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ABSTRACT

We propose a new robust, effective, and surprisingly simple ap-
proach for the segmentation of cells in phase contrast microscopy
images. The key feature of our algorithm is that it strongly fa-
vors dark-to-bright transitions at the boundaries of the (arbitrarily
shaped) segmentation mask. The segmentation mask can be effec-
tively found by a fast min-cut approach. The small but essential
difference to standard min-cut based approaches is that our graph
contains directed edges with asymmetric edge weights. Combined
with a simple region propagation our approach yields better segmen-
tation results on the ISBI Cell Tracking Challenge 2014 dataset than
the top ranked methods. We provide an easy-to-use open-source
implementation for ImageJ/Fiji and Matlab on our homepage.

Index Terms— cell segmentation, cell tracking, phase contrast
microscopy, graph-cut, min-cut, asymmetric boundary costs

1. INTRODUCTION

Since its invention around 75 years ago, phase contrast microscopy
[1] has become the premier choice to visualize thin transparent re-
gions in living cells (Fig. 1a). The advantageous high contrast at
the cell borders comes with several artifacts, like shade-off and halo
patterns [2], which complicate an automated segmentation. The
shade-off effect increases the inner cell intensity to the same level
as the surrounding medium, which hamper the application of simple
region-based approaches. Additionally both effects can introduce
strong edges inside and outside of the cell, which then guide stan-
dard edge-based algorithms (see Fig. 1b) to the wrong positions.

In this paper we propose a principled solution that makes use
of the fact that the true cell borders in positive phase contrast mi-
croscopy always appear as a dark-to-bright transition in outwards
direction. I.e. all borders with an inverse transition (bright-to-dark)
are definitely not the sought cell borders. For simple morphologies,
like roundish or star-shaped cells, the wrong borders could be easily
suppressed in a pre-processing step. However, for more complicated
morphologies (see Fig. 5) the outwards-direction depends on the lo-
cal border-normal of the resulting segmentation mask, which is not
available in advance. We solve this problem by minimizing an en-
ergy functional that searches for a segmentation mask and simulta-
neously favors dark-to-bright transitions at its boundary. Discretiza-
tion of this functional yields a combinatorial optimization problem
that can be solved efficiently by a min-cut approach (Fig. 1c). The
important difference to the usual application of min-cuts in image
segmentation is the use of a graph with directed edges and asymmet-
ric edge costs.

We show that this approach results in a large improvement re-
garding quality and robustness in phase contrast images. At the same
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Fig. 1: Cell segmentation for phase contrast images. (a) Raw image.
(b) Segmentation result with traditional graph cut (cyan), and ground
truth contour (yellow). (c) Segmentation result with the proposed
method (red).

time, it inherits all the advantageous properties of min-cut segmenta-
tion, like global optimality, simultaneous optimization of region and
boundary terms, and computational efficiency.

In combination with a simple segmentation propagation our ap-
proach yields better segmentation results on the ISBI Cell Track-
ing Challenge dataset than the top ranked methods (evaluated on the
challenge dataset). Furthermore, it is less complex and has fewer
tuning parameters than the top ranked method [3].

We will provide the Matlab source code and a ready-to-use
ImageJ/Fiji plugin upon publication at http://lmb.informatik.uni-
freiburg.de/resources/opensource/.

1.1. Related work

Cell segmentation in phase contrast images has recently been ex-
tensively studied by the Kanade group (e.g. see [4]). They propose
a two step approach by first reconstructing the absolute phase im-
age and then applying basic threshold techniques. This technique
works only for completely transparent samples. It fails if the sample
contains light absorbing structures, because absorption induced in-
tensity changes and phase-based intensity changes are indistinguish-
able in standard phase-contrast or DIC microscopic images. Ambühl
et al. [5] propose a series of morphological image processing steps
combined with level set approaches. They propose to overcome the
problem of the strong halo edges by changing the image during the
evolution of the level sets. They apply a morphological top-hat filter
to temporally hide these edges until the contour has passed by. The
approach by Magnusson et al. [3] is currently the top ranked method
on the ISBI Cell Tracking Challenge dataset [6]. It mainly relies on
a strong tracking approach using the Viterbi algorithm. To increase
the performance for the ISBI challenge, they applied a segmentation
algorithm based on bandpass filtering, thresholding and watershed
transform, which requires several parameters to be adjusted.

The usage of asymmetric boundary costs in the min-cut segmen-
tation was already proposed by Boykov in his original graph-cut seg-
mentation paper [7], but never found its way to the phase contrast
microscopy.

http://lmb.informatik.uni-freiburg.de/resources/opensource/
http://lmb.informatik.uni-freiburg.de/resources/opensource/
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Fig. 2: Asymmetric boundary costs promote low costs at charac-
teristic dark-bright intensity transitions at cells boundaries in phase
contrast microscopy. Boundary costs at each pixel are shown in sep-
arate maps for each direction in an 8-connected pixel neighborhood
(arrows indicate direction). Costs range from zero to one (black to
white). The phase contrast image is shown in the middle.

2. METHODS

2.1. Cell segmentation

Phase contrast microscopy allows to visualize transparent objects. It
turns the invisible phase shifts of the light waves originating from
the object into visible intensity changes by using interference with
the 90o phase shifted illumination wave. Ideally this would result in
an intensity decrease proportional to the object thickness. In reality
other effects induce additional shade-off and halo patterns [2], such
that the intensity drop is only reliably found at the object borders to
the surrounding medium.

We set up a segmentation energy functional for a mask M :
Ω → {0, 1} with Ω ⊂ R2 and the given image I : Ω → R. The
functional contains a data cost Cobj : R → R that depends on the
intensity, and an edge cost Cedge : R → R that depends on the
intensity gradient at the mask border in outwards direction

E(M) = λ

∫
Ω

M(x) · Cobj(I(x))dx

+

∫
Ω

Cedge

(〈
∇M(x),−∇I(x)

〉)
dx, (1)

where we define∇M to be a unit normal vector on the mask bound-
ary and 0 elsewhere. The data cost for a gray value v is derived
from the foreground intensity histogram P (v|O) and background
intensity histogram P (v|B) from training regions. We define it as
Cobj(v) = 1− P (v|O)/(P (v|O) + P (v|B)). The edge cost for the
intensity derivative d is computed as

Cedge(d) =

exp

(
− d2

2σ2

)
if d > 0

1 else.
(2)

I.e., the edge term in the energy functional favors dark-to-bright tran-
sitions at the mask borders.
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Fig. 3: Symmetric boundary costs, in contrast to asymmetric costs
(Fig. 2), also yield low costs at irrelevant boundaries at bright-dark
intensity transitions. Note that the pairs of opposed boundary maps
are redundant in the case of symmetric costs.

To optimize this energy, we discretize the edge term into 8 di-
rections and solve it by a min-cut as described in [7]. Compared to
the “standard” min-cut segmentation approach, our approach results
in a directed graph with asymmetric edge weights. In contrast, when
using exp(−d2/2σ2) for both cases in Equ. 2, an undirected graph
with symmetric edge weights is obtained.

Figs. 2 and 3 illustrate the benefit of using asymmetric costs
over symmetric costs at an example. Asymmetric costs allow to fa-
vor low boundary costs at characteristic dark-bright intensity tran-
sitions at cell boundaries in phase contrast images (Fig. 2). Sym-
metric costs however yield non-specific boundary costs, since also
irrelevant bright-dark transitions receive low costs (Fig. 3).

2.2. Cell tracking

Segmentation propagation Each frame is segmented using min-
cut, which yields a binary segmentation mask. To promote temporal
consistency, we propagate segmentation information from frame t to
frame t+ 1 in two fashions:

Foreground propagation: The eroded mask is set as hard fore-
ground constraint for the min-cut segmentation in the next frame.
This adds robustness to the region term in case of insufficient fore-
ground evidence. The size of erosion must be chosen at least as large
as the expected motion of object boundary pixels between frames.

Non-merging constraint: If it can be assumed that cells do not
merge, it is reasonable to prevent separate objects from merging in
the next frame. We achieve this by computing a distance transform
on the segmentation mask and applying watershed transform seeded
at the object locations. The boundaries of the herewith computed
“support regions” of each object are set as hard background con-
straint.

For tracking, each segmented object is assigned a unique label
that is propagated across the frames.



3. EXPERIMENTS

3.1. Dataset

We evaluated our method on challenging phase contrast microscopy
videos of moving cells published by the Second ISBI Cell Tracking
Challenge [6], [8]. We used the training dataset PhC-C2DH-U373
(provided by Dr. Sanjay Kumar from UC Berkeley). It contains two
2D sequences (115 frames each) of Glioblastoma-astrocytoma U373
cells on a polyacrylimide substrate. Cell segmentation and tracking
ground truth is included, along with evaluation tools. Segmentation
masks are available only for a subset of frames and cells.

3.2. Implementation details

Image intensities are normalized to the interval [0, 1] first. Then,
images are background corrected by subtracting the smoothed im-
age (large Gaussian kernel with σbgr) from the original image. Re-
gion histograms for computing the data costs in Equ. 1, are obtained
from manual foreground and background scribbles drawn by the au-
thors in one frame of each sequence (that is not contained in the
segmentation ground truth). For graph construction we use an 8-
neighborhood. The min-cut (with parameters λ, σ) is computed
using the maxflow algorithm MATLAB interface [9]. Small seg-
ments below pixel area amin are discarded. The method starts with
segmenting the first frame and then segments subsequent frames us-
ing segmentation propagation. Erosion for foreground propagation
is computed using a disk-shaped structuring element with radius
serosion. For evaluation, segmentation masks are post processed by
a hole-filling algorithm. We set these parameters: σbgr = 20px,
amin = 500px, serosion = 15px. Best performing parameters λ and σ
were found by grid-search. The method was implemented in MAT-
LAB.

3.3. Evaluation

Boundary detection results We compared the segmentation re-
sults obtained when using symmetric and asymmetric boundary
costs in terms of boundary detection recall and precision. Recall
measures the ratio of ground truth boundary pixels recalled by the
computed boundary pixels within 4 pixels tolerance. We used the
benchmark code from the Berkeley segmentation benchmark [10]
to compute boundary detection results. Tab. 1 shows boundary
detection results for both sequences and compares symmetric and
asymmetric costs. The results show that asymmetric boundary costs
perform better, especially in terms of recall. We also compared the
stability of results when varying the min-cut parameters λ and σ.
Fig. 4 shows that using asymmetric costs also yields more stable
results.

Boundary Seq. 1 Seq. 2
costs F-meas. Recall Prec. F-meas. Recall Prec.

Symm. 0.863 0.838 0.889 0.768 0.732 0.808
Asymm. (Equ. 2) 0.896 0.894 0.897 0.835 0.822 0.847

Table 1: Boundary detection results on the PhC-C2DH-U373 train-
ing dataset with 4 pixels tolerance. For comparing symmetric and
asymmetric boundary costs, best performing parameters λ and σ (in
terms of F-measure) have been chosen for each setting. Parameters
were obtained by grid-search over the parameter space, shown in
Fig. 4.

(a) Seq. 1 (symm.) (b) Seq. 1 (asymm.)

Fig. 4: Stability of results. F-measure of the boundary detection
results as function of the parameters λ and σ. F-measure isolines are
plotted in the range [0.5, 1.0] in 0.025 intervals. Black dots indicate
best performing parameters. (a) Results for the standard graph cut
with symmetric boundary costs. (b) Results for our approach using
asymmetric boundary costs. Our approach yields better results and
is less sensitive to the selected parameters. Compare to Tab. 1.

Qualitative results In Fig. 5 qualitative segmentation results are
given. They show improvements for detecting very weak phase con-
trast boundaries, e.g. Fig. 5a right column. Also the characteristic
halo artifacts in phase contrast microscopy are handled well, due to
segmentation at the correct dark-bright intensity transition. In con-
trast, symmetric boundary costs are strongly affected by the halo ef-
fect and predominantly show leaking segmentation at these borders.

Comparison to reported results We further evaluated our method
using asymmetric costs in the measures of the ISBI Cell Track-
ing Challenge (CTC) [6]. The “average segmentation performance”
(Av. SEG) measures the average intersection over union of all ref-
erence objects to their matching segmented objects. The “average
tracking performance” (Av. TRA) measures how difficult it is to
change the computed tracking graph to the ground truth graph. For
more details, we refer to [6]. Tab. 2a summarizes our results for
segmentation and tracking. For comparison Tab. 2b shows results of
the top ranked methods reported at the Second CTC [6]. Although
we could not perform a direct comparison on the challenge dataset
yet1, our results on the training dataset indicate a very competitive
performance, especially for segmentation.

Sequence Av. SEG Av. TRA

Seq. 1 0.8648 0.9830
Seq. 2 0.7563 0.9150

Seq. 1+2 0.8105 0.9490

(a) Our results

Group Av. SEG Av. TRA

KTH-SE [3] 0.7953 0.9818
HOUS-US 0.5323 0.9206
IMCB-SG 0.2669 0.9595

(b) Reported results

Table 2: Results on the PhC-C2DH-U373 dataset in terms of the
average segmentation and average tracking performance. (a) Our
results on the training dataset, obtained using best parameters from
grid-search (λ = 0.2, σ = 0.006), for best average segmentation
performance on Seq. 1+2. (b) Results of top ranked methods on the
challenge dataset, reported at the Second ISBI Cell Tracking Chal-
lenge [6].

Tab. 3 shows the gain achieved by adding segmentation propaga-
tion components for temporal consistency to our pure single-frame
segmentation approach.

1Final ranking of the Third CTC is scheduled for May-June, 2015.



Segmentation propagation Seq. 1+2
components Av. SEG Av. TRA

Asymm. only 0.7379 0.8962

Asymm. + FP 0.8027 0.9370
Asymm. + FP + NM 0.8105 0.9490

Table 3: Segmentation propagation components. Foreground
propagation (FP) yields significant improvements, since it supports
the data costs in case of insufficient foreground evidence. The non-
merging constraint (NM) improves results in case of false merging
segments.

(a)

(b)

Fig. 5: Qualitative segmentation results. Top rows show the raw
data. Cyan masks show results of the standard graph cut with sym-
metric boundary costs. Red masks show results of our approach
with asymmetric costs. The ground truth contour is shown in yel-
low. (a) Single frame results for cells of Seq. 1. (b) Time lapse
results of Seq. 2 for one cell on frames 5, 9, 15, and another cell on
frames 62, 68.

4. CONCLUSIONS

The segmentation of cells in phase contrast images is significantly
improved by using direction dependent boundary costs. Our ap-
proach outperforms the standard min-cut segmentation with sym-
metric boundary costs, and the top-ranked methods on the ISBI Cell
Tracking Challenge 2014 dataset.

We assume that cell segmentation in other modalities (transmit-
ted light, dark field, fluorescence, etc.) also profits from asymmetric
boundary costs. Our open-source ImageJ plugin and the MATLAB
implementation will enable a large audience to try it on their data
sets.
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