well known (see e.g. [7])

min
u∈XNl

max
p∈Y Nl

〈WDu, p〉Y Nl + 〈u, c〉XNl , (24)

s.t. u ∈ ∆Nl , p ∈ B`∞1 (0) .

The saddle-point problem (24) can be solved using the

ergodic primal-dual algorithm [8], which leads to an

iterative algorithm with totally differentiable iterations.

The primal update in (14) is discussed in Example 8 and

the dual update of (14) is essentially Example 9. As a

consequence Algorithm 3 can be applied to estimate

the derivatives. A detailed derivation of the individual

steps of the algorithm can be found in [29].

9.2 Parameter Learning

We consider (23) where the cost c is given by the output

of a CNN which takes as input an image I ∈ XNc to

be segmented and is defined via a set of weights ϑ. For-

mally, we have cki = fki (ϑ, I) with f : RNϑ×XNc → XNl ,

where Nc denotes the number of channels of the input

image and Nϑ is the number of weights parametrizing

the CNN.

The training set consists ofNT images I1, . . . ,INT ∈
XNc and their corresponding ground truth segmenta-

tions g1, . . . , gNT ∈ {1, . . . , Nl}NxNy .

In order to find the parameters ϑ of the CNN, we

consider an instance of the general bilevel optimization

Bilevel Optimization with Nonsmooth Lower Level Problems 19

10 50 100 150 200

iterations n

0.68

0.7

0.72

0.74

0.76

0.78

0.8

0.82

0.84

0.86

0.88

L
o

s
s

10 50 100 150 200

iterations n

76

78

80

82

84

86

88

90

92

94

96

P
ix

e
l
A

c
c
u
ra

c
y

10 50 100 150 200

iterations n

0

0.5

1

1.5

2

2.5

T
im

e
 [
s
]

Fig. 9 Training error vs. number of iterations of the algorithm solving the lower level problem. From left to right, average
per-pixel loss, per-pixel accuracy and time per outer iteration. The timing includes the forward pass as well as the gradient
computations. Timings were taken on a NVIDIA Geforce Titan X GPU. A higher number of iterations clearly leads to lower
error, but comes at the cost of a higher computational complexity.

problem (4):

min
ϑ∈RNϑ

NT∑
t=1

NxNy∑
i=1

log
(Nl∑
k=1

exp(uki (ϑ, It))
)
− gti(ϑ, I

t)

s.t. u(ϑ, It) = arg min
u∈XNl

E(u, f(ϑ, It)), (25)

where energy E in the lower level problem is (23) and

the higher-level problem is defined as the softmax loss.

Remark 4 We could equivalently use a multinomial lo-

gistic loss, since ui(ϑ, I
t) lies in the unit simplex by

construction. We use this definition in order to allow

for a simplified treatment of the case of training a CNN

without the global segmentation model.

9.3 Experiments

We implemented our approach as a custom layer in

the MatConvNet framework [38]. We use the Stanford

Background dataset [19], which consists of 715 input

images and pixel-accurate ground truth consisting of

the geometric classes sky, vertical and horizontal for

our experiments and use ADAM [21] for the minimiza-

tion of the higher-level problem. We found that in gen-

eral plain stochastic gradient descent performs poorly

in our setting, since the global segmentation model can

lead to vanishing gradients.

In a first experiment we use a small subset of 9 im-

ages from the dataset to show the influence of the num-

ber of iterations used to solve the lower-level problem

(23) on the training objective. We learn a small network

consisting of four layers of alternating convolutions with

a kernel width of 3 pixels and ReLU units followed by

a fully connected layer. We add 3× 3 max-pooling lay-

ers with a stride of two after the first and the second

convolutional layers, which effectively downsamples the

responses by a factor of 4. We add a deconvolutional

layer to upsample the responses to the original image

size. The penultimate layer of the CNN consist of a

multiplicative scaling (analogous to a scalar smooth-

ness parameter) of the CNN output followed by the

global segmentation model (23). We run ADAM with a

learning rate of 10−3 for a total of 1000 iterations with

a mini-batch size of one image to learn the parameters

of this network.

Figure 9 shows the average per-pixel loss, the aver-

age pixel accuracy as well as the time per ADAM iter-

ation vs. number of iterations used to solve the lower-

level problem (inner iterations). This experiment shows

that by solving the lower-level problem to higher accu-

racy the overall capacity and thus the accuracy of the

system can be enhanced. This comes at the price of a

higher computational complexity, which increases lin-

early with the number of iterations.

Finally, we perform a large scale experiment on this

dataset. We partition the images into a training set of

572 images and use the remaining 143 images for test-

ing. We use the pre-trained Fully Convolutional Net-

work FCN-32s [25] as basis for this experiment. We

adapt the geometry of the last two layers to this dataset

and retrain the network. We then add a multiplicative

scaling layer followed by the global segmentation model

and refine the parameters for this network. The num-

ber of inner iterations was set to 100, since this setting

provides a good tradeoff between accuracy and com-

putational complexity. We use a mini-batch size of 5

images and a learning rate of 10−3.

The average accuracy in terms of the average pixel

accuracy (Acc) in percent and Intersection over Union

(IoU) score on both the test and the training set is

shown in Table 1. We compare the plain Fully Convolu-

tional Network FCN to the network with the additional

global segmentation model FCN+Global. We observe a

moderate increase of 1.4% in terms of IoU on the test

20 Peter Ochs et al.

Fig. 10 Example results from the test set. Row-wise, from left to right: Input image, CNN, CNN+Global, ground truth. The
global model is able to align results to edges and is able to correct spurious errors.

set when using the global model. This can be attributed

to the fact that the CNN alone already provides good

but coarse segmentations and the segmentation model

uses only simple pairwise interactions. As such it is un-

able to correct gross errors of the CNN.

Since the presented approach is applicable to a broad

range of energies, training of more expressive energies

which include more complex interactions (cf. [40]) is

a promising direction of future research. Example seg-

mentations from the test set are shown in Figure 10.

Remark 5 The advantage of our approach versus the

smoothing approach from Section 5.1 was already per-

formed in the conference version of this paper. Instead

of repeating the experiment, we refer to [29] for the

experiment.

10 Conclusion

We considered a class of bilevel optimization problems

with non-smooth lower level problem. By an appropri-

ate approximation, for some problems, we can formu-

late an algorithm with a smooth update mapping that

solves a non-smooth optimization problem in the lower

level. This allows us to apply gradient based methods

Test Train
Acc IoU Acc IoU

FCN 92.40 82.65 97.54 92.21
FCN+Global 93.00 84.01 97.90 93.53

Table 1 Accuracy on the Stanford Background dataset [19].
We compare the plain CNN to the CNN with an additional
global segmentation model.

for solving the bilevel optimization problem. A second

approach directly considers the fixed-point equation of

the algorithm as optimality condition for the lower level

problem. Key for both ideas are Bregman proximity

functions.

The idea of estimating gradients for an abstract al-

gorithm is exemplified for a forward–backward split-

ting method and a primal–dual algorithm with Breg-

man proximity functions. Several potential application

examples are shown. Finally, a toy example confirms

our results and provides some more intuition. The con-

tribution of our idea to practical applications is demon-

strated by a multi-label segmentation model that is cou-

pled with a convolutional neural network.

Nevertheless, several open questions remain, which

are highlighted in the manuscript. These questions need

to be addressed in future work.

Acknowledgment

Peter Ochs and Thomas Brox acknowledge support from

the German Research Foundation (DFG grant BR 3815/8-

1). René Ranftl acknowledges support from Intel Labs.

Thomas Pock acknowledges support from the Austrian

science fund under the ANR-FWF project “Efficient al-

gorithms for nonsmooth optimization in imaging”, No.

I1148 and the FWF-START project “Bilevel optimiza-

tion for Computer Vision”, No. Y729.

References

1. Al-Baali, M.: Descent Property and Global Convergence
of the Fletcher–Reeves Method with Inexact Line Search.
IMA Journal of Numerical Analysis 5(1), 121–124 (1985)

Bilevel Optimization with Nonsmooth Lower Level Problems 21

2. Beck, A., Teboulle, M.: Mirror descent and nonlinear pro-
jected subgradient methods for convex optimization. Op-
erations Research Letters 31(3), 167–175 (2003)

3. Bennett, K., Kunapuli, G., Hu, J., Pang, J.S.: Bilevel Op-
timization and Machine Learning. In: J.M. Zurada, G.G.
Yen, J. Wang (eds.) Computational Intelligence: Re-
search Frontiers, no. 5050 in Lecture Notes in Computer
Science, pp. 25–47. Springer Berlin Heidelberg (2008)

4. Bregman, L.M.: The relaxation method of finding the
common point of convex sets and its application to the so-
lution of problems in convex programming. USSR Com-
putational Mathematics and Mathematical Physics 7(3),
200–217 (1967)

5. Calatroni, L., Reyes, J., Schönlieb, C.B.: Dynamic sam-
pling schemes for optimal noise learning under multiple
nonsmooth constraints. ArXiv e-prints (2014). ArXiv:
1403.1278

6. Calatroni, L., Reyes, J., Schönlieb, C.B., Valkonen, T.:
Bilevel approaches for learning of variational imaging
models. ArXiv e-prints (2015). ArXiv: 1505.02120

7. Chambolle, A., Pock, T.: A first-order primal-dual algo-
rithm for convex problems with applications to imaging.
Journal of Mathematical Imaging and Vision 40(1), 120–
145 (2011)

8. Chambolle, A., Pock, T.: On the ergodic convergence
rates of a first-order primal-dual algorithm. Tech. rep.
(2014). To appear

9. Chen, Y., Pock, T., Ranftl, R., Bischof, H.: Revisiting
Loss-Specific Training of Filter-Based MRFs for Image
Restoration. In: J. Weickert, M. Hein, B. Schiele (eds.)
German Conference on Pattern Recognition (GCPR), no.
8142 in Lecture Notes in Computer Science, pp. 271–281.
Springer Berlin Heidelberg (2013)

10. Chen, Y., Ranftl, R., Pock, T.: Insights into analysis
operator learning: From patch-based sparse models to
higher order MRFs. IEEE Transactions on Image Pro-
cessing 23(3), 1060–1072 (2014)

11. Deledalle, C.A., Vaiter, S., Fadili, J., Peyré, G.: Stein
Unbiased GrAdient estimator of the Risk (SUGAR) for
multiple parameter selection. SIAM Journal on Imaging
Sciences 7(4), 2448–2487 (2014)

12. Dempe, S.: Annotated Bibliography on Bilevel Program-
ming and Mathematical Programs with Equilibrium Con-
straints. Optimization 52(3), 333–359 (2003)

13. Dempe, S., Kalashnikov, V., Pérez-Valdés, G., Kalash-
nykova, N.: Bilevel Programming Problems. Energy
Systems. Springer Berlin Heidelberg, Berlin, Heidelberg
(2015)

14. Dempe, S., Zemkoho, A.: The Generalized Mangasarian–
Fromowitz Constraint Qualification and Optimality Con-
ditions for Bilevel Programs. Journal of Optimization
Theory and Applications 148(1), 46–68 (2010)

15. Domke, J.: Implicit Differentiation by Perturbation. In:
Advances in Neural Information Processing Systems
(NIPS), pp. 523–531 (2010)

16. Domke, J.: Generic methods for optimization-based mod-
eling. In: International Workshop on Artificial Intelli-
gence and Statistics, pp. 318–326 (2012)

17. Evans, L.C., Gariepy, R.F.: Measure Theory and Fine
Properties of Functions. CRC Press, Boca Raton (1992)

18. Fletcher, R., Reeves, C.: Function minimization by con-
jugate gradients. The Computer Journal 7(2), 149–154
(1964)

19. Gould, S., Fulton, R., Koller, D.: Decomposing a scene
into geometric and semantically consistent regions. In:
International Conference on Computer Vision (ICCV)
(2009)

20. Griewank, A., Walther, A.: Evaluating Derivatives, sec-
ond edn. Society for Industrial and Applied Mathematics
(2008)

21. Kingma, D.P., Ba, J.: Adam: A method for stochastic
optimization. CoRR abs/1412.6980 (2014)

22. Kunisch, K., Pock, T.: A bilevel optimization approach
for parameter learning in variational models. SIAM Jour-
nal on Imaging Sciences 6(2), 938–983 (2013)

23. Lions, P.L., Mercier, B.: Splitting algorithms for the sum
of two nonlinear operators. SIAM Journal on Applied
Mathematics 16(6), 964–979 (1979)

24. Liu, D.C., Nocedal, J.: On the limited memory BFGS
method for large scale optimization. Mathematical Pro-
gramming 45(1), 503–528 (1989)

25. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional
networks for semantic segmentation. In: International
Conference on Computer Vision and Pattern Recognition
(CVPR) (2015)

26. Moore, G.: Bilevel programming algorithms for machine
learning model selection. Ph.D. thesis, Rensselaer Poly-
technic Institute (2010)

27. Ochs, P.: Long term motion analysis for object
level grouping and nonsmooth optimization meth-
ods. Ph.D. thesis, Albert–Ludwigs–Universität Freiburg
(2015). URL http://lmb.informatik.uni-freiburg.de/

/Publications/2015/Och15

28. Ochs, P., Chen, Y., Brox, T., Pock, T.: ipiano: Inertial
proximal algorithm for non-convex optimization. SIAM
Journal on Imaging Sciences 7(2), 1388–1419 (2014)

29. Ochs, P., Ranftl, R., Brox, T., Pock, T.: Bilevel opti-
mization with nonsmooth lower level problems. In: In-
ternational Conference on Scale Space and Variational
Methods in Computer Vision (SSVM) (2015)

30. Passty, G.B.: Ergodic convergence to a zero of the sum
of monotone operators in hilbert space. Journal of Math-
ematical Analysis and Applications 72(2), 383 – 390
(1979)

31. Peyré, G., Fadili, J.: Learning analysis sparsity priors. In:
Proceedings of Sampta (2011)

32. Ranftl, R., Pock, T.: A deep variational model for image
segmentation. In: German Conference on Pattern Recog-
nition (GCPR), pp. 107–118 (2014)

33. Reyes, J., Schönlieb, C.B., Valkonen, T.: The structure
of optimal parameters for image restoration problems.
ArXiv e-prints (2015). ArXiv: 1505.01953

34. Reyes, J.C.D.L., Schönlieb, C.B.: Image denoising:
Learning noise distribution via pde-constrained optimisa-
tion. Inverse Problems and Imaging 7, 1183–1214 (2013)

35. Rockafellar, R.T.: Convex Analysis. Princeton University
Press, Princeton (1970)

36. Tappen, M.: Utilizing variational optimization to learn
MRFs. In: International Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 1–8 (2007)

37. Tsochantaridis, I., Joachims, T., Hofmann, T., Altun,
Y.: Large margin methods for structured and interdepen-
dent output variables. J. Mach. Learn. Res. 6, 1453–1484
(2005)

38. Vedaldi, A., Lenc, K.: Matconvnet – convolutional neural
networks for matlab (2015)

39. Zavriev, S., Kostyuk, F.: Heavy-ball method in noncon-
vex optimization problems. Computational Mathematics
and Modeling 4(4), 336–341 (1993)

40. Zheng, S., Jayasumana, S., Romera-Paredes, B., Vineet,
V., Su, Z., Du, D., Huang, C., Torr, P.: Conditional ran-
dom fields as recurrent neural networks. In: International
Conference on Computer Vision (ICCV) (2015)

http://lmb.informatik.uni-freiburg.de//Publications/2015/Och15
http://lmb.informatik.uni-freiburg.de//Publications/2015/Och15

	1 Introduction
	2 Outline
	3 Related Work
	4 The Bilevel Problem
	5 Computing descent directions
	6 Explicit derivative for exemplary algorithms
	7 ``Smoothing'' using Bregman proximity
	8 Toy example
	9 Application to Multi-Label Segmentation
	10 Conclusion

