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Abstract. In the past, manually re-drawing an image in a certain artis-
tic style required a professional artist and a long time. Doing this for a
video sequence single-handed was beyond imagination. Nowadays com-
puters provide new possibilities. We present an approach that transfers
the style from one image (for example, a painting) to a whole video se-
quence. We make use of recent advances in style transfer in still images
and propose new initializations and loss functions applicable to videos.
This allows us to generate consistent and stable stylized video sequences,
even in cases with large motion and strong occlusion. We show that
the proposed method clearly outperforms simpler baselines both quali-
tatively and quantitatively.

1 Introduction

There have recently been a lot of interesting contributions to the issue of style
transfer using deep neural networks. Gatys et al. [3] proposed a novel approach
using neural networks to capture the style of artistic images and transfer it
to real world photographs. Their approach uses high-level feature representa-
tions of the images from hidden layers of the VGG convolutional network [10]
to separate and reassemble content and style. This is done by formulating an
optimization problem that, starting with white noise, searches for a new im-
age showing similar neural activations as the content image and similar feature
correlations (expressed by a Gram matrix) as the style image.

The present paper builds upon the approach from Gatys et al. [3] and extends
style transfer to video sequences. Given an artistic image, we transfer its par-
ticular style of painting to the entire video. Processing each frame of the video
independently leads to flickering and false discontinuities, since the solution of
the style transfer task is not stable. To regularize the transfer and to preserve
smooth transition between individual frames of the video, we introduce a tem-
poral constraint that penalizes deviations between two frames. The temporal
constraint takes the optical flow from the original video into account: instead of
penalizing the deviations from the previous frame, we penalize deviation along
the point trajectories. Disoccluded regions as well as motion boundaries are ex-
cluded from the penalizer. This allows the process to rebuild disoccluded regions
and distorted motion boundaries while preserving the appearance of the rest of
the image, see Fig. 1.
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Fig. 1. Scene from Ice Age (2002) processed in the style of The Starry Night. Comparing
independent per-frame processing to our time consistent approach, the latter is clearly
preferable. Best observed in the supplemental video, see section 8.1.

In addition, we present two extensions of our approach. The first one aims
on improving the consistency over larger periods of time. When a region that
is occluded in some frame and disoccluded later gets rebuilt during the process,
most likely this region will have a different appearance than before the occlusion.
To solve this, we make use of long term motion estimates. This allows us to
enforce consistency of the synthesized frames before and after the occlusion.

Secondly, the style transfer tends to create artifacts at the image boundaries.
For static images, these artifacts are hardly visible, yet for videos with strong
camera motion they move towards the center of the image and get amplified.
We developed a multi-pass algorithm, which processes the video in alternating
directions using both forward and backward flow. This results in a more coherent
video.

We quantitatively evaluated our approach in combination with different op-
tical flow algorithms on the Sintel benchmark. Additionally we show qualitative
results on several movie shots. We were able to successfully eliminate most of
the temporal artifacts and can create smooth and coherent stylized videos.

2 Related work

Style transfer using deep networks: Gatys et al. [3] showed remarkable re-
sults by using the VGG-19 deep neural network for style transfer. Their approach
was taken up by various follow-up papers that, among other things, proposed
different ways to represent the style within the neural network. Li et al. [5]
suggested an approach to preserve local patterns of the style image. Instead of
using a global representation of the style, computed as Gram matrix, they used
patches of the neural activation from the style image. Nikulin et al. [7] tried the
style transfer algorithm by Gatys et al. on other nets than VGG and proposed



Artistic style transfer for videos 3

several variations in the way the style of the image is represented to archive
different goals like illumination or season transfer. However, we are not aware of
any work that applies this kind of style transfer to videos.

Painted animations: One common approach to create video sequences with
an artistic style is to generate artificial brush strokes to repaint the scene. Dif-
ferent artistic styles are gained by modifying various parameters of these brush
strokes, like thickness, or by using different brush placement methods. To achieve
temporal consistency Litwinowicz [6] was one of the first who used optical flow.
In his approach, brush strokes were generated for the first frame and then moved
along the flow field. Later, this approach was refined. Hays et al. [4] proposed
new stylistic parameters for the brush strokes to mimic different artistic styles.
O’Donovan et al. [8] formulated an energy optimization problem for an opti-
mal placement and shape of the brush strokes and also integrated a temporal
constraint into the optimization problem by penalizing changes in shape and
width of the brush strokes compared to the previous frame. These approaches
are similar in spirit to what we are doing, but they are only capable of applying
a restricted class of artistic styles.

3 Style transfer in still images

In this section, we briefly review the style transfer approach introduced by Gatys
et al. [3]. The aim is to generate a stylized image x showing the content of an
image p in the style of an image a. Gatys et al. formulated an energy mini-
mization problem consisting of a content loss and a style loss. The key idea is
that features extracted by a convolutional network carry information about the
content of the image, while the correlations of these features encode the style.

We denote by Φl(·) the function implemented by the part of the convolutional
network from input up to the layer l. The feature maps extracted by the network
from the original image p, the style image a and the stylized image x we denote
by P l = Φl(p), Sl = Φl(a) and F l = Φl(x) respectively. The dimensionality
of these feature maps we denote by Nl ×Ml, where Nl is the number of filters
(channels) in the layer, and Ml is the spatial dimensionality of the feature map,
that is, the product of its width and height.

The content loss, denoted as Lcontent, is simply the mean squared error be-
tween P l ∈ RNl×Ml and F l ∈ RNl×Ml . This loss need not be restricted to only
one layer. Let Lcontent be the set of layers to be used for content representation,
then we have:

Lcontent

(
p,x

)
=

∑
l∈Lcontent

1

NlMl

∑
i,j

(
F l
ij − P l

ij

)2
. (1)

The style loss is also a mean squared error, but between the correlations of
the filter responses expressed by their Gram matrices Al ∈ RNl×Nl for the style
image a and Gl ∈ RNl×Nl for the stylized image x. These are computed as

Al
ij =

Ml∑
k=1

Sl
ikS

l
jk and Gl

ij =
Ml∑
k=1

F l
ikF

l
jk . As above, let Lstyle be the set of layers
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we use to represent the style, then the style loss is given by:

Lstyle

(
a,x

)
=

∑
l∈Lstyle

1

N2
l M

2
l

∑
i,j

(
Gl

ij −Al
ij

)2
(2)

Overall, the loss function is given by

Lsingleimage

(
p,a,x

)
= αLcontent

(
p,x

)
+ βLstyle

(
a,x

)
, (3)

with weighting factors α and β governing the importance of the two components.

The stylized image is computed by minimizing this energy with respect to x
using gradient-based optimization. Typically it is initialized with random Gaus-
sian noise. However, the loss function is non-convex, therefore the optimization
is prone to falling into local minima. This makes the initialization of the stylized
image important, especially when applying the method to frames of a video.

4 Style transfer in videos

We use the following notation: p(i) is the ith frame of the original video, a is the
style image and x(i) are the stylized frames to be generated. Furthermore, we
denote by x′(i) the initialization of the style optimization algorithm at frame i.
By xj we denote the jth component of a vector x.

4.1 Short-term consistency by initialization

When the style transfer for consecutive frames is initialized by independent
Gaussian noise, two frames of a video converge to very different local minima,
resulting in a strong flickering. The most basic way to yield temporal consis-
tency is to initialize the optimization for the frame i+ 1 with the stylized frame
i. Areas that have not changed between the two frames are then initialized with
the desired appearance, while the rest of the image has to be rebuilt through
the optimization process.

If there is motion in the scene, this simple approach does not perform well,
since moving objects are initialized incorrectly. Thus, we take the optical flow
into account and initialize the optimization for the frame i+1 with the previous
stylized image warped: x′(i+1) = ωi+1

i

(
x(i)

)
. Here ωi+1

i denotes the function
that warps a given image using the optical flow field that was estimated between
image p(i) and p(i+1). Clearly, the first frame of the stylized video x′(1) still has
to be initialized randomly.

We experimented with two state-of-the-art optical flow estimation algorithms:
DeepFlow [12] and EpicFlow [9]. Both are based on Deep Matching [12]: Deep-
Flow combines it with a variational approach, while EpicFlow relies on edge-
preserving sparse-to-dense interpolation.
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4.2 Temporal consistency loss

To enforce stronger consistency between adjacent frames we additionally in-
troduce an explicit consistency penalty to the loss function. This requires de-
tection of disoccluded regions and motion boundaries. To detect disocclusions,
we perform a forward-backward consistency check of the optical flow [11]. Let
w = (u, v) be the optical flow in forward direction and ŵ = (û, v̂) the flow in
backward direction. Denote by w̃ the forward flow warped to the second image:

w̃(x, y) = w((x, y) + ŵ(x, y)). (4)

In areas without disocclusion, this warped flow should be approximately the
opposite of the backward flow. Therefore we mark as disocclusions those areas
where the following inequality holds:

|w̃ + ŵ|2 > 0.01(|w̃|2 + |ŵ|2) + 0.5 (5)

Motion boundaries are detected using the following inequality:

|∇û|2 + |∇v̂|2 > 0.01|ŵ|2 + 0.002 (6)

Coefficients in inequalities (5) and (6) are taken from Sundaram et al. [11].
The temporal consistency loss function penalizes deviations from the warped

image in regions where the optical flow is consistent and estimated with high
confidence:

Ltemporal(x,ω, c) =
1

D

D∑
k=1

ck · (xk − ωk)2 . (7)

Here c ∈ [0, 1]D is per-pixel weighting of the loss and D = W × H × C is
the dimensionality of the image. We define the weights c(i−1,i) between frames
i−1 and i as follows: 0 in disoccluded regions (as detected by forward-backward
consistency) and at the motion boundaries, and 1 everywhere else. Potentially
weights between 0 and 1 could be used to incorporate the certainty of the optical
flow prediction. The overall loss takes the form:

Lshortterm

(
p(i),a,x(i)

)
= αLcontent

(
p(i),x(i)

)
+ βLstyle

(
a,x(i)

)
+ γLtemporal

(
x(i), ωi

i−1(x(i−1)), c(i−1,i)
)
. (8)

We optimize one frame after another, thus x(i−1) refers to the already stylized
frame i−1.

Furthermore we experimented with the more robust absolute error instead of
squared error for the temporal consistency loss; results are shown in section 8.

4.3 Long-term consistency

The short-term model has the following limitation: when some areas are oc-
cluded in some frame and disoccluded later, these areas will likely change their
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appearance in the stylized video. This can be counteracted by also making use
of long-term motion, i.e. not only penalizing deviations from the previous frame,
but also from temporally more distant frames. Let J denote the set of indices each
frame should take into account, relative to the frame number. E.g. J = {1, 2, 4}
means frame i takes frames i−1, i−2 and i−4 into account. Then, the loss
function with long-term consistency is given by:

Llongterm

(
p(i),a,x(i)

)
= αLcontent

(
p(i),x(i)

)
+ βLstyle

(
a,x(i)

)
+ γ

∑
j∈J:i−j≥1

Ltemporal

(
x(i), ωi

i−j(x
(i−j)), c

(i−j,i)
long

)
(9)

It is essential how the weights c
(i−j,i)
long are computed. Let c(i−j,i) be the weights

for the flow between image i−j and i, as defined for the short-term model. The

long-term weights c
(i−j,i)
long are computed as follows:

c
(i−j,i)
long = max

(
c(i−j,i) −

∑
k∈J:i−k>i−j

c(i−k,i), 0
)
, (10)

where max is taken element-wise. This means, we first apply the usual short-
term constraint. For pixels in disoccluded regions we look into the past until
we find a frame in which these have consistent correspondences. An advantage
over simply using c(i−j,i) is that each pixel is connected only to the closest
possible frame from the past. Since the optical flow computed over more frames is
more erroneous than over fewer frames, this results in nicer videos. An empirical

comparison of c(i−j,i) and c
(i−j,i)
long is shown in the supplementary video (see

section 8.1).

4.4 Multi-pass algorithm

We found that the output image tends to have less contrast and is less diverse
near image boundaries than in other areas of the image. For mostly static videos
this effect is hardly visible. However, in cases of strong camera motion the areas
from image boundaries move towards other parts of the image, which leads to
a lower image quality over time when combined with our temporal constraint.
Therefore, we developed a multi-pass algorithm which processes the whole se-
quence in multiple passes and alternates between the forward and backward
direction. Every pass consists of a relatively low number of iterations without
full convergence. At the beginning, we process every frame independently. After
that, we blend frames with non-disoccluded parts of previous frames warped
according to the optical flow, then run the optimization algorithm for some it-
erations initialized with this blend. We repeat this blending and optimization to
convergence.

Let x′(i)(j) be the initialization of frame i in pass j and x(i)(j) the correspond-
ing output after some iterations of the optimization algorithm. When processed
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in forward direction, the initialization of frame i is created as follows:

x′(i)(j) =

{
x(i)(j−1) if i = 1,

δc(i−1,i) ◦ ωi
i−1
(
x(i−1)(j))+ (δ1 + δc(i−1,i)) ◦ x(i)(j−1) else.

(11)
Here ◦ denotes element-wise vector multiplication, δ and δ = 1−δ are the blend
factors, 1 is a vector of all ones, and c = 1− c.

Analogously, the initialization for a backward direction pass is:

x′(i)(j) =

{
x(i)(j−1) if i = Nframes

δc(i+1,i) ◦ ωi
i+1

(
x(i+1)(j)

)
+ (δ1 + δc(i+1,i)) ◦ x(i)(j−1) else

(12)

The multi-pass algorithm can be combined with the temporal consistency
loss described above. We achieved good results when we disabled the temporal
consistency loss in several initial passes and enabled it in later passes only after
the images had stabilized.

Fig. 2. Close-up of a scene from Sintel, combined with The Scream painting. a) With
temporal constraint b) Initialized with previous image warped, but without the con-
straint c) Initialized randomly. The marked regions show most visible differences. Error
images show the contrast-enhanced absolute difference between frame #1 and frame
#2 warped back using ground truth optical flow, as used in our evaluation. The effect
of the temporal constraint is very clear in the error images and in the corresponding
video.
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5 Experiments

In this section, we briefly describe implementation details and present experimen-
tal results produced with different versions of our algorithm. While we did our
best to make the paper self-contained, it is not possible to demonstrate effects like
video flickering in still images. We therefore advise the readers to watch the sup-
plementary video, which is available at https://youtu.be/vQk_Sfl7kSc.

5.1 Implementation details

Our implementation1 is based on the Torch [2] implementation called neural-
style2. We used the following layers of the VGG-19 network [10] for computing
the losses: relu4 2 for the content and relu1 1,relu2 1,relu3 1,relu4 1,relu5 1 for
the style. The energy function was minimized using L-BFGS. For precise evalua-
tion we incorporated the following strict stopping criterion: the optimization was
considered converged if the loss did not change by more than 0.01% during 50
iterations. This typically resulted in roughly 2000 to 3000 iterations for the first
frame and roughly 400 to 800 iterations for subsequent frames when optimiz-
ing with our temporal constraint, depending on the amount of motion and the
complexity of the style image. Using a convergence threshold of 0.1% cuts the
number of iterations and the running time in half, and we found it still produces
reasonable results in most cases. However, we used the stronger criterion in our
experiments for the sake of accuracy.

For videos of resolution 350 × 450 we used weights α = 1 and β = 20 for
the content and style losses, respectively (default values from neural-style), and
weight γ = 200 for the temporal losses. However, the weights should be adjusted
if the video resolution is different. We provide the details in section 7.2.

For our multi-pass algorithm, we used 100 iterations per pass and set δ = 0.5,
but we needed at least 10 passes for good results, so this algorithm needs more
computation time than our previous approaches.

We used DeepMatching, DeepFlow and EpicFlow implementations provided
by the authors of these methods. We used the ”improved-settings” flag in Deep-
Matching and the default settings for DeepFlow and EpicFlow.

Runtime For the relaxed convergence threshold of 0.1% with random initial-
ization the optimization process needed on average roughly eight to ten minutes
per frame at a resolution of 1024× 436 on an Nvidia Titan X GPU. When ini-
tialized with the warped previous frame and combined with our temporal loss,
the optimization converges 2 to 3 times faster, three minutes on average. Optical
flow computation runs on a CPU and takes roughly 3 minutes per frame pair
(forward and backward flow together), therefore it can be performed in parallel
with the style transfer. Hence, our modified algorithm is roughly 3 times faster
than naive per-frame processing, while providing temporally consistent output
videos.
1 GitHub: https://github.com/manuelruder/artistic-videos
2 GitHub: https://github.com/jcjohnson/neural-style

https://youtu.be/vQk_Sfl7kSc
https://github.com/manuelruder/artistic-videos
https://github.com/jcjohnson/neural-style
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5.2 Short-term consistency

We evaluated our short-term temporal loss on 5 diverse scenes from the MPI
Sintel Dataset [1], with 20 to 50 frames of resolution 1024 × 436 pixels per
scene, and 6 famous paintings (shown in section 7.1) as style images. The Sintel
dataset provides ground truth optical flow and ground truth occlusion areas,
which allows a quantitative study. We warped each stylized frame i back with
the ground truth flow and computed the difference with the stylized frame i− 1
in non-disoccluded regions. We use the mean square of this difference (that is,
the mean squared error) as a quantitative performance measure.

On this benchmark we compared several approaches: our short-term consis-
tency loss with DeepFlow and EpicFlow, as well as three different initializations
without the temporal loss: random noise, the previous stylized frame and the
previous stylized frame warped with DeepFlow. We set α = 1, β = 100, γ = 400.

A qualitative comparison is shown in Fig. 2. Quantitative results are in Ta-
ble 2. The most straightforward approach, processing every frame independently,
performed roughly an order of magnitude worse than our more sophisticated
methods. In most cases, the temporal penalty significantly improved the results.
The ambush scenes are exceptions, since they contain very large motion and the
erroneous optical flow impairs the temporal constraint. Interestingly, on average
DeepFlow performed slightly better than EpicFlow in our experiments.

Table 1. Short-term consistency benchmark results. Mean squared error of different
methods on 5 video sequences, averaged over 6 styles, is shown. Pixel values in images
were between 0 and 1.

alley 2 ambush 5 ambush 6 bandage 2 market 6

DeepFlow 0.00061 0.0062 0.012 0.00084 0.0035
EpicFlow 0.00073 0.0068 0.014 0.00080 0.0032
Init prev warped 0.0016 0.0063 0.012 0.0015 0.0049
Init prev 0.010 0.018 0.028 0.0041 0.014
Init random 0.019 0.027 0.037 0.018 0.023

5.3 Long-term consistency and multi-pass algorithm

The short-term consistency benchmark presented above cannot evaluate the
long-term consistency of videos (since we do not have long-term ground truth
flow available) and their visual quality (this can only be judged by humans).
We therefore excluded the long-term penalty and the multi-pass approach from
the quantitative comparison and present only qualitative results. Please see the
supplementary video for more results.

Fig. 3 shows a scene from Miss Marple where a person walks through the
scene. Without our long-term consistency model, the background looks very
different after the person passes by. The long-term consistency model keeps the
background unchanged. Fig. 4 shows another scene from Miss Marple with fast
camera motion. The multi-pass algorithm avoids the artifacts introduced by the
basic algorithm.
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6 Conclusion

We presented a set of techniques for style transfer in videos: suitable initializa-
tion, a loss function that enforces short-term temporal consistency of the stylized
video, a loss function for long-term consistency, and a multi-pass approach. As a
consequence, we can produce stable and visually appealing stylized videos even
in the presence of fast motion and strong occlusion.

Fig. 3. Scene from Miss Marple, combined with The Starry Night painting. a) Short-
term consistency only. b) Long-term consistency with J = {1, 10, 20, 40}. Correspond-
ing video is linked in section 8.1.

Fig. 4. The multi-pass algorithm applied to a scene from Miss Marple. With the default
method, the image becomes notably brighter and loses contrast, while the multi-pass
algorithm yields a more consistent image quality over time. Corresponding video is
linked in section 8.1.
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Supplementary material

7 Additional details of experimental setup

7.1 Style images

Style images we used for benchmark experiments on Sintel are shown in Figure 5.

Fig. 5. Styles used for experiments on Sintel. Left to right, top to bottom: ”Composi-
tion VII” by Wassily Kandinsky (1913), Self-Portrait by Pablo Picasso (1907), ”Seated
female nude” by Pablo Picasso (1910), ”Woman with a Hat” by Henri Matisse (1905),
”The Scream” by Edvard Munch (1893), ”Shipwreck” by William Turner (1805).

7.2 Weighting of the loss components

As mentioned in the main paper, for best results the weights α, β and γ of
different components of the loss function have to be adjusted depending on the
resolution of the video. The settings we used for different resolutions are shown
in Table 2.

Table 2. Weights of the loss function components for different input resolutions.

350× 450 768× 432 1024× 436

α (content) 1 1 1
β (style) 20 40 100
γ (temporal) 200 200 400



Artistic style transfer for videos 13

8 Additional experiments

8.1 Supplementary video

A supplementary video, available at https://youtu.be/vQk_Sfl7kSc, shows
moving sequences corresponding to figures from this paper, plus a number of ad-
ditional results:

– Results of the basic algorithm on different sequences from Sintel with differ-
ent styles

– Additional comparison of the basic and the multi-pass algorithm
– Additional comparison of the basic and the long-term algorithm
– Comparison of ”naive” (c) and ”advanced” (clong) weighting schemes for

long-term consistency
– Results of the algorithm on a number of diverse videos with different style

images

8.2 Robust loss function for temporal consistency

We tried using the more robust absolute error instead of squared error for the
temporal consistency loss. The weight for the temporal consistency was doubled
in this case. Results are shown in Figure 6. While in some cases (left example in
the figure) absolute error leads to slightly improved results, in other cases (right
example in the figure) it causes large fluctuations. We therefore stick with mean
squared error in all our experiments.

8.3 Effect of errors in optical flow estimation

The quality of results produced by our algorithm strongly depends on the quality
of optical flow estimation. This is illustrated Figure 7. When the optical flow
is correct (top right region of the image), the method manages to repair the
artifacts introduced by warping in the disoccluded region. However, erroneous
optical flow (tip of the sword in the bottom right) leads to degraded performance.
Optimization process partially compensates the errors (sword edges get sharp),
but cannot fully recover.

https://youtu.be/vQk_Sfl7kSc
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Fig. 6. Left: Scene from Ice Age (2002) where an absolute error function works better,
because the movement of the bird wasn’t captured correctly by the optical flow. Right:
Extreme case from Sintel movie where a squared error is far superior.

Fig. 7. Scene from the Sintel video showing how the algorithm deals with optical
flow errors (red rectangle) and disocclusions (blue circle). Both artifacts are somehow
repaired in the optimization process due to the exclusion of uncertain areas from our
temporal constrain. Still, optical flow errors lead to imperfect results. The third image
shows the uncertainty of the flow filed in black and motion boundaries in gray.
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