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Abstract

We present a variational approach for surface recon-
struction from a set of oriented points with scale informa-
tion. We focus particularly on scenarios with non-uniform
point densities due to images taken from different distances.
In contrast to previous methods, we integrate the scale in-
formation in the objective and globally optimize the signed
distance function of the surface on a balanced octree grid.
We use a �nite element discretization on the dual structure
of the octree minimizing the number of variables. The tetra-
hedral mesh is generated ef�ciently from the dual structure,
and also memory ef�ciency is optimized, such that robust
data terms can be used even on very large scenes. The sur-
face normals are explicitly optimized and used for surface
extraction to improve the reconstruction at edges and cor-
ners.

1. Introduction

Current structure from motion pipelines can create
sparse reconstructions of large scenes with thousands of im-
ages. Even city scale reconstructions have become feasible
[4]. Such large scenes come along with several challenges
for dense reconstruction. These include (1) an ef�cient
scene representation, both in terms of memory and com-
putational costs, (2) reconstruction of surfaces observed at
different levels of detail, and (3) graceful handling of noisy
and missing data.

In this paper, we deal with all three aspects. We pro-
pose for the �rst time to optimize a global cost function
that takes the scale of the imaged points into account. Such
scale adaptive reconstructions become important for scenes
that are too large to be modeled at a single scale or where
the focus of attention is concentrated on small parts of the
scene as shown in Fig.1.

Especially in these cases, the scene representation must
be ef�cient in memory and should adapt to the scene struc-
ture rather than to the size of the input data. Therefore, we
propose an octree representation in conjunction with point

Figure 1. Reconstruction of a scene with large differences in scale.
The top right and bottom left corner show a close-up view of the
respectively marked spots.

aggregation and a fast �nite element discretization of the
octree domain into a tetrahedral mesh based on the dual oc-
tree. Our discretization does not introduce additional nodes,
thus allowing us to state the optimization problem with a
minimum number of variables with respect to the the tree
structure. Together with the small memory footprint this
makes our approach suitable for the dense reconstruction
from a billion points.

By casting the reconstruction as a global optimization
problem we can complement the data fusion with regular-
ization to deal with noisy or missing measurements. To this
end, we use robust norms in the cost function. This is only
possible because we counter the high memory requirements
of robust norms by ef�cient storage of the data. To obtain a
faithful reconstruction also of edges and corners at all lev-
els of detail in the octree representation, we explicitly model
and optimize the surface normals.

The input to our method is a point cloud with normal
and scale information describing the size of the underlying
pixel or patch in the world coordinate system. Such data can
be obtained with off-the-shelf disparity estimation methods
and structure-from-motion packages. In particular, we used
the VisualSfM software [21, 20] to compute camera param-
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eters and [8] for estimating the depth maps.
Based on this input, in a �rst pass, we compute a bal-

anced octree representation of the scene by taking into ac-
count the sampling density and the scale of the points. The
scale information determines the octree levels to which each
individual point contributes.

In a second pass, we aggregate the points of each node in
the octree. We treat each point as a signed distance function
with compact support, the size of which is determined by
the point's scale. After aggregation of the signed distance
values and normals in each node we obtain a compact rep-
resentation that does not require access to the original point
cloud anymore.

Once the octree is built, we generate the dual octree
structure and its tetrahedral mesh. We then minimize a dis-
cretized version of our energy functional on the tetrahedral
mesh. The result of this optimization is a regularized signed
distance function and its gradient. We generate a triangle
mesh of its zero level set with a dual contouring approach
to visualize the reconstruction.

2. Related Work

Many algorithms have been proposed for volumetric in-
tegration of depth data. We focus here on the most closely
related ones.

Kazhdan and Hoppe [10] and Calakli and Taubin [1] take
as input a point cloud with normal information and glob-
ally optimize a surface representation. However, they do
not take the scale of points into account and without robust
norms they are not robust to erroneous data. We compare to
[10] and [1] in Section8. Recently, Estellerset al. [3] pro-
posed a version of [10] which uses a robust norm to penalize
deviations from the point normals but uses least squares for
the positions. They also do not deal with the scale.

To avoid artifacts due to different point resolutions,
Fuhrmann and Goesele [5] propose a fusion method that av-
erages samples from depth maps at compatible scales within
an octree data structure. They compute a weighted average
of signed distances similar to the VRIP method by Curless
and Levoy [2]. In contrast to VRIP, Fuhrmann and Goe-
sele use the scale information of each depth sample to se-
lect an appropriate octree level. In a later work Fuhrmann
and Goesele [6] use basis functions with compact support
that depend on the position, normal and scale of the point
samples. These basis functions are aggregated in an octree
representation. Both approaches by Fuhrmann and Goesele
are local approaches and lack global regularization capabil-
ities. We compare to them in Section8.

Our regularization is strongly related to Pocket al. [15],
who compute the signed distance function with robust en-
ergy terms for the data and a regularizer based on the total
variation. They propose a convex functional with a second
order total generalized variation (TGV) regularizer. The

TGV regularization introduces an additional vector-valued
function, which increases the computational complexity.
Moreover, their robust data terms based on the Huber norm
require storing all samples in memory during optimization.
Zach [22] proposed a memory ef�cient robust approach us-
ing histograms to store the signed distance values. Both
methods work on a regular grid, which prevents them to be
applied to large scenes or scenes with large differences in
scale.

Although some of the discussed methods [10, 1, 6] use
the normal information to compute the implicit function,
none of these methods uses normal information directly for
the surface extraction. In contrast, we explicitly optimize
the surface orientationand use this additional information
for extracting the surface, which yields a more faithful rep-
resentation of edges and corners.

3. Octree Generation

We represent the scene with a linear octree implementa-
tion analogous to [7]. To process the input data in parallel
we use the concurrent hash map implementation of Liet al.
[13] to store the location keys for the octree nodes.

Our goals for building an octree representation of the
scene are twofold. First, the octree should adapt to the scene
structure to reduce the required memory. Second, the octree
should allow a fast discretization of the energy functional
(9). To achieve this second goal we restrict the octree to be
balanced, i.e., the depth difference of adjacent leaf nodes
must be at most one depth level. This permits us to build
a tetrahedral mesh with lookup tables and guarantees that
there are no degenerated tetrahedra.

We start with building an unconstrained octree based on
an estimate of the distribution of the point density in space
and scale. With this estimate we decide where and at which
scale to create the leaf nodes. The input scale of the points
and the scene bounding box allow us to assign each point
to an octree level. With the edge lengthL of the cubic
bounding box, the edge length of an octree voxel at depth
d is l = L=2d. We assign a point with input scale� to
the highest octree leveld 2 f 0; ::; dmaxg with 2� � L=2d.
Together with the position of the point we compute the loca-
tion key for each input point. The location key describes the
depth and position of the voxel in the octree containing the
point sample. Sorting the points with respect to the location
keys yields a linear octree that only stores nodes containing
points. For each node we accumulate the density contribu-
tion of each point. We compute the point density for a voxel
with edge lengthl as

� =
X

i 2 P

� 3
i

l3 ; (1)

whereP is the set of points with the same location key as
the voxel. The assignment of a point to a compatible octree



(a) (b) (c) (d) (e)
Figure 2. (a) Quadtree before balancing. Each node stores the value of the scale functions. (b) Quadtree after balancing. The difference
of the quadtree level of adjacent nodes is limited to 1 by recursive splitting of nodes. Splitted nodes keep the original values of the scale
function. (c) Balanced quadtree (dashed) and its corresponding dual structure (solid red). Each node center becomes a vertex of the dual
structure. In contrast to octrees, the polygonal cells of the dual structure of a quadtree can be converted to a triangle mesh by just splitting
cells with 4 vertices into 2 triangles.(d) Primal sampling of a quadtree. Function values are stored in the vertices of the quadtree cells.(e)
Dual sampling of a quadtree. Function values are stored in the center of each cell. The dual sampling results in a lower number of samples
therefore reduces the memory and computational complexity for minimizing the energy functional (9)

level based on the scale limits the maximum contribution to
the point density to1=8. This discards points with a scale
too large to describe the surface at the speci�c octree level.
On the other hand, we want to keep high resolution point
samples at a smaller scale. To include these points in the
density estimate, we recursively add the (averaged) density
of child nodes to their parents. This procedure creates all
missing parent nodes up to the root node.

The sparsity of the octree is improved by removing nodes
that fall below a user de�ned density threshold. Nodes that
are ancestors of at least one node that passes the threshold
are kept to preserve a valid tree structure.

3.1. Octree Balancing

We balance the octree by splitting nodes recursively until
all leaf nodes satisfy the balancing criterion. Alternatively,
leaf nodes could be merged, but this can cause artifacts in
the reconstruction.

To preserve the resolution information of the uncon-
strained octree we de�ne a scale functions over the octree.
s stores the scale of the reconstruction at each node and is
initialized with the edge length of the corresponding octree
voxel. We uses to de�ne a scale aware energy model.

Splitting a leaf node creates the 8 child nodes and turns
the former leaf into an inner node. We assign the scale value
of the split node to the new leaf nodes. Passing on the scale
value prevents an arti�cial increase in the reconstruction's
resolution. We also eliminate mixed nodes by adding miss-
ing children. Fig.2 shows an example of a quadtree before
(a) and after balancing (b).

3.2. Point Aggregation

For each node in the balanced octree, we aggregate the
data of the input point cloud affecting this node. This yields
aggregated signed distance functionsf n and aggregated ori-
entationsgm that are used in the cost function in Section4.

In Fuhrmann and Goesele [5], this aggregation is the only
form of regularization. Since we globally optimize a cost
function, in our case the aggregation mainly serves the ef�-
cient representation of the raw input data.

We treat each point sample as a signed distance function
with a compact window functionW . The support radius of
the weighting functionW is the point's scale� i ; see also
Fig. 3. Moreover, we assign to each voxel a soft window
R with a compact support radiush proportional to the scale
of the voxel. This relates the in�uence computation to the
scale of the voxel and avoids missing points with a small
scale� i . For most of our experiments we useh = 3s(c)
with c as the voxel center. The signed distance value at the
voxel center for pointi is

f i (c) =
1
wi

Z
Rh (x � c)W� i (x � p i ) hn i ; c � x i dx; (2)

whereh�; �i denotes the dot product,n i is the measured sur-
face normal of the point, andp i is the position of the point.
The associated weight is

wi =
Z

Rh (x � c)W� i (x � p i ) dx: (3)

Gaussian windowsR and W would not have compact
support, and considering all points for all voxels would be
prohibitively slow. Besides, evaluating the integrals of (2)
and (3) can become computationally expensive even in case
of a closed form solution. To speed up computation, we
approximatef i andwi using the window function proposed
in [14]:

Rh (r ) =

(
315

64�h 9 (h2 � k r k2)3 if kr k � h
0 else.

(4)

It is fast to evaluate and frequently used in the smoothed
particle hydrodynamics literature.



We de�ne the weighting functionW for the point sample
as

W� i (r ) =

(
1 if kr k � � i

0 else.
(5)

With R andW as above

wi (c) �
4
3

�� 3
i Rh (p i � c) , and (6)

f i (c) �
1
wi

4
3

�� 3
i Rh (p i � c) hn i ; c � p i i = hn i ; c � p i i :

(7)

Since the orientation does not depend on the distance to the
point, the orientationgi induced by pointi simply reads

gi (c) = n i : (8)

Due to the compact support ofR, wi is zero for point
samples outside the radiush and the points can be ignored.
We reuse the spatial sorting of the input points with respect
to the location keys during density computation to acceler-
ate the radial search for candidates.

Again we discard points with a too large scale2� i >
s(c) but consider high resolution points with low scale val-
ues. In contrast to [6], where sample contribution only de-
pends on a window centered at the points, we can aggregate
the data also reliably for voxels at coarser levels.

Ef�cient Storage Instead of storing values for each point
inside the octree nodes, we use histograms and k-means
clustering to store a �xed number off n , wn andgm , wm for
each voxel. We store the signed distance valuesf i and the
corresponding weightswi for each point in the histogram
f n , wn with 8 bins. We use soft binning to reduce quanti-
zation effects. The minimum and maximum values of the
bin levelsf n are bound individually for each voxel by� h.
We reduce the number of normal hypotheses to 10 using an
online k-means clustering. We start with evenly distributed
cluster centers for 20 orientations. Each time we add a nor-
mal we update the cluster centersgm and the weightswm .
After adding all points for a voxel we pick the 10 clusters
with the largest weights. To further decrease the size in
memory, we quantize the normal direction of the selected
clusters with 8 bits for inclination and azimuth. We store
all weights of the histograms and the normal clusters in 16
bit half-precision �oating-point format. The total memory
footprint of the data term is 64 byte per voxel including
�elds for averaging color information.

4. Energy Model

The �nal reconstruction is obtained by minimizing the
energy

E(u; v ) = � 1Edatau + � 2Edatav + � 1Ecoupling+ � 2Esmooth

(9)

h

Rh

p i

n i

� i

W� i
c

s(c)

Figure 3. Data aggregation for a voxel centered atc. The aggrega-
tion windowRh is depicted by the outer circle shaded in green. Its
supporth depends on the value of the scale function at the voxel
centers(c). The weight functionW� i of a point sample at posi-
tion p i is shown as the smaller circle in blue. Its support depends
on the point's input scale� i .

over the signed distance functionu(x) and the normal vec-
tor �eld v (x), wherex is a coordinate inR3. In the follow-
ing, we dropx in the notation. The factors� 1;2 and� 1;2

steer the relative importance of the terms, which are de�ned
as

Edatau (u) =
Z

1
s

X

n

wn ju � f n j dx (10)

Edatav (v ) =
Z X

m

wm kv � gm k dx (11)

Ecoupling(u; v ) =
Z

kr u � vk2 dx (12)

Esmooth(v ) =
Z

skJv k dx: (13)

The normk�k denotes the Frobenius norm. It is not squared,
i.e., measurements can be ignored if the majority of data
points contradict them. This makes the energy robust to
erroneous points in the input data.

The termEcoupling couples the functionsu andv . The
squared term ensures thatv stays close to the gradient of
the signed distance function and vice versa.

Finally, the smoothness termEsmooth adds a regulariza-
tion to the vector �eldv by penalizing its JacobianJv . The
norm is non-quadratic, i.e.,Esmooth favours piecewise con-
stant vector �elds corresponding to planar surfaces. This
preserves discontinuities in the vector �eld, for instance, at
object edges or corners.

To make the energy functional aware of the reconstruc-
tion scale we introduce the scale functions in (10) and (13).
s de�nes the scale of the reconstruction at each position.
Low values result in a reconstruction with a high spatial res-
olution while high values correspond to a coarse reconstruc-
tion. The scale function relates the signed distance values



Figure 4. Two of the 27 possible cell con�gurations after rota-
tion normalization.Top Triangulation of a cubic cell with 5 tetra-
hedra (left), exploded view (center), corresponding octree (right).
Bottom Triangulation of a nonconvex cell with 6 tetrahedra (left),
exploded view (center), corresponding octree (right).

of u andf n in the energyEdatau to the reconstruction scale.
Without knowing the reconstruction scale we cannot tell if
a deviation of one meter betweenu and f n is signi�cant
or not. We can also sees as a spatially varying weighting
parameter, giving more weight to the data term in regions
with higher resolution. InEsmoothwe increase the smooth-
ing strength proportional to the scale to obtain a coarser re-
construction and decrease it to obtain a reconstruction with
�ne details. The functionsv , gm andr u describe direc-
tions and therefore are scale independent. While the vectors
in gm are forced to unit length, we do not enforce this forv
andr u to keep the functional convex.

5. Problem Discretization

To �nd the minimizer of (9), we discretize the functional
using a �nite element and �nite volume discretization. We
create a discrete problem with a �nite dimensional search
space based on the dual sampling of the octree, as shown in
Fig. 2(e). Dual sampling describes the domain by sampling
functions at the center of each octree node. This leads to
a smaller number of degrees of freedom and reduces com-
plexity.

We use the following approximations for the functionsu
andv in the coupling term (12) and the smoothness term
(13)

u(x) � ~u(x) =
P N

k Uk � k (x)
v (x) � ~v (x) =

P N
k V k � k (x)

; (14)

whereN is the number of nodes andUk , V k are the dis-
crete degrees of freedom of the respective approximations.
The global shape functions� k de�ne the interpolation of
the approximate functions~u and~v . Each shape function is
1 at its own node and 0 at all other nodes. We describe each
global shape function as a composition of local shape func-
tions de�ned on the tetrahedral elements. The local shape
functions de�ned on the tetrahedra are the linear barycentric

coordinate functions.
For the data terms (10) and (11) we use the approxima-

tions
u(x) � û(x) =

P N
k Uk I k (x)

v (x) � v̂ (x) =
P N

k V k I k (x)
(15)

with the indicator functionsI k as shape functions.I k is 1
inside the cubic voxel and 0 otherwise. Setting up the lin-
earized system requires us to compute the volume integrals
over the shape functions. For the shape functions� k we
must compute the integrals over the tetrahedra, while the
volume integral forI k is simply the volume of the voxel.

5.1. Tetrahedral Mesh Generation

Before triangulation (the generation of the tetrahedral
mesh) we compute the dual octree. We use the parallel al-
gorithm presented by Lewineret al. [12] to create the cells
of the dual octree. Fig.2(c) shows the dual of a quadtree.
Creating the dual swaps the roles of vertices and cells of the
octree. Each vertex in the primal octree becomes a cell in
the dual, and each vertex in the dual becomes a cell in the
primal; see Fig.2(d,e) for the positions of primal and dual
vertices of a quadtree.

We can generate a triangulation by decomposing the
cells of the dual octree. In the 2D quadtree example, as
shown in Fig.2(c), we can create a triangulation by split-
ting cells with four vertices into two triangles.

For octrees, the decomposition of the polyhedral cells
into tetrahedrons is more involved. This is due to the non-
planar faces with four vertices of some dual cells. Choosing
a triangulated surface for a nonplanar face makes at least
one of the adjacent cells nonconvex. Since the triangulation
of nonconvex polyhedra is a NP-complete problem [16], we
use a lookup table approach and precompute the triangula-
tion for all possible cell con�gurations.

We normalize the possible con�gurations for rotations to
keep the lookup table down to 27 entries. Fig.4 shows the
triangulation for two of the 27 con�gurations of the polyhe-
dral cells. The range of the created tetrahedra per con�gu-
ration is 2-6. To compute the triangulations, we have used
a naive algorithm as initialization. For the failure cases we
have manually generated the tetrahedral decomposition. We
encode the con�gurations in a compact 32-bit key. The key
uses quantized edge lengths of the cell and the octree level
of the vertices.

Our lookup table guarantees a tetrahedral mesh without
holes and without intersecting tetrahedra under the assump-
tion that the octree is balanced as described in Section3.1.

6. Energy Minimization

Two dif�culties arise with the minimization of en-
ergy (9). First, the energy functional consists of non-
differentiable functions and nonlinear terms. Second, the



problem size requires a minimization algorithm that makes
best use of the available memory and computing resources.

We �rst address differentiability by regularizing the non-
squared data terms (10), (11), and the smoothness term (13).
For the data termEdatau we replace the absolute value in
(10) with its regularized versionjaj � =

p
a2 + � 2. The

function jaj � is differentiable everywhere and has similar
properties as the Huber norm. In case of the data term (10),
we set the parameter� individually to the histogram bin
widths of the voxels. This avoids quantization artifacts in
the reconstruction. Analogously, we replace the Frobenius
norm with a modi�ed version. We set� = 10 � 3 for (11)
and (13).

To deal with nonlinearity we use an iterative reweighted
least squares approach. Within each iteration we solve a
linearized least squares problem using a parallel 8-color
Gauss-Seidel scheme, which is an in-place method and,
thus, has a small memory footprint. To speed up conver-
gence we employ a coarse-to-�ne scheme on top. Transi-
tions from a coarser grid to a �ner grid use the shape func-
tions� k for interpolation.

7. Surface Extraction

Once the signed distance functionu is computed we can
extract the surface as the zero level set. We use the dual con-
touring algorithm proposed by Juet al. [9]. The algorithm
can be applied to adaptive grids and additional information
can be used to improve the vertex placement. We use the ad-
ditional information about the surface orientation from the
vector functionv to compute vertex positions.

We compute the improved vertex positionq as the mini-
mizer of the quadratic error function

q = arg min
x

 
1
N

NX

i

hn i ; x � p i i
2 + kx � mk2

!

:

(16)
For each edge intersecting the surface, we add two plane
constraints with the intersection pointp i and the normals
of the adjacent edge verticesn i . The normalsn i equal the
degrees of freedomV k of the respective dual vertex.

The pointm is the center of gravity of the edge inter-
sectionsp i . In degenerate cases, where the normalsn i are
very similar,m stabilizes the solution and avoids vertex po-
sitions far away from the cell. Sincem does not depend on
the normals, it can be used for algorithms without normal
information. Fig.5 compares the positions ofq andm.

8. Results

We present results on synthetic and real data sets. For the
real data sets we use the Multi-View-Environment [19] and
[8] to create point clouds with scale information. Camera
parameters have been computed with [21], [20].

n1 n2;3

n4

+ -

++

p1;2

p3;4

m

q p i iso surface zero crossing on edge
n i estimated surface normals
m center of gravity of the

intersections p i

q optimized vertex position

Figure 5. Computation of the vertex position. The pointq min-
imizes the distances to the planes de�ned by(n i ; p i ) and to the
point m . Each edge intersecting the surface adds two plane equa-
tions to the quadratic error function (16).

Original Ours Ours*

FSSR PSR SSD

Figure 6. Reconstruction of a synthetic cube.Original: Origi-
nal cube.Ours: Our reconstruction using the center of massm to
place vertices.Ours*: Our reconstruction solving the QEF (16) to
compute vertex positions.FSSR: Floating Scale Surface Recon-
struction using marching cubes as in [11]. PSR: Poisson surface
reconstruction also using [11]. SSD: Smoothed Signed Distance
reconstruction using dual marching cubes [17]. The maximum oc-
tree depth was set to 5 for PSR, SSD and our method.

a

b

c

d

Figure 7. Effect of vertex positions being computed by solving
(16) on a real data set.Left: Reconstruction with limited octree
depth of 9 using dual contouring with improved vertex positions.
Right: Close-up views comparing the reconstruction of edges us-
ing the center of mass (a),(c) and the improved vertex positions
using normal information (b),(d). Using normal information to
compute vertex positions leads to a more faithful reconstruction of
edges and improves visual quality.



We compare to common state of the art methods like
Poisson Surface Reconstruction (PSR) [10], Smoothed
Signed Distance Reconstuction (SSD) [1] and Floating
Scale Surface Reconstruction (FSSR) [6]. We show that
our method achieves state of the art performance on sin-
gle scale as well as multiscale data sets. In addition, our
method compares favourably on data sets with many erro-
neous points, thus making our method applicable to a wider
range of reconstruction problems.

Sharp Features We compare surface meshes generated
with vertices placed at the average of the intersectionsm
and the improved positionq as shown in Fig.5. We also
compare with the marching cubes implementation of Kazh-
dan et al. [11], which is used by the PSR and FSSR al-
gorithm, and with the dual marching cubes algorithm by
Schaefer and Warren [17] used by SSD. We show recon-
structions of a synthetic cube in Fig.6 and a real scene in
Fig. 7. Our reconstruction with improved vertex positions
gives the best reconstruction. PSR and SSD yield a cube
with rounded edges and corners. FSSR exaggerates the
edges, which is an artifact of the large radius of the basis
functions. Our reconstruction using the pointm for posi-
tioning the vertices gives a similar result as SSD.

Multiscale Data Sets Fig. 8 shows a comparison of re-
constructions on the citywall data set provided with the
MVE tool [19]. Our method generates a dense, high detail
surface for all scales.

Following [6], we show the behaviour of SSD, FSSR and
our method for different point densities in Fig.10. FSSR
and our method correctly handle the regions with high den-
sity to reduce noise, while SSD adapts to the noise. The
experiment shows also the importance of regularization in
multiscale data sets. Our smoothness and data terms com-
plement each other giving a more uniform reconstruction.

Next we demonstrate that our method can be applied to
large scenes. The Breisach data set shown in Fig.9 contains
1.5 billion points and models an area of about10000m2.
Reconstruction with our method took about 4 days on a ma-
chine with 24 cores (Intel X7460 CPU @ 2.66GHz, 2008)
with a peak memory consumption of 151.8 GB. We were
able to reconstruct the scene with FSSR in only 3 days with
a memory peak of 164.5 GB on the same machine. Remem-
ber that our method performs a global optimization on the
whole octree with robust data terms. We could not recon-
struct the scene with PSR and SSD due to limited memory.

Temple Data Set We show that our method is competitive
with respect to accuracy on the standard benchmark [18].
To give a fair comparison, all methods have been evaluated
on theTemple fulldata set using the same input point sam-
ples. The results in Table1 show that our approach achieves

a b

c d

e f

Figure 9. Reconstruction of the Breisach data set with 1.5 billion
points. The left column shows the reconstruction with FSSR, the
right column shows our method. We have thresholded the FSSR
result with the provided clean-up tool to remove clutter from the
scene. A higher threshold starts to dissolve the reconstructed sur-
faces. Our method is able to reasonably �ll holes in the recon-
struction like the ground in (f) or the roof in (b). In regions with-
out data the regularization can extend surfaces in a wrong way like
the walls as seen in (b) at the bottom. The artifacts in (a,c,e) par-
tially stem from misaligned depth samples, which are problematic
for local methods like FSSR. Our method is more robust to such
small misalignments due to the regularization.

Accuracy

90% Thr. 97% Thr. 99% Thr.

PSR 0.36 0.56 0.84
SSD 0.38 0.56 0.75
FSSR 0.40 0.63 0.84
Ours 0.42 0.61 0.78

Table 1. Accuracy on the MVS MiddleburyTemple Fulldata set.

a similar performance as the tested state of the art methods.

Noise Robustness We demonstrate the robustness to
noise by reconstructing a car in Fig.11. The point cloud
contains many erroneous measurements and a high noise
ratio due to re�ections and transparent surfaces. The robust
terms in our energy model suppress noise and preserve de-
tails better than the other methods.

9. Conclusion

We have presented a global method for surface recon-
struction from point cloud data with scale information that



Ours
FSSR PSR Ours

Figure 8. Reconstruction of the Citywall data set from [19] with 256 million points. Left: Colored reconstruction of the whole scene
with our method. The annotations mark the three close-up views which are (top to bottom) the city model, the fountain and the lion heads.
FSSR:FSSR generates a detailed reconstruction of the scene but has problems with holes in the city model and shows artifacts in the basin
of the fountain. The artifacts are linked with the rest of the scene and cannot be removed easily. Of all methods, FSSR shows the best
reconstruction near the mouths of the lion heads.PSR:The reconstruction with PSR contains many noise artifacts. Some artifacts could be
removed with the provided clean-up tool in exchange for causing holes in the reconstruction as seen in the city model. The reconstruction
of the lion heads is too smooth due to a maximum octree depth of 14. Memory did not permit a reconstruction using a deeper octree.Ours:
Our method generates a surface without holes for the city model and preserves most of the concave structure between the houses. The
basin of the fountain has some small artifacts. In contrast to FSSR, the view to the bottom of the basin is not blocked by reconstruction
artifacts. The lion heads show all details but the surface of the taps of the lions is slightly underestimated. Results for SSD are not shown
because the method did not �nish after multiple days.

FSSR

SSD Ours

Figure 10. Reconstruction of a plane with three regions, each with
a different uniform point density. The scale value assigned to the
points corresponds to the sampling density of the central region.
Gaussian white noise was added to the points' position and nor-
mal. Top left: Input point cloud.Top right: With increasing den-
sity, FSSR effectively cancels out noise. In the low density region
it suffers from a too sparse sampling.Bottom left: SSD adapts
the scale to the point density and therefore models the noise in the
high density region. In the low density region noise is suppressed
by using a coarser scale for reconstruction.Bottom right: Our re-
construction looks more even in the high density region than that
of the other methods. The high density leads to a strong data term
but is also effective to cancel out noise. In the low density re-
gion the smoothness term dominates and the reconstruction looks
smoother than with SSD.

is ef�cient enough to handle 1.5 billion points. The method
is robust to noise and can �ll-in missing data in the recon-
struction. It combines good properties of previous methods
and is, thus, applicable to a wider range of scenes. We will
make the software publicly available.

FSSR

SSD PSR

Ours Ours

Figure 11. Top left: Input point cloud.FSSR:The FSSR method
shows strong artifacts. We used a scale parameter of 8 and ap-
plied the provided clean-up tool to threshold the mesh. Choosing
a higher threshold dissolves the car.SSD:The SSD method loses
details such as the side mirror. The roof of the car is too high and
the object boundary to the �oor is blurred.PSR:The surface gen-
erated with PSR has noise artifacts. The provided clean-up tool
removes the roof of the car and the background. Smaller thresh-
olds introduce wrong geometry on top of the car and clutter.Ours:
Our reconstruction generates a mesh with smooth surfaces and de-
tails such as the side mirror. The boundary between car and ground
exhibits an edge in the mesh.
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