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Abstract—Numerous scientific fields rely on elaborate but 

partly suboptimal data processing pipelines. An example is 
diffusion magnetic resonance imaging (diffusion MRI), a non-
invasive microstructure assessment method with a prominent 
application in neuroimaging. Advanced diffusion models 
providing accurate microstructural characterization so far have 
required long acquisition times and thus have been inapplicable 
for children and adults who are uncooperative, uncomfortable, or 
unwell. We show that the long scan time requirements are mainly 
due to disadvantages of classical data processing. We demonstrate 
how deep learning, a group of algorithms based on recent 
advances in the field of artificial neural networks, can be applied 
to reduce diffusion MRI data processing to a single optimized step. 
This modification allows obtaining scalar measures from 
advanced models at twelve-fold reduced scan time and detecting 
abnormalities without using diffusion models. We set a new state 
of the art by estimating diffusion kurtosis measures from only 12 
data points and neurite orientation dispersion and density 
measures from only 8 data points. This allows unprecedentedly 
fast and robust protocols facilitating clinical routine and 
demonstrates how classical data processing can be streamlined by 
means of deep learning.  
 

Index Terms—Diffusion magnetic resonance imaging (diffusion 
MRI), artificial neural networks, diffusion kurtosis imaging 
(DKI), neurite orientation dispersion and density imaging 
(NODDI). 

I. INTRODUCTION 
VER the past three decades, diffusion magnetic resonance 
imaging (diffusion MRI) [1]–[4] has taken on an important 

role in assessing microstructural tissue and material properties 
non-invasively based on the diffusion of gases and liquids, 
primarily water. In radiology, diffusion MRI is a powerful 
technique, mainly due to its sensitivity to diffusion restriction 
(e.g. caused by brain ischemia), yet also any other 
microstructural tissue rebuilding as found in neoplasms or 
inflammatory lesions. Its potential as a basis for diagnostic and 
treatment monitoring markers has been established over the last 
years [5]–[8]. Advanced diffusion MRI models such as 
diffusion kurtosis imaging [2], [3] (DKI) and neurite orientation 
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dispersion and density imaging [4] (NODDI) provide more 
accurate characterization of tissue microstructure [2], [4], [9]–
[11] but require long acquisition time. This has so far led to high 
scan costs and has made advanced diffusion models 
inapplicable for patients who are uncooperative, uncomfortable 
or unwell. 

A. Model Fitting, Analytical Solutions, Approximation 
In diffusion MRI, a number of diffusion-weighted images 

(DWIs) for different diffusion weightings1 and directions 
(constituting the so-called three-dimensional q-space) are 
acquired [1]. Signal intensity in these images contains 
information regarding diffusion properties. The task in 
quantitative diffusion MRI is to find a mapping from a limited 
number of noisy signal samples to rotationally invariant scalar 
measures that quantify microstructural tissue properties. This 
inverse problem is solved in each image voxel. Currently, this 
problem is addressed by three approaches. 

The classical approach of estimating scalar measures is 
model fitting. Its data processing pipeline consists of fitting [12] 
a diffusion model and calculating rotationally invariant 
measures from the fitted model parameters. Prior to model 
fitting, the q-space data can be obtained by regular acquisition, 
or using advanced methods such as compressed sensing or 
dictionary learning (cf. below). 

Another approach can be taken if closed-form analytical 
solutions exist. For the diffusion model of DKI [2], [3] – which 
requires approximately 150 DWIs [3], [13], [14] – it has 
recently been shown [15], [16] that for certain DKI-based 
measures much fewer DWIs (e.g. 13 or 19 DWIs) are sufficient, 
and that these measures can be analytically calculated from the 
data in a single step. This has led us to the assumption that for 
many other scalar measures and tissue properties the most 
relevant information might as well be recovered from only a 
few DWIs. 

The third approach of calculating scalar measures is 
approximation, particularly machine learning. Simulations of 
simplified tissue models with extensive sets of diffusion 
weightings [17], [18] indicate that standard model fitting 
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procedures can be replaced by approximation methods. It was 
also mentioned [18] that feature selection methods could be 
applied to identify the most relevant DWIs in order to reduce 
these extensive sets of diffusion weightings. On the basis of 
these observations, we apply deep learning [19]–[23] for 
accurate approximation and present a deep learning framework 
for different inputs (full and subsampled sets of regular DWIs, 
non-diffusion contrasts) and different outputs (denoising, 
missing DWI reconstruction, scalar measure estimation, tissue 
segmentation). Scalar measure estimation from twelve-fold 
accelerated acquisition is demonstrated on two advanced 
models: DKI [2] (using radial kurtosis and fractional kurtosis 
anisotropy) and NODDI [4] (using orientation dispersion index 
and intracellular volume fraction). In comparison to most of the 
well-established models (e.g. diffusion tensor imaging [1]), 
DKI and NODDI are more elaborate and thus can provide 
improved sensitivity [2], [4], [9]–[11]; however, they also 
require considerably longer acquisition times. By shortening 
the acquisition duration of advanced models by an order of 
magnitude, we strongly improve their potential for clinical use, 
and reduce scan costs and motion artifacts caused by long scan 
durations. 

B. Advantages of Deep Learning 
Deep learning [19]–[23] is a family of algorithms for 

efficient learning of complicated dependencies between input 
data and outputs by propagating a training dataset through 
several layers of hidden units (artificial neurons). Each layer is 
a data transformation step. The classical diffusion MRI pipeline 
involving model fitting also consists of several steps. In the 
example of DKI, approximately 150 measurements [3], [13], 
[14] are reduced to 22 model parameters in the classical 
pipeline, then to a few rotationally invariant measures, and 
finally (implicitly or explicitly) to one parameter, i.e. the tissue 
property of interest such as the amount of disease-based 
microstructural change. (For NODDI, rotationally invariant 
measures are estimated during model fitting rather than in an 
additional step, see Fig. 1a.) In every step, information is partly 
lost by reducing the degrees of freedom. However, the classical 
pipeline does not provide feedback from the later steps to the 
earlier steps with regard to what part of the information should 
be retained or discarded and which transformations should be 
applied. Thus, the pipeline relies on handcrafting and fixing 
each step, i.e. the diffusion model and derived scalar measures. 
Deep learning takes a more flexible approach: the effects of 
each layer on the final result are propagated back to adjust 
preceding layers, such that all layers are optimized jointly in 
terms of the final objective, namely minimizing the output 
error. This prevents the loss of information during intermediate 
steps. Advantages of deep learning over handcrafted features 
have been shown in numerous other applications [23]. 

The main novelties introduced herein are: 

 
2 This paper has supplementary downloadable material available at 

http://ieeexplore.ieee.org, provided by the authors. This includes additional 
methods (denoising and reconstruction of missing DWIs), formal algorithms, 
results for additional scalar measures, the q-space subsampling schemes, 

· Using subsampled DWIs as machine learning input 
directly, 

· Unprecedented scan time reduction for DKI and 
NODDI, 

· Segmentation without using diffusion models. 
Preliminary results presented at a conference [24] are herein 

extended by additional evaluation, including the influence of 
neural network parameters, and more2. Related applications of 
machine learning are tractography [25] and non-diffusion MRI 
[26]. 

II. MATERIALS AND METHODS 
The relationship between the diffusion-weighted signal and 

microstructural tissue properties is non-trivial. However, an 
appropriately chosen, tuned and trained machine learning 
algorithm can theoretically represent any relationship between 
inputs and outputs [27] if such a relationship exists. We make 
use of this fact in order to leverage information contained in 
very limited numbers of input DWIs. In all experiments 
presented in this work, training datasets originate from a 
different human subject than the test datasets. The proposed 
family of methods is termed “q-space deep learning” (q-DL). In 
q-DL, we treat each image voxel individually as a data sample. 

The task of estimating the vector m of scalar measures from 
the vector S of signal measurements can be formalized as 
follows. The analytical solution is as simple as calculating H(S), 
where H is the closed-form function that maps S to m. Such 
closed-form solutions are available only for certain measures 
and certain diffusion weightings [15], [16]. In model fitting, m 
is estimated as g(f(S)), where θ = f(S) are the estimated diffusion 
model parameters obtained through model fitting f by solving 
an optimization problem, e.g. least squares [12], and g 
calculates rotationally invariant scalar measures from θ. In 
DKI, the steps of applying f and g are independent and not 
optimized jointly with respect to the accuracy of estimation of 
m; in NODDI, f and g are one joint step; in all cases, fitting is 
susceptible to noise. In contrast, q-DL adjusts the parameters of 
a multilayer neural network such that the outputs of the network 
well approximate the target measures m. The measures m are 
obtained for the training dataset by model fitting, but model 
fitting is not required for the datasets to which the trained 
network is subsequently applied. 

A. Feed-Forward Neural Networks 
A so-called multilayer perceptron is a multilayer artificial 

neural network that performs a nonlinear data transformation in 
each layer. Layer 0 is called the input layer, layer L the output 
layer, intermediate layers are called hidden layers. The 
transformation in layer ݅ ∈ ሼ1, … ,  ሽ follows the ruleܮ

ܽ
ሺሻ ൌ ൫ܹሺሻݏ

ܽ
ሺିଵሻ  ܾሺሻ൯,         ሺ1ሻ 

where ܽ
ሺሻ is the output vector of layer i for data sample j, the 

vector ܽ
ሺሻ is the input of the network, W(i) is called the weight 

stability to different random initializations, reproducibility with respect to 
different choices of training and test datasets, quantitative comparison to 
compressed sensing, stability to head rotation. 
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matrix, b(i) the bias vector, and si are 
nonlinearities (see below). The length 
of the vector ܽ

ሺሻ corresponds to the 
number of artificial neurons (hidden 
units) in layer i. During training, all 
weight matrices and bias terms are 
jointly adjusted such that the output 
vectors ܽ

ሺሻ for each training sample 
j (in our case: each image voxel j) 
well approximate the target output 
vectors ݕ. This adjustment is 
achieved by using the 
backpropagation algorithm 
(implemented in the deep learning 
toolbox [28]) to solve the 
optimization problem 

argmin
ௐ,

ฮ ܽ
ሺሻ െ ฮݕ

ଶ



,         ሺ2ሻ 

where the sum of errors is taken over 
all training samples j, and the outputs 

ܽ
ሺሻ recursively depend on the 

parameters W(i) and b(i)  according to 
the aforementioned recursive 
transformation rule for the ܽ 

ሺሻ for ݅ ∈
ሼ1, … ,  ሽ. Once trained, such a neuralܮ
network works in a deterministic 
manner. 

B. q-Space Deep Learning 
The proposed pipelines based on q-space deep learning 

reduce scan duration and perform the data processing as directly 
as possible without discarding information at intermediate 
steps. This is reflected in the comparison of q-DL to the 
standard pipeline and to other state-of-the-art methods in terms 
of possible steps of data processing (Fig. 1). Previous methods 
based on machine learning rely either on extensive acquisitions 
or on intermediate steps involving model fitting based on 
diffusion tensor imaging (DTI) and spherical harmonics (SH), 
whereas q-space deep learning provides the fastest acquisitions 
and the most direct data processing steps. 

In all experiments, training data originate from different 
human subjects than test data. The neural networks thus do not 
“know” the true output vectors of the test data but rather 
estimate them based on the input-output-mapping learned from 
training data. Each voxel j is treated individually as a data 
sample. The algorithm does not know its location in the image. 
We introduce several input-output-mapping tasks. Different 
deep networks are trained for different tasks: 
1) Estimation of Scalar Measures 

A network is trained to predict microstructure-characterizing 
scalar measures mj directly from the (reduced set of) DWIs Sj,α 
where α is a pseudorandom subsampling multi-index (such that 
the q-space sampling is consistent across training and test data). 
In other words, inputs are ܽ 

ሺሻ ൌ ܵ,ఈ with length |α|, and targets 
are ݕ ൌ ݉. The length of the output vector is the number of 

considered scalar measures. Training targets ݕ ൌ ݉ are 
obtained from a fully sampled training dataset Sj (consisting of 
|Sj|=n DWIs) by model fitting; however, a neural network is 
trained to predict mj from the subsampled data Sj,α. As a 
consequence, the neural network is able to estimate mj from α-
subsampled datasets. This allows an estimation of mj at a scan 
time reduction factor of n/|α| for all subsequent datasets. In our 
experiments, we use scan time reduction factors of up to 
n/|α|=148/12≈12.3 for DKI and up to n/|α|=99/8≈12.4 for 
NODDI. 
2) Model-Free Segmentation 

Tissue segmentation is achieved by training a neural network 
to discriminate between several tissue types. We propose 
modifying the approach [29] of multi-parametric MRI tissue 
characterization by artificial neural networks such that the 
DWIs are directly used as inputs rather than using scalar 
measures obtained from model fitting. Our approach thus 
allows using the unique information provided by diffusion MRI 
directly without the information reduction imposed by models. 
State-of-the-art automatic segmentation [30], [31] (based on 
non-diffusion images with spatial priors) into healthy white 
matter (WM), grey matter (GM), cerebrospinal fluid (CSF) and 
multiple sclerosis lesions was used as ground truth for our 
proof-of-concept model-free segmentation (based on diffusion 
images without spatial priors). The q-DL framework allows 
incorporating additional contrasts other than DWIs as inputs to 
the learning algorithm. We used fluid-attenuated inversion 
recovery (FLAIR) signal as an additional input. The length of 
the output vector is the number of tissue classes (with each 

Fig. 1.  Possible steps of data processing from scanning a real-world subject (left) to the determination of the 
tissue properties (right). Standard DKI/NODDI pipeline is shown individually (a) and in comparison to advanced 
methods (b). Arrows designate possible data processing in the standard pipelines (solid red), state-of-the-art 
methods based on compressed sensing and machine learning (dash-dotted black) and novel processing 
possibilities introduced with q-space deep learning (dashed green), see also Ref. [24]. 
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output representing a relative class membership “likeliness” 
using softmax, see below). 

C. Details of the Neural Networks 
The deep learning toolbox [28] was used for deep learning 

experiments. The artificial neural network used is a multilayer 
perceptron with three hidden layers, each consisting of 150 
hidden units with a nonlinearity known as the rectified linear 
unit [19], [20], i.e. si(z)=max(0,z). This layout, applied to each 
image voxel independently, can be considered a convolutional 
neural network with window size 1×1 in each layer, masking 
out the loss for non-brain voxels. Linear units sL(z)=z are used 
in the output layer L for fitting tasks and softmax outputs 
sL(z)=exp(z)/ǁexp(z)ǁ1 for classification tasks. Each input and 
output of the neural network is independently scaled to the 
interval [0,1] and the same affine transformation parameters are 
reused for the test datasets. The network is initialized with 
orthogonal random weights [22]. We use a dropout [21] fraction 
of 0.1, stochastic gradient descent with momentum 0.9, 
minibatch size 128, learning rate 0.01 with a warm-up learning 
rate of 0.001 for the first 10 epochs. The learning rate was 
decreased by factor 0.9 whenever the training set error 
stagnated (averaged over 5 epochs) compared to the previous 5 
epochs. To prevent overfitting, 10% of the voxels in the training 
data set were used as a validation set and early stopping was 
employed when the validation set error (averaged over 10 
epochs) increased compared to the average over the previous 10 
epochs. These choices of the neural network parameters are 
based on practical considerations as described in Ref. [32]. We 
use a multilayer perceptron because it is a straightforward and 
powerful method. Three hidden layers provide acceptable 
results and short runtime for our purposes. Other network 
settings are evaluated in Fig. 6. In all experiments, training data 
originate from different human subjects than test data (except 
Fig. 12, panels (e,k,q,v)). For different q-space sampling 
schemes, the values of the network inputs (signal intensities) 
have a different meaning (and length), therefore a different 
network must be trained independently for every q-space 
scheme. 

D. Data 
Approval by the local ethics board for the in vivo study 

protocols and prior informed consent were obtained. In the 
multiple sclerosis data, datasets from five patients were used for 
training, and the dataset of the respective sixth patient was used 
for testing (in all combinations). In all other datasets, data from 
one healthy volunteer was used for training, and data from 
another healthy volunteer for testing. 
1) Five-Shell and Cartesian Healthy Volunteer Data 

Data sets of a total of two healthy volunteers were acquired 
using the common radial q-space scheme with 30 directions 
sampled on five shells (b=600, 1200, 1800, 2400, 3000s/mm²) 
and eight b=0 images. Ten repetitions of this scheme were 
acquired for each volunteer. Besides, Cartesian sampling [33] 
(515 points, bmax=3000s/mm²) was also performed. Echo-planar 
imaging was performed using a 3T GE MR750 MR scanner 
(GE Healthcare, Waukesha, WI, USA) equipped with a 32-

channel head coil (TE = 80.7ms, TR = 2s, FOV = 24cm × 24cm 
× 4cm, isotropic voxel size 2.5mm, ASSET factor 2). All data 
underwent FSL topup distortion correction [34], [35]. All DWIs 
were registered using an affine transformation [36] to 
compensate for motion. Advanced treatment of motion is 
subject of future work. Each volunteer data set contained 
approximately 40,000 brain voxels (i.e. training/test samples). 
2) Three-Shell Healthy Volunteer Data 

Data sets of a total of four healthy volunteers were acquired 
using a scheme optimized [13], [14] for DKI and suitable for 
NODDI [4]: three shells (b=750, 1070, 3000s/mm²) with 25, 40, 
75 directions, respectively, and eight b=0 images. Acquisition 
parameters and postprocessing were the same as for the five-
shell and Cartesian acquisitions. 
3) Human Connectome Project Data 

To demonstrate feasibility on a different scanner with 
different acquisition parameters, we used data sets of a total of 
two healthy volunteers from the Human Connectome Project 
(HCP) [37]–[44]. 
4) Multiple Sclerosis Data 

For tissue segmentation and lesion detection, six multiple 
sclerosis patients were scanned using a diffusion spectrum [33] 
random subsampling pattern with 167 DWIs (bmax = 
3000s/mm², TE = 80.3ms, TR = 5.4s, FOV = 24cm × 24cm × 
12cm, isotropic voxel size 2.5mm, ASSET factor 2).  

E. Experiments 
In all experiments, training data originate from different 

human subjects than test data. Estimation of scalar measures 
based on q-DL was performed on the five-shell, three-shell and 
HCP data for all subsampling sizes |α| from n down to 8 (as well 
as down to 1 for error evaluation). DKI-based radial kurtosis 
[45] was estimated for HCP data and five-shell data. Different 
networks were trained for these different q-space sampling 
schemes. NODDI-based neurite orientation dispersion index 
[4] was estimated for three-shell data. State-of-the-art model 
fitting [4], [12] (own implementation for DKI; NODDI Matlab 
toolbox for NODDI) and compressed sensing (CS) for 
Cartesian schemes based on dictionary learning [46] (followed 
by model fitting) were performed for comparison because they 
are the currently used approaches to estimate model-based 
measures (CS was applied to registered Cartesian data of the 
same volunteer). Model fitting of one fully sampled scan was 
used on the training set to generate output targets for q-DL 
training. The quality of the methods on the test data was 
evaluated in terms of root-mean-squared error: 

RMSE ൌ ඨ∑ ൫ ෝ݉ െ ݉,୲൯
ଶ

ୀଵ

ܬ
,         ሺ3ሻ 

where the sum is taken over all J voxels, the ෝ݉ are the results 
being evaluated, and the model fit of the nine additional 
independent repetitions of the scan was used for ground truth 
mj,gt (“reference standard”). The five-shell data were used for 
this evaluation. The fraction of voxels for which the q-DL value 
was close to the reference standard value was calculated for the 
different scalar measures. In addition to the neural network 
settings described above, different numbers of units per hidden 
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layer (between 50 and 750 in steps of 100) and different dropout 
fractions (between 0 and 0.5 in steps of 0.05) were compared. 
Using the three-shell datasets of four volunteers, the influence 
of three different training datasets on the same test dataset was 
compared, with reference standard obtained from fully-sampled 
model fitting. 

Model-free segmentation was applied to the multiple 
sclerosis data. State-of-the-art automatic segmentation [30], 
[31] into lesions, healthy WM, GM and CSF based on non-
diffusion images with spatial priors (see supporting information 
for details) was used as ground truth for our proof-of-concept 
model-free segmentation including diffusion images without 
spatial priors. The ground truth of the training data was used as 
output targets during training; the ground truth of the test data 
was used for segmentation quality evaluation. Segmentation 
quality was evaluated using the area under the curve (AUC) of 
the receiver operating characteristic (ROC). The deep learning 
models presented here cannot be more knowledgeable than the 
technique used to generate the labels. 

III. RESULTS AND DISCUSSION 
Figs. 2–5 compare the estimation of scalar measures 

produced by different methods. We show DKI-based radial 
kurtosis [45] of HCP data in Fig. 2 and of five-shell data in Fig. 
3 (with compressed sensing (CS) [46] applied to Cartesian data 
of the same volunteer in Fig. 3e–h) as well as NODDI-based 
neurite orientation dispersion index [4] of three-shell data in 
Fig. 4. State-of-the-art model fitting [4], [12] (Figs. 2a–d, 3a–d, 
4a–d), CS (Fig. 3e–h), and q-DL (Figs. 2e–h, 3j–m, 4e–h) are 
compared. Several numbers of used DWIs are compared, 
ranging from full sampling to 12-fold reduced scan time (scan 
time is shown in seconds per image slice). 

Compared with the standard pipeline, results of q-DL exhibit 
feasibility of scan time reduction by a factor of twelve.  Thus, 
protocols lasting about 30 minutes (Figs. 2–4 panel a) can be 
reduced to 2.5 minutes, strongly improving clinical feasibility. 

Fig. 5 compares the methods in terms of root-mean-squared 
error. This represents a quantitative evaluation of the results 
presented in Figs. 2–4. For DKI measures, q-DL always 
outperforms model fitting (Fig. 5a,b). Model fitting of 158 
DWIs (error: 0.306 (Fig. 5a), 0.195 (Fig. 5b)) is even 
outperformed by q-DL of 12 DWIs (error: 0.272 (Fig. 5a), 

Fig. 2.  Maps of radial kurtosis in the human brain for various methods and 
MRI scan acceleration factors. From left to right: 288, 40, 25 and 12 randomly 
selected DWIs are used. Model fitting followed by radial kurtosis calculation 
(a–d), and q-DL for radial kurtosis approximation (e–h) are compared. Model 
fitting is outperformed by the proposed method. 
 

 
Fig. 3.  Same as Fig. 2 (different scanner, different volunteer), including a 
comparison to compressed sensing (e–h). Required scan time for each
sampling scheme is shown in seconds per slice. Model fitting and compressed 
sensing are outperformed by the proposed methods. 
 

 
Fig. 4.  Same as Fig. 2 for neurite orientation dispersion index based on 
NODDI. The proposed method better preserves contrast at short scan times. 
 

Fig. 5.  Root-mean-squared error for different methods and different numbers 
of DWIs; estimation of radial kurtosis (a), fractional kurtosis anisotropy (b), 
intra-cellular volume fraction (c), and neurite orientation dispersion index (d); 
comparison of two different methods: model fitting (red) and q-DL (blue).
Reference standard is model fit of nine independent repetitions, i.e. 1422 
DWIs, registered to the test data. For DKI measures (a,b), model fitting is 
always outperformed by q-DL. For NODDI measures (c,d), model fitting is 
outperformed by q-DL if less than 70 DWIs are used. 
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0.150 (Fig. 5b)). For NODDI measures, q-DL outperforms 
model fitting when less than 70 DWIs are used (Fig. 5c,d).  

These curves demonstrate the trade-off between scan 
duration and quality provided by q-DL. Particularly, twelve-
fold reduced scan time provides an error magnitude similar to 
that of model fitting at full scan time (and for DKI-based 
measures even lower than that of model fitting at full scan time). 

For each number of subsampled DWIs, the subsampling was 
performed randomly and completely independently (but 
equally for the three compared methods). Thus, oscillations 
(amplitude of fluctuation) of the curves in Fig. 5 demonstrate 
the impact of random subsampling. Not all random 
subsamplings are equally useful. Among the compared 
methods, q-DL is most stable with respect to the choice of the 
samples, whereas model fitting decreases in stability (from very 
stable to unstable) with decreasing number of DWIs. Analogous 
variation was observed for repetitions of random subsampling 
instantiations when the number of DWIs was held constant (not 
shown). 

For model fitting of 158 DWIs, 95.0% of all voxels had a 
value within the interval mgt±0.5 (where mgt is the reference 
standard value) for radial kurtosis. The ratio was comparably 
high at 94.7% for q-DL of only 12 DWIs. For fractional kurtosis 
anisotropy, 81.0% of all voxels in model fit of 158 DWIs had a 
value in the interval mgt±0.3, whereas for q-DL of only 12 DWIs 
the ratio was as high as 95.9%. Intracellular volume fraction 
was estimated within mgt±0.3 by model fit of 158 DWIs in 

88.9% of all voxels, and by q-DL of 12 DWIs in 90.6%. For 
neurite orientation dispersion index, the ratios were 79.3% and 
85.3%, respectively. Thus, q-DL of as few as 12 DWIs provides 
comparable, and often a better, proximity to the true value 
compared to model fitting of as many as 158 DWIs. 

Table I shows the effects of different random subsampling 
schemes, training datasets and neural network initializations on 
the error. All results are very similar; each training dataset leads 
to good results. Accidental generation of a degenerate 
subsampling scheme or degenerate network initialization is 
extremely improbable, has not been encountered in practice, 
and can be easily checked for (using any qualitative or 
quantitative experiment). 

Fig. 6 shows the effect of neural network settings on the test 
set quality, indicating that using at least 150 hidden units per 
layer or a dropout [21] fraction of at least 0.05 improves the 
performance of q-DL. Results of other quality measures such as 
root-mean-squared deviation are analogous (not shown). Note 
that we merely compare the effect of different parameters on 
the test set, rather than performing definitive hyper-parameter 
fitting on a validation set. 

The final application of q-DL presented here is tissue 
segmentation and lesion detection. This task is achieved by 
training the neural network to discriminate between several 
tissue types based on the diffusion-weighted signal from the 
DWIs. In a proof-of-concept experiment, we used segmentation 

TABLE II 
COMPARISON OF REQUIRED NUMBER OF DWIS 

Method 
Number of 

DWIs required 
for DKI 

Number of 
DWIs required 

for NODDI 
References 

Standard Pipeline 150 99 [3], [4] 
Compressed 
Sensing 64 – [50] 

Machine Learning 
with model fitting – 30 [48] 

Analytical 
Solutions 

13-19 (specific 
measures only) – [15], [16] 

q-Space Deep 
Learning 12 8 proposed 

Comparison of suggested protocols and scan time for scalar measure 
estimation using different methods. q-Space Deep Learning provides the 
highest scan time reduction for both DKI and NODDI. 

 

 
Fig. 7.  Direct model-free tissue segmentation and lesion detection. When 
learning to discriminate multiple sclerosis lesions (red), healthy WM, GM and 
CSF based on DWIs and FLAIR, the proposed method segments the tissue 
types well and reliably detects lesions without using any diffusion model. 
Slices from datasets with the best (upper row, 0.938) and worst lesion AUC 
(lower row, 0.878) are shown. 
 

 
Fig. 6.  Correlation of radial kurtosis estimations using different dropout 
fractions and layer sizes for q-DL from 12 DWIs with radial kurtosis from 
fully sampled (148 DWIs) model fitting. 
 

TABLE I 
ERROR REPRODUCIBILITY 

Sampling 
Scheme 

Training 
Dataset 

Initialization 
1 

Initialization 
2 

Initialization 
3 

1 2 0.331 0.329 0.331 
1 3 0.321 0.320 0.321 
1 4 0.329 0.332 0.330 
2 2 0.337 0.345 0.332 
2 3 0.332 0.335 0.334 
2 4 0.340 0.340 0.340 
3 2 0.334 0.343 0.341 
3 3 0.327 0.326 0.329 
3 4 0.343 0.341 0.342 

Root-mean-squared error of radial kurtosis estimated by q-DL from 12 
DWIs of test dataset 1 for 27 experiments with different random subsampling 
schemes, different volunteer training datasets and different neural network 
initializations. 

 



IEEE TMI-2015-1057 7

into WM, GM, CSF and multiple sclerosis lesions. 
Segmentation results from q-DL are shown in Fig. 7. The AUC 
of the ROC for lesions ranged between 0.878 and 0.938 for six 
different patients. AUC for WM, GM and CSF was consistently 
above 0.894 for all patients. Thus, DWIs can be used directly 
for segmentation without a diffusion model, i.e. without the 
intermediate information loss detailed in section I.B. Tailoring 
the protocol to optimal results in specific applications is subject 
of future research. 

Other previously proposed methods, including machine 
learning methods [17], [18], [47]–[49] as well as state-of-the-
art compressed sensing [50] require more DWIs and several 
intermediate steps (see Fig. 1b). For the number of DWIs 
suggested for different methods, see Table II. Most notably, 
compressed sensing and machine learning publications suggest 
using 64 DWIs for DKI [50] and 30 DWIs for NODDI [48], 
whereas our methods work with only 12 DWIs for DKI and 8 
DWIs for NODDI. Previous work that uses the DWIs directly 
as inputs to machine learning for tissue characterization [17], 
[18] does not only use large numbers of DWIs but is also limited 
so far to Monte Carlo simulations only, rather than in vivo 
experiments. A related idea is the use of DWIs directly as inputs 
to machine learning for tractography [25]. 

When switching to another scanner such that the DWI 
intensities are not the same anymore, the intensities should 
either be normalized or the network should be retrained. The 
same holds for changes in acquisition parameters such as echo 
time. A network that is able to understand data from different 
settings is subject of future research. 

In all presented applications, neural network training takes 
about one minute on a desktop computer. The network needs to 
be trained only once and can be applied to any number of 
datasets, taking 0.03 seconds per dataset, as opposed to several 
minutes per dataset required by most model fitting methods. 
Analytical solutions [15], [16] of scalar measure estimation 
provide acceleration of acquisition and processing comparable 
to q-DL, but are limited to specific scalar measures and 
acquisition schemes. With q-DL, the acceleration factor can be 
freely chosen and all scalar measures can be obtained 
simultaneously. There is also freedom in the choice of the 
sampling; in particular, random sampling yields robust results. 

IV. CONCLUSIONS 
The presented scan acceleration factor twelve sets a new state 

of the art in DKI and NODDI and thus opens new perspectives 
for clinical protocols. The results indicate that a considerable 
amount of information is contained in a limited number of 
DWIs, and that this information can be better retrieved by deep 
learning than by model fitting. The number of used DWIs can 
be freely chosen and represents a better trade-off between scan 
duration and quality than provided by conventional methods. 

Our framework for model-free diffusion MRI can be used to 
estimate arbitrary tissue properties in various settings where 
ground truth training datasets are available. Future research 

 
3 In other words, we search for a set of contrasts that well captures disease-

related variation of the data; as opposed to principle component analysis and 

may focus on creating ground truth training data from 
simulations, scanned phantoms and histologically validated 
data. Moreover, q-DL is the first model-free diffusion MRI 
segmentation method, meaning that it uses q-space data directly 
and does not partly discard information at intermediate steps. 

Recent work [51] indicates that the complexity of state-of-
the-art diffusion models is at the limit of allowing a stable 
model fit to the noisy diffusion MRI data obtained in an 
acceptable scan duration. Herein we demonstrate the fact that 
omitting model fitting allows considerably more stable measure 
estimation at short scan durations; this might circumvent the 
fitting stability “bottleneck” when balancing scan duration 
against model complexity. 

Classical quantitative diffusion MRI requires creating a 
diffusion model that well captures disease-related tissue 
changes via its associated scalar measures. Subsequently, a set 
of MRI contrasts needs to be chosen (diffusion-weighted 
gradient strengths and durations, single-pulsed or other gradient 
forms, non-diffusion sequences) that allow estimating all 
parameters of the model. The presented segmentation and 
abnormality detection method on the other hand is concerned 
with finding a set of contrasts whose signal “vector” (signal 
values from all contrasts) is most strongly affected by disease3. 
Simulational tissue models can still drive the design of 
meaningful gradient forms, but subsequent experiments do not 
rely on any model – particularly, model parameters do not have 
to be estimated. This allows future research to explore 
experiment design using elaborate simulational tissue models 
with large numbers of microstructural parameters. In this 
framework, model complexity is not limited by ill-posedness of 
subsequent model parameter estimation. 

A combination of q-DL (requiring twelve times less DWIs 
than standard methods for estimation of arbitrary scalar 
measures) with simultaneous multi-slice imaging [39] (three-
fold accelerated acquisition of the DWIs) in future applications 
is straightforward, yielding an unprecedented 36-fold scan time 
reduction. 

Our recommendation in the short term is to use short 
acquisitions with q-DL instead of long acquisitions with fitting. 
In the long term, we recommend creating complex tissue 
models that are not limited by fitting instabilities and using 
model-free q-DL tissue characterization. 

The capability of q-DL to accelerate the acquisition by an 
order of magnitude and detect tissue changes without a 
diffusion model opens new perspectives for research in 
quantitative diffusion MRI and demonstrates the benefits of 
deep learning for multi-step data processing pipelines. 
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