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Abstract. We propose a clustering method that considers non-rigid
alignment of samples. The motivation for such a clustering is training
of object detectors that consist of multiple mixture components. In par-
ticular, we consider the deformable part model (DPM) of Felzenszwalb
et al., where each mixture component includes a learned deformation
model. We show that alignment based clustering distributes the data
better to the mixture components of the DPM than previous methods.
Moreover, the alignment helps the non-convex optimization of the DPM
find a consistent placement of its parts and, thus, learn more accurate
part filters.

1 Introduction

Much variability among images of persons is due to viewpoint and deforma-
tion/articulation. This variation makes it hard to pick discriminative features.
Exemplar based classifiers are less affected by variation, as they learn the samples
by heart, but they do not generalize well. The deformable part model (DPM) [9]
has introduced two complementary concepts to deal with variation: mixture
components address very different viewpoints and deformable parts can handle
smaller viewpoint changes and articulation. Mixture components and a hierar-
chical part structure are also used in other recognition models, such as convolu-
tional neural nets [16]. With their deep hierarchy of mixture components, they
implement these concepts even more rigorously. However, the idea to also model
typical deformations by including deformation costs is unique to the deformable
part model.

As viewpoint labels and the part placement are not given in typical training
sets, these need to be inferred in conjunction with the classifier training. This
makes the training procedure a rather tough non-convex optimization problem,
where a good initialization is crucial. Felzenszwalb et al. [9] address this by
using the bounding box aspect ratio to initialize mixture components. Others,
building on [9], suggested clustering the HOG descriptors [1, 5, 12]. In all these
cases, parts are initialized at high energy positions of the root filters’ positive
weights. Initially, they do not account for deformation/movement within the
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Fig. 1. On a training dataset (left), we compute alignment vector fields between all
pairs of samples. This allows us to cluster the samples based on alignment-normalized
similarities (middle). These clusters serve as mixture components for the deformable
part model (right). The non-aligned samples in a cluster serve to train the root filter.
Thanks to the alignment, we know a good initial placement of parts, which leads to
more detailed part filters.

training samples, which leads to very blurred part filters in the first training
iterations.

In this paper, we suggest running an alignment procedure on the training
samples. This has two positive effects: (1) We enhance the clusters by enforcing
that all samples in a cluster are similar up to a “regular” deformation, which
directly results in stronger mixture components. (2) The initial part placement
is improved.

In particular, we allow for deformations that can be well represented by
the deformable model. We use distances for clustering that reflect this space
of deformations better than typical distances defined on non-aligned samples.
As a consequence, we obtain mixture components that generalize better over
deformations while the classifier can learn more detailed structures that are
specific to the respective component.

Additionally, the alignment allows us to initialize the part placement, since
it tells us where the part should be placed in each training sample. Hence, the
optimization of the DPM can train quite distinct part filters already in the
first iteration. As a consequence, the final part filters can capture more detailed
structures. An overview of our method is illustrated in Figure 1.

2 Related Work

Appearance based clustering of training data in the context of the deformable
part model by Felzenszwalb et al. [9] was proposed by Gu et al. [12]. The bound-
ing box aspect ratio is supplemented by a distance on the HOG descriptors as a
criterion to define the mixture components. A pure appearance based clustering
was proposed by Divalla et al. [5]. Clustering was also used in conjunction with
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simple template based models, e.g., in Aghazadeh et al. [1] and Hariharan el
al. [13]. An extreme variant, where each training sample defines its own mixture
component, was proposed in [18]. Based on that, Dong et al. [6] use a combi-
nation of appearance and shape, where shape is obtained from the respective
Exemplar-SVM.

Another line of work defines mixture components with the help of additional
supervision. This has been proposed in Zhu et al. [22, 23], where landmark an-
notation, respectively human clustering, is used. Two other approaches that fall
into this category are the poselets of Bourdev et al. [3,11] using keypoint anno-
tation and Azizpour et al. [2], where object parts are annotated in the training
images.

Alignment of training examples was also considered in the work of Gu et
al. [11]. For each manually selected cluster representative, its 32 nearest neigh-
bors are added to form a cluster. Both, their and our approach, align the exam-
ples with respect to the cluster representative. Different from their approach, we
select the representatives automatically and apply an unsupervised, non-rigid
alignment, whereas Gu et al. employ a transformation matrix optimizing the
Procrustes distance between the keypoints.

In terms of the overall framework, the work of Ladicky et al. [17] is most
related to ours, as it is the only one that combines the definition of mixture
components with an unsupervised alignment procedure. Ladicky et al. rely on a
locally affine model, which allows efficient optimization of the alignment variables
in the structured SVM. In contrast, we have a more general non-rigid deforma-
tion model for clustering and provide a strong initialization for the star-model
of Felzenszwalb et al. [9].

3 Alignment

Although HOG [4] is robust to some local deformation, clustering in HOG space
generally cannot deal with larger image transformations and deformations. For
example, already small rotation of the object in an image makes clustering fail.
To address this problem, we use a distance we proposed in [7] that normalizes
out all spatial transformations including non-rigid deformations and considers
the similarity of the aligned HOG features as well as the deformation energy. In
the scope of detection, we benefit from the alignment twice: The clusters improve
and within a cluster we obtain correspondences for the various object parts.

For each pair of examples we aim for the optimum deformation field that
aligns one example to the other. The cost function consists of the data term ED,
that aims for maximum feature overlap and a pairwise regularization term EP ,
that penalizes strong deformations:

E(u) = ED(u) + EP (u) (1)

This cost function is minimized with respect to the deformation field u. The
globally normalized version of the HOG features F/ ‖F‖2 allows us to compare
the alignment energies of different image pairs.
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Fig. 2. Optimization of the weight parameters. Left: Exemplar of the given keypoint
annotation. Right: l2 distance between the corresponding keypoints after alignment
with parameters λ1 and λ2, averaged over the image pairs. The optimum of 12.14 is
achieved with λ1 = 21 and λ2 = 900 (marked in red). The l2 distance before alignment
is 16.29.

3.1 Data term

We use a weighted combination of the l1-norm and the dot product, as we intro-
duced in [7]. The intuition behind this choice is to benefit from the robustness
of the l1-norm and the capability of the dot-product to match features of dif-
ferent magnitude. A grid search on the weighting parameters λ1 and λ2 shows
that the best results are achieved by a combination of both distances; see Fig-
ure 2. One may expect this result, because the l1-norm has problems matching
features of different magnitude, whereas the dot product tends to many-to-one
correspondences. The data term reads:

ED (u) =
∑
x

λ1 |F2(x + u(x))− F1(x)|1 − λ2〈F2(x + u(x)), F1(x)〉, (2)

where x are the coordinates of the grid points and F1(·), F2(·) denote the feature
representation of the images being aligned by u. The influence of the deformation
cost EP is implicitly handled by the weighting parameters λ1 and λ2.

We select these parameters automatically using the keypoint annotation pro-
vided in the Buffy training set, which coincide with the human joints; see Figure
2. The usage of keypoints in our work is restricted to the optimization of the
weighting parameters. For the non-rigid alignment, only HOG features are used.

In order to select the parameters, we take n pairs of images (I1, J1), ..., (In, Jn)

and the corresponding keypoint pairs (p1, q1), ..., (pn, qn). With u
(i,j)
λ1λ2

we denote
the alignment between image pair (Ii, Ji) under the parameters λ1, λ2, where the
optimal parameters correspond to the alignment that minimizes the l2-distance
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between corresponding keypoints:

argmin
λ1,λ2

1

n

n∑
i=1

∥∥∥qi − u(i,j)λ1λ2
(pi)

∥∥∥
2
. (3)

For a set of n = 20 pairs, we have an average l2-distance of 16.29 without
alignment. The best result is achieved with λ1 = 21, λ2 = 900, as shown in
Figure 2, yielding a distance of 12.14.

3.2 Deformation cost

The deformation cost is defined as the total variation of the deformation field u:

EP (u) =
∑

x,y∈N (x)

|u(x)− u(y)|1 , (4)

where N (x) denotes the neighborhood of x. In our experiments, we use a 4-
connected neighborhood. The total variation regularization prefers piecewise
constant deformation fields and allows for discontinuities in the deformation
field. This is necessary for handling the typical challenges of the dataset, e.g.
raising arms, change in viewpoint and occlusion of body parts.

The resulting optimization problem can be solved efficiently with the Fast
Primal-Dual solver of [14, 15]. On average, the alignment of a pair takes 0.11
seconds. The result is an approximation, but in practice it is very close to the
global optimum 1.

4 Clustering

4.1 Pairwise distances and spectral clustering

We directly use the energy E in (1) to define pairwise distances for clustering,
which includes both the matching cost and the deformation cost. Figure 3 illus-
trates that the nearest neighbors more often contain the same instance or other
similar instances if alignment is taken into account.

Based on the pairwise distances we apply spectral clustering [19,21], by con-
structing the affinity matrix A in the following way:

A(i, j) = e−
E(i,j)

2σ2 , (5)

with σ = 0.7. The alignment procedure and the derived distances are most
informative for small distances. In case of large distances, a good alignment
cannot be found, which indicates that the samples do not match. Therefore, we
only keep the affinities of the 20 nearest neighbors of each sample and set all
other affinities to zero. This ensures sufficient connectivity and keeps the graph

1 This can be read from the lower and upper bounds computed during optimization.
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Fig. 3. Nearest neighbor queries showing query image Q and its 10 nearest neighbors.
The 1st and 3rd row show the query result using HOG features without alignment.
The 2nd and 4th row use alignment energy E as distance and show the nearest neigh-
bors warped to the query image. The alignment based distance returns more similar
instances, demonstrating that it is more invariant to deformations than simple HOG
based distances.

of the dataset from splitting into tiny clusters, while at the same time a strong
preference is given to the most similar pairs. Since the 20 nearest neighbors are
not the same for a pair of samples and the alignment is not enforced to be a
diffeomorphism, the affinities are not symmetric. Thus, symmetry of the final
affinity matrix is enforced by using A+At.

4.2 Clustering performance

In order to evaluate the clustering performance and to justify some design choices
quantitatively, we add some additional annotation to the training data of the
Buffy dataset. Manually specifying unique ground truth clusters is impossible.
There are many cases in which even humans do not agree on whether an object
belongs to one or another cluster and setting the right number of clusters is
even more difficult. Hence, rather than specifying clusters, we label pairs of
examples by assigning them to one out of three categories. The first category
comprises the pairs that are clearly similar and should end up in one cluster.
The second category contains all pairs that are clearly different and should end
up in different clusters. The last category is ’unknown’ that takes all pairs, for
which an assignment to one of the two other categories is difficult to make.
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Fig. 4. Qualitative comparison between clustering in HOG space (no alignment) (left)
and alignment based clustering (right). For the visualization we used a 2D embedding
(obtained with multidimensional scaling [20]) of the corresponding affinity matrices.
Different colors indicate different clusters. Without alignment, some instances that
should belong to the same cluster, e.g., the two cross-armed women, the men at the
table, and the upper frontal bodies, end up in different clusters. With alignment similar
examples are mapped closer together, e.g., the men walking to the left and the men
from behind.

Based on this annotation, we can compute true and false positives, as well as
true and false negatives. In clustering, the Jaccard index, the Rand index and F-
score are frequently used quality measures obtained from these values. However,
one has to decide on the number of clusters using these measures, which is hard.
In our scenario, it is more appropriate to compute precision and recall for the
clustering. This way we do not need to fix the number of clusters and the average
precision (AP) serves as measure for the overall quality.

As the number of pairs is quadratic in the number of examples, the effort
to annotate all pairs is too high. However, we can resort to random sampling
and the effect of large numbers. Labeling m pairs of images resembles the true
distribution with a maximum deviation of

ε = z(1−α2 )
s√
m
. (6)

Here, z(1−α2 ) is the z-quantile of the normal distribution and s denotes the stan-

dard deviation. Due to the underlying Bernoulli distribution with s2 = p(1− p),
the upper bound of the standard deviation is 0.5. We manually labeled 4000
pairs of images and considering a confidence of 95% we obtain a maximum devi-
ation of ε ≤ 1.6%. This means the computed AP for the clustering is the center
of a confidence interval with length ≤ 3.2.
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Table 1. Average precision on the clustering task with and without alignment. Align-
ment improves the clustering AP by 4%. The deformation cost EP alone is not sufficient
for clustering.

ED, u = 0 (without alignment) 43.62

ED 47.88

EP (deformation cost only) 19.72

E = ED + EP 48.04

Table 2. Comparison of the DPM clustering and ours for a fixed number of clusters.
The left column shows the F-measure of the initial clusters and the right column after
reassignment by the mixture model. We evaluated the DPM with 3 and 5 aspect ratios,
corresponding to 6 and 10 clusters. Our alignment based clustering yields stronger
clusters than DPM.

At initialization After DPM training

DPM K = 6 0.3831 0.5012

DPM K = 10 0.4664 0.5013

E = ED + EP , K = 10 0.5251 0.5308

We evaluate the affinities of Equation 5 by varying the exponent correspond-
ing to the distance. Namely, the weighted combination of l1-norm and dot prod-
uct, the energy of the data term ED, the smoothness term EP and the total
energy of the alignment E. We achieve an improvement of more than 4% AP
using the energy of the alignment instead of the unaligned features, see Table 1.
Despite having an uncertainty of 1.6% this improvement is statistically signifi-
cant.

We also evaluate how well the internal optimization of the mixture compo-
nents of the DPM perform on the clustering task. The DPM first clusters the
samples based on the bounding box aspect ratio and then splits each group into
a so-called left- and right-facing cluster based on appearance. We evaluate 6 and
10 clusters (corresponding to 3 and 5 aspect ratios) and report the performance
of the initial clusters and the final ones (after running the full DPM training).
Since in this experiment the number of clusters is fixed and we only know a
single precision-recall point, we compare performance based on the F-measure.
As one may expect, Table 2 shows that optimization of the mixture components
by the DPM improves the clustering performance compared to the initial clus-
ter assignment. Therefore, the proposed clustering using non-rigid alignment E
yields better clusters than the DPM.

A qualitative comparison of the alignment based clustering is given in Fig-
ure 4. The alignment based distance provides cleaner clusters than the purely
appearance based distance. This is because the non-rigid alignment better deals
with deformation in the data and hence provides more meaningful matches (see
also Figure 3).
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5 Training the deformable part model

Given n training examples (x1, y1), ..., (xn, yn) with yi ∈ {−1, 1}, the DPM [9]
tries to infer the assignment zi ∈ {1, ...,K} of a sample i to one of K mixture
components, the hyperplane parameters wkj , bkj of a linear SVM for each mix-
ture component k and part j ∈ {1, ...M}, and the deformation parameters θkj
in a joint optimization process. The objective is highly non-convex. To initialize
the model, [9] first train a model with just the root filters and no parts. The
root filters then serve as an initialization for the parts.

5.1 Mixture components

Without parts, the training objective becomes that of a mixture of linear SVMs:

argmin
w

1

2

K∑
k=1

‖wk0‖22 + C

n∑
i=1

εi,

yi · szii ≥ 1− εi, εi ≥ 0,

zi = argmin
k

ski ,

ski = w>k0F (xi) + bk0

(7)

with regularization parameter C and slack variables εi. F (xi) denotes the fea-
ture representation (HOG) of sample i. The optimum parameters are estimated
by alternating optimization of SVM parameters wk0, bk0 and the latent assign-
ment variables zi. In fact, this strongly resembles clustering in an expectation-
maximization style. So even without parts there is a strong dependency on the
initialization.

In [9], the initial assignments zi are based on the bounding box aspect ratio.
Moreover, each cluster is split into left- and right-facing instances based on
similarity of the HOG descriptors. We replace these initial mixture components
simply by the clusters from the previous section.

5.2 Part filters

[9] derives initial part filters from the root filters. The root filters are upsampled
to the resolution of the part filters and parts are placed such that most of the
positive weights of the root filters are covered. Clearly, no deformation is consid-
ered for the initial placement of the parts. This is left to the overall optimization
over all model parameters.

We propose to use the non-rigid alignment from Section 3 to initialize the
relative positions of the parts. It is easy to see that this can be reduced to the
initialization procedure in [9] but using the clusters from Section 4 and warping
all samples within a cluster k to one representative sample rk of that cluster.
This is possible, since for each pair of samples the respective deformation field u
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Fig. 5. Part initialization with accurate auxiliary root filters shown for 5 out of 10
mixture components. Left: Samples from the clusters, red marks the representative
sample rk. Middle: Overlay of all samples with (right) and without (left) alignment
(images are histogram-normalized for better visualization). Right: Trained auxiliary
root filter with (right) and without (left) alignment. Especially for the two top-most and
the bottom cluster alignment leads to more detailed filters. In the head and shoulder
region this is visible particularly well.
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is available. The representatives rk are selected as the samples with the lowest
intra-cluster distance.

We train auxiliary root filters as in Section 5.1 but using the warped samples
and high resolution HOG features (the same resolution as the part filters). We
call these root filters accurate. Their only purpose is to obtain improved initial
part filters, which again can be set by covering most of the positive weights.

As shown in Figure 5, the accurate root filters are visibly more detailed since
the warped samples agree on the same location of the most important structures
of that filter. These details transfer to the initial part filters. We note that the
higher accuracy of the root filters is due to the alignment procedure. Running
the standard procedure just at a higher resolution has hardly any effect, since the
local variation of the samples makes it impossible to learn consistent filters. The
average sample image in Figure 5 clearly shows less detailed structures before
warping than after warping.

After initialization, we combine the resulting part filters with the standard
root filters (trained without aligning the samples to a reference sample). We
denote this approach as DPM+a. The same approach with the standard part
filter initialization is denoted as DPM+c. Both approaches run the final joint
optimization over all parameters as in [9].

6 Experimental evaluation

6.1 Dataset and evaluation method

For evaluation we use the Buffy dataset from [10] and PASCAL VOC 2007 [8].
The first was used in the closely related LADF detector by Ladicky et al. [17].
The dataset contains strong variation in illumination and truncated and occluded
persons. It is composed of scenes from episodes 2 − 6 of the fifth season of the
TV-series “Buffy the Vampire Slayer”. Since the dataset is based on videos and
there are multiple samples of the same instance at different poses in the training
set, it supports transitions between samples, whereas samples in datasets like
PASCAL VOC are much harder to link. As in [17], we use s5e2, s5e5, s5e6 for
testing and s5e3, s5e4 for training and validation. The training and test sets
contain 276 and 472 images, respectively.

As usual, a detection is counted as positive if the intersection over union ratio
with respect to ground truth bounding box is greater than 0.5. We report the
average precision (AP) over the test set.

6.2 Results

Table 3 compares the AP of alignment based clustering (DPM+c) and initial
part placement (DPM+a) against the classical DPM (with and without parts)
and the LADF detector by Ladicky et al. [17]2. The DPM model uses 3 aspect

2 The reviewing process revealed some inconsistencies between the dataset used in [17]
and the one that is available for download. For the public dataset a few corrections



12 Benjamin Drayer and Thomas Brox

Table 3. Average precision (AP) on detection for various approaches on the Buffy
dataset. Compared to the DPM [9] (with 3, 6 and 10 mixture components) we gain
about 2% AP by clustering (DPM+c). Improving also the part filters (DPM+a) leads
to another increase of 3% AP.

HOG DPM HOG DPM DPM HOG Ladicky
K = 3 K = 3 K = 6 K = 6 K = 10 clustering [17] DPM+c DPM+a

50.28 72.91 73.4 79.39 78.04 80.95 76.03 81.56 84.57
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Fig. 6. Precision-recall curves of our method (red) on the Buffy dataset. Baselines are
DPM without (dark blue and dark green) and with left-right-splitting (violet and ma-
genta). We clearly see that appearance based clustering improves the detection results
and that the alignment improves the results twice: first by optimizing the clustering,
which results in a better detection performance and second, by the better part place-
ment, which gives the major improvement.

ratios, with and without left-right-splitting, resulting in K = 6 and K = 3
mixture components. For our approach, we used K = 10 components, which
corresponds to the K components of the LADF detector. Figure 6 shows the
precision-recall curves of methods for which code was publicly available. Typical
detection results of our method are shown in Figure 7.

In the previous sections, we discussed the importance of good clustering as
initialization for the mixture model learning. The alignment based clustering as a
starting point for the mixture components (DPM+c) has indeed a positive effect
on detection with the DPM. It also slightly improves over clustering without
alignment indicating that the improvement is not only due to the larger number

in the annotation have been made, which is why the direct comparison to [17] should
be taken with a grain of salt. The comparison to DPM is fair and the DPM results
reported in [17] can be almost exactly reproduced when using DPM version 3 or the
newer version with left-right-splitting turned off.
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Table 4. Average precision (AP) on detection for the DPM (K = 6) baseline, DPM+c
and DPM+a on the PASCAL VOC 2007 test set. Classes with less variation or a
denser sampling e.g. aeroplane improve with the alignment, whereas classes with larger
variability, such as cat, are hard to align and performance drops.
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DPM+a 33.2 57.4 9.7 16.9 25.0 48.6 52.3 13.3 20.2 30.3
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DPM [9] 23.3 11.1 56.8 48.7 41.9 12.2 17.8 33.6 45.1 41.6
DPM+c 24.9 10.3 57.2 48.7 36.8 12.9 17 24.1 45.8 40.9
DPM+a 26.6 6.5 60.1 49.1 38.4 9.8 18.7 29.7 47.3 39.8

of mixture components3. The main boost in performance is due to the better
part initialization, included in DPM+a, which is due to the accurate root filters
trained on warped samples. In total, we get an improvement of more than 5%
AP compared to the DPM.

The results of the object detection on PASCAL VOC 2007 are shown in
Table 4. Both approaches DPM+c and DPM+a heavily depend on the alignment.
If the specific class is too diverse in pose and appearance, such as for cat, dog,
plant and person, alignment is too hard and even deteriorates the clustering and
the DPM training. On the other hand, subcategories with a strong connectivity
among the samples, such as for aeroplane, cow and horse, the DPM benefits from
both clustering and alignment. We believe that the alignment is most beneficial
when training samples from video showing the same instance in different poses
are involved. Apart from the Buffy dataset, few data of that sort is yet available.

7 Conclusions

We have presented a new clustering method based on a pairwise non-rigid align-
ment. In the experiments, we have shown that such a strategy is most reasonable
for datasets that allow for clear correspondences within subcategories such as
in videos. Detailed analysis on the Buffy dataset has shown that the alignment
improves the performance directly in terms of clustering AP

and indirectly by obtaining better detection results. Furthermore, we have
demonstrated that alignment can help initialize the part placement in the de-
formable part model.

3 More mixture components are not necessarily advantageous because a larger number
of components leads to a smaller number of samples to train each component.
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Fig. 7. Qualitative comparison between the detections of our model DPM+a(bottom
rows) and the DPM (top rows). Green boxes indicate correct detections with an in-
tersection over union ratio > 0.5; red boxes indicate false detections. With DPM+a,
we capture a wider range of variation that does not only manifest in more detected
people (ex 4, 7, 8, 12), but also in more precise bounding boxes (ex 6, 10, 11, 14). Both
methods fail in case of highly occluded or truncated people, as in ex 5 and 10. Instances
with few or no training data, as the sitting person in ex. 13, cannot be handled. These
would require additional mixture components with corresponding additional training
data.

It is worth noting that we finally optimize the same energy model as the
DPM. Apart from increasing the number of mixture components from K = 6 to
K = 10 the model has not changed. The improvement is only due to a better
initialization. This indicates that complex detection approaches which optimize
many mutually dependent parameters can benefit from stronger optimization
methods and sophisticated initialization strategies.
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