An iterated ¢; Algorithm for Non-smooth Non-convex Optimization
in Computer Vision

Peter Ochs!, Alexey Dosovitskiy!, Thomas Brox!, and Thomas Pock?

! University of Freiburg, Germany

{ochs, dosovits,brox}@cs.uni-freiburg.de

Abstract

Natural image statistics indicate that we should use non-
convex norms for most regularization tasks in image pro-
cessing and computer vision. Still, they are rarely used in
practice due to the challenge to optimize them. Recently,
iteratively reweighed {1 minimization has been proposed
as a way to tackle a class of non-convex functions by solv-
ing a sequence of convex {5-£1 problems. Here we extend
the problem class to linearly constrained optimization of a
Lipschitz continuous function, which is the sum of a con-
vex function and a function being concave and increasing
on the non-negative orthant (possibly non-convex and non-
concave on the whole space). This allows to apply the al-
gorithm to many computer vision tasks. We show the effect
of non-convex regularizers on image denoising, deconvolu-
tion, optical flow, and depth map fusion. Non-convexity is
particularly interesting in combination with total general-
ized variation and learned image priors. Efficient optimiza-
tion is made possible by some important properties that are
shown to hold.

1. Introduction

Modeling and optimization with variational methods in
computer vision are like antagonists on a balance scale.
A major modification of a variational approach always re-
quires developing suitable numerical algorithms.

About two decades ago, people started to replace
quadratic regularization terms by non-smooth ¢; terms [24],
in order to improve the edge-preserving ability of the mod-
els. Although, initially, algorithms were very slow, now,
state-of-the-art convex optimization techniques show com-
parable efficiency to quadratic problems [&].

The development in the non-convex world turns out to
be much more difficult. Indeed, in a SIAM review in 1993,
R. Rockafellar pointed out that: “The great watershed in
optimization is not between linearity and non-linearity, but
convexity and non-convexity”. This statement has been en-

2 Graz University of Technology, Austria
pock@icg.tugraz.at

Figure 1. The depth map fusion result of a stack of depth maps is
shown as a 3D rendering. Total generalized variation regulariza-
tion used for the fusion has the property to favor piecewise affine
functions like the roof or the street. However, there is a trade-
off between affine pieces and discontinuities. For convex ¢;-norm
regularization (left) this trade-off is rather sensible. This paper en-
ables the optimization of non-convex norms (right) which empha-
size the model properties and perform better for many computer
vision tasks.

forced by deriving the worst-case complexity bounds for
general non-convex problems in [17] and makes it seem-
ingly hopeless to find efficient algorithms in the non-convex
case. However, there exist particular instances that still al-
low for efficient numerical algorithms.

In this paper, we show that a certain class of linearly
constrained convex plus concave (only on the non-negative
orthant) optimization problems are particularly suitable for
computer vision problems and can be efficiently minimized
using state-of-the-art algorithms from convex optimization.

e We show how this class of problems can be efficiently
optimized by minimizing a sequence of convex prob-
lems.

e We prove that the proposed algorithm monotonically
decreases the function value of the original problem,
which makes the algorithm an efficient tool for prac-
tical applications. Moreover, under slightly restricted
conditions, we show existence of accumulation points
and, that each accumulation point is a stationary point.



e In computer vision examples like image denoising, de-
convolution, optical flow, and depth map fusion, we
demonstrate that non-convex models consistently out-
perform their convex counterparts.

2. Related work

Since the seminal works of Geman and Geman [13],
Blake and Zissermann [5], and Mumford and Shah [16]
on image restoration, the application of non-convex poten-
tial functions in variational approaches for computer vi-
sion problems has become a standard paradigm. The non-
convexity can be motivated and justified from different
viewpoints, including robust statistics [4], nonlinear partial
differential equations [20], and natural image statistics [14].

Since then, numerous works demonstrated through ex-
periments [4, 23], that non-convex potential functions are
the right choice. However, their usage makes it very hard
to find a good minimizer. Early approaches are based
on annealing-type schemes [13] and continuation methods
such as the graduated non-convexity (GNC) algorithm [5].
However, these approaches are very slow and their results
heavily depend on the initial guess. A first breakthrough
was achieved by Geman and Reynolds [|2]. They rewrote
the (smooth) non-convex potential function as the infimum
over a family of quadratic functions. This transforma-
tion suggests an algorithmic scheme that solves a sequence
of quadratic problems, leading to the so-called iteratively
reweighted least squares (IRLS) algorithm. This algorithm
quickly became a standard solver and hence, it has been ex-
tended and studied in many works, see e.g. [26, 19, 10].

The IRLS algorithm can only be applied if the non-
convex function can be well approximated from above with
quadratic functions. This does not cover the non-convex £,
pseudo-norms, p € (0, 1), which are non-differentiable at
zero. Candes et al. [7] tackled this problem by the so-called
iteratively reweighted ¢; (IRL1) algorithm. It solves a se-
quence of non-smooth ¢; problems and hence can be seen as
non-smooth counterpart to the IRLS algorithm. Originally,
the IRL1 algorithm was proposed to improve the sparsity
properties in ¢; regularized compressed sensing problems,
but it turns out that this algorithm is also useful for com-
puter vision applications.

First convergence results for the IRL1 algorithm have
been obtained by Chen et al. in [9] for a class of non-convex
¢>-£,, problems used in sparse recovery. In particular, they
show that the method monotonically decreases the energy of
the non-convex problem. Unfortunately, the class of prob-
lems they considered is not suitable for typical computer
vision problems, due to the absence of a linear operator that
is needed in order to represent spatial regularization terms.

Another track of algorithms considering non-convex ob-
jectives is the difference of convex functions (DC) program-
ming [2]. The general DC algorithm (DCA) alternates be-

tween minimizing the difference of the convex dual func-
tions and the difference of the convex functions. In the prac-
tical DCA convex programs obtained by linearizing one of
the two functions are solved alternately. Applying DC pro-
gramming to the function class of the IRL1 algorithm re-
quires an “unnatural” splitting of the objective function. It
makes the optimization hard as emerging proximity opera-
tors are difficult to solve in closed form.

Therefore, we focus on generalizing the IRL1 algorithm,
present a thorough analysis of this new optimization frame-
work, and make it applicable to computer vision problems.

3. A linearly constrained non-smooth and non-
convex optimization problem

In this paper we study a wide class of optimization prob-
lems, which include ¢3-f,, and ¢;-£,, problems with 0 <
p < 1. These are highly interesting for many computer
vision applications as will be demonstrated in Section 4.
The model we consider is a linearly constrained minimiza-
tion problem on a finite dimensional Hilbert space H of the
form

min F'(x),

min st. Az = b, (D)

with F': H — R being a sum of two Lipschitz continuous
terms

F(z) := Fy(x) + Fa(|z|).

In addition we suppose that F' is bounded from below,
Fi: " — RU{oo} is proper convex and Fp: Hy — R
is concave and increasing. Here, H denotes the non-
negative orthant of the space #; increasingness and the
absolute value |z| are to be understood coordinate-wise.
The linear constraint Az = b is given by a linear operator
A:H — Hy, mapping H into another finite dimensional
Hilbert space #1, and a vector b € H;.

As a special case, we obtain the formulation [9]

Fi(z) = [Tz —gl3, and  Fy(jz]) = Az

€,p’
where ||z|[2, = >.(|z:| + €)? is a non-convex norm for
0 <p <1, X e Ry, Tisalinear operator, and g is a vec-
tor to be approximated. This kind of variational approach
comes from compressed sensing and is related but not gen-
eral enough for computer vision tasks. In [9] an iteratively
reweighted ¢; minimization algorithm is proposed to tackle
this problem. In the next subsections, we propose a gener-
alized version of the algorithm, followed by a convergence
analysis, which supplies important insights for the final im-
plementation.



3.1. Iteratively reweighted ¢/; minimization

For solving the optimization problem (1) we propose the
following algorithm:

2F T = arg min F*(z)
Az=b
. )
= arg min Fy(z) + ||[w” - |1,
Ax=b
where w” - z is the coordinate-wise product of the vectors

w® and z, and w” is any vector satisfying
w* € OF(|2*)), (3)

where OF, denotes the superdifferential' of the concave
function F5,. We note that since F5 is increasing, the vector
w” has non-negative components.

The algorithm proceeds by iteratively solving ¢; prob-
lems which approximate the original problem. As F} is con-
vex, (2) is a linearly constrained non-smooth convex opti-
mization problem, which can be solved efficiently [8, 3, 18].
For more details on the algorithmic issue, see Section 4.

3.2. Convergence analysis
Our analysis proceeds in much the same way as [9]:

1. Show that the sequence (F'(z*)) is monotonically de-
creasing and converging.

2. Under additional constraints show the existence of an
accumulation point of the sequence (x*).

3. Under additional constraints show that any accumula-
tion point of the sequence (x*) is a stationary point
of (1).

Proposition 1. Let (%) be a sequence generated by Algo-
rithm (2). Then the sequence (F(x*)) monotonically de-
creases and converges.

Proof. Let 2**1 be a local minimum of F*(x). Accord-
ing to the Karush-Kuhn-Tucker (KKT) condition, there ex-
ist Lagrange multipliers ¢**! € #,, such that

0e ax'CFk (xk+17 qurl)a

where L pr (z,q) := F¥(x) —
function. Equivalently,

Aqu+1 c aFk (karl)

(q, Az — b) is the Lagrangian

OFy (2" 1) + wh - 9k,

This means that there exist vectors dF*1 S
OF (zM1), M1 € 9|z™1| such that
gkt — AquH _ kL kL (4)

'The superdifferential ® of a concave function F' is an equivalent of
subdifferential of convex functions and can be defined by 0F = —9(—F),
since —F' is convex.

We use this to rewrite the function difference as follows:

F(z*) — F(z")
= Fy(a*) — (") + Fy (\mkl) Fy(|z* )
> (a7 (a* — 2" + (wh) T (j2¥] — M)
_ (AT k+1) (.Z‘k $k+1)

+(wk) |$k‘ |Ik+1‘ Ck+1 X (xk k+1))

= (¢"") T (A"
( k+1 (b

— Az 4 (wh) T (J2*] -
+Zw ‘Jfk| k+1 k)>0
()

which means that the sequence decreases. Here in the first
inequality we use the definitions of sub- and superdifferen-
tial, in the following transition we use (4). In the next-to-
last transition we use that * and 2**! are both solutions of
the constrained problem (2) and c¢*+1 . 2*+1 = |2+ +1| by
definition of ¢**1. The last inequality follows from the fact
that w¥ > 0 and |z¥| > F 1k as [P < 1.

The sequence (F'(z )) decreases and, by property of I,
is bounded from below. Hence, it converges. O

k+1 . (Ek)

Proposition 2. Let (z*
rithm (2) and suppose

) be a sequence generated by Algo-

F(z) — oo, whenever ||z|| — oo and Ax =b, (6)

then the sequence (x*) is bounded and has at least one ac-
cumulation point.

Proof. By Proposition 1, the sequence (F(z*)) is monoton-
ically decreasing, therefore the sequence (x*) is contained
in the level set

L(z°) == {z: F(z) < F(2")}.

From Property (6) of F' we conclude boundedness of the
set L(z°) N {z : Ax = b}. This allows to apply the
Theorem of Bolzano-Weierstral3, which gives the existence
of a converging subsequence and, hence, an accumulation
point. O

For further analysis we need F5 to fulfill the following
conditions:

(C1) F; is twice continuously differentiable in 7, and
there exists a subspace H. C H such that for all
r € Hy holds: hTO?Fy(z)h < 0if h € H, and
hTO?Fy(x)h = 0if h € HE.

(C2) Fx(]z|) is a C'-perturbation of a convex function, i.e.
can be represented as a sum of a convex function and

a Cl-smooth function.

Lemma 1. Let (2%) be a sequence generated by the Algo-
rithm (2) and suppose (x*) is bounded and Condition (C1)
holds for F5. Then

Jim (OFy(|z*|) — 0F»(|z* 1)) = 0. (7)



Proof. See supplementary material. O

Proposition 3. Let (z*) be a sequence generated by Algo-
rithm (2) and Condition (0) be satisfied.

Suppose x* is an accumulation point of (x*). If the func-
tion Fy fulfills Conditions (C1) and (C2), then x* is a sta-
tionary point> of (1).

Proof. Proposition 2 states the existence of an accumula-
tion point z* of (z¥), i.e., the limit of a subsequence (7).
From (4) we have:

0=d'i + OF,(|z%~1|) - b — AT gk,
Combining this with (7) of Lemma | we conclude

lim ¢ =0, ¢ :=d" +0F(|z"|) & — ATgM.

Jj—oo
It’s easy to see that &/ € OLp(z*/). By Condition (C2)
and a property of subdifferential of a C'-perturbation of
a convex function [I1, Remark 2.2] we conclude that

0 € 0,Lp(z*). From Az* = b it immediately follows
that Az* = b, ie, 0 € 9,Lp(z*), which concludes the
proof. O

4. Computer vision applications

For computer vision tasks we formulate a specific sub-
class of the generic problem (1) as:

in F(z) = min F F
min F(z) = min 1y () + Fo(|2()

, T )
= min [|Tz — g[[g + A Fy(|z]),

where Fo: H, — H is a coordinate-wise acting increas-
ing and concave function, A: H — Hy, T: H — Ho are
linear operators acting between finite dimensional Hilbert
spaces H and H; or H,. The weight A € H, has non-
negative entries. The data-term is the convex £,-norm with
q > 1. Prototypes for F5(|z|) are

|z;] = (Jzi| +€)P or |z — log(1+ Blzi]), Vi, (9)

i.e., the regularized {,-norm,0 < p < 1, e € Ry, or a non-
convex log-function (c.f. Figure 2). In the sequel, the inner
product F, = ATF, uses either of these two coordinate-
wise strictly increasing regularization-terms. The {,-norm
becomes Lipschitz by the e-regularization and the log-
function naturally is Lipschitz.

Algorithm (2) simplifies to

2" = arg frlninb |Tx — g3+ |diag(A)(w” - z)[|1, (10)
=

where the weights given by the superdifferential of F5 are

R . b

w) =—2 i
(s e AR

2Here by stationary point we mean x* such that 0 € L (z*).

2.5 T T T T T T y 4
—x]
(1x1+0.01)M2) )
log(1+2|x])

15

Figure 2. Top right: Non-convex functions of type (9): ¢1-norm,
£p-norm with p = 1/2, and log-function with 5 = 2.

respectively. By construction, Proposition 1 applies and
(F(z*)) is monotonically decreasing. Proposition 2 guar-
antees existence of an accumulation point given Condi-
tion (6) being true. This is crucial for solving the optimiza-
tion problem. The following Lemma reduces Condition (6)
to a simple statement about the intersection of the kernels
ker of the operators T" and diag(A) with the affine constraint
space.

Lemma 2. Let
ker T' N ker diag(A) Nker A = {0}. (12)
then F () — oo, whenever ||x|| — oo and Az = b.

Proof. By Condition (12) we have

ker A = (ker T'Nker A) @ (ker diag(A) Nker A)
® (ker A/((ker T’ @ ker diag(A)) Nker A)). (13)

For any z such that Az = b this gives z = 20 + e! +
e? + e3, where 20 is a fixed point such that Az® = b and ¢’
lie in respective subspaces from the decomposition (13). If
||z|| — oo, then max; ||e?|| — oo. Itis easy to see that then
the maximum of summands in (8) goes to infinity. O

Considering Proposition 3; as our prototypes (9) are one-
dimensional it is easy to see that (C1) and (C2) are satis-
fied (c.f. Lemma 3 of supplementary material for details).
Therefore, only Condition (12) needs to be confirmed in or-
der to make full use of the results proved in Subsection 3.2.

In the sequel, for notational convenience, let I,, be the
identity matrix of dimension dim(u) x dim(w). The same
applies for other operators, e.g., T,, be an operator of di-
mensions such that it can be applied to u, i.e., a matrix with
range in a space of dimension dim(u).

Using this convention, we set in (8)

T = (U‘?U)Tv T= (1(;71 8) y § = (guaO)Tv

A=(0,(1/N),)", A= (K, —I),b=(0,0)",



where T’ is a block matrix with operator 7;, and zero blocks.
This yields a template for typical computer vision problems:

muin)\HTuu—guHZ—|—F2(|Kuu|). (14)

The Criterion (12) in Lemma 2 simplifies.

Corollary 1. Let T, be injective on ker K,,. Then, the se-
quence generated by (10) is bounded and has at least one
accumulation point.

Proof. The intersection in Condition (12) equals

ker T' N ker diag(A) Nker A

= {(u,v)" :u€kerT,} N{(u,0)"}
N {(u,v)" : Kyu = v}

= {(u,0)" :u € kerT, Au € ker K, },

where the latter condition is equivalent to T}, being injective
on ker K,,. Lemma 2 and Proposition 2 apply. O

Examples for the operator K, are the gradient or the
learned prior [15]. For K, = V., the condition from
the Corollary is equivalent to 73,1,, # 0, where 1,, is the
constant 1-vector of same dimension as u.

We also explore a non-convex variant of TGV [0]

riulﬂl M Tuw = gulld + a1 Fo(|Vuu — w|) + aa Fa(|Vywl),

5)
or as constrained optimization problem
. e’ @
min_ | Tou = gull§ + - Fa(l21]) + 5 Fa(lz2])
U, W,z21,22
(16)

s.t.z1 = Vyu —w

z9 = Vyw,

which fits to (8) by setting

T = (U7U),21,22)T, T =

cooMH
cooo
cooo
cooo

g = (gua Oa O,O)Tv A= (07 07 (al/)\)zla (a2/)\)ZQ)Ta
AN -1, I 0 _ T
4= <0 o L _Izz), b= (0,0)".
The corresponding statement to Corollary 1 is:

Corollary 2. If T, is injective on {u : It € R: V,u =
t1,}, then the sequence generated by (10) is bounded and
has at least one accumulation point.

3V, does not mean the differentiation with respect to u, but the gradi-
ent operator such that it applies to w, i.e, Vi, has dimension 2 dim(u) X
dim(u) for 2D images.

Proof. The intersection in Condition (12) equals

{(u,w, 21,22) " 1w € ker T} N {(u,w,0,0)"}
N {(u,w,zl,ZQ)T 121 =Vu —wA zg = Vywt
= {(u,w,0,0)" :u € ker T, A Vyu = w A Vyw = 0},

which implies the statement by Lemma 2 and Proposition 2.
O

4.1. Algorithmic realization

As the inner problem (10) is a convex minimization
problem, it can be solved efficiently, e.g., [18, 3]. We use
the algorithm in [8, 21]. It can be applied to a class of prob-
lems comprising ours and has proved optimal convergence
rate: O(1/n?) when F; or F» from (8) is uniformly convex
and O(1/n) for the more general case.

We focus on the (outer) non-convex problem. Let (z*)
be the sequence generated by Algorithm (2), where the in-
dex [ refers to the inner iterations for solving the convex
problem, and k to the outer iterations. Proposition 1, which
proves (F(z*9)) to be monotonically decreasing, provides
a natural stopping criterion for the inner and outer problem.
We stop the inner iterations as soon as

F(z®) < F(z*%) or 1> m,, 17)

where m; is the maximal number of inner iterations. For
a fixed k, let [;, the number of iterations required to satisfy
the inner stopping criterion (17). Then, outer iterations are
stopped when

k

<r oor Y li>m, (18)
=0

F(xk’o) _ F(xk+1’0)
F(290)

where 7 is a threshold defining the desired accuracy and m,,
the maximal number of iterations. As default value we use
7 = 1075 and m, = 5000. For strictly convex problems
we set m; = 100, else, m; = 400. The difference in (18) is
normalized by the initial function value to be invariant to a
scaling of the energy. When we compare to ordinary convex
energies we use the same 7 and m,,.

The tasks in the following subsections are implemented
in the unconstrained formulation. The formulation as a con-
strained optimization problem was used for theoretical rea-
sons. In all figures we compare the non-convex norm with
its corresponding convex counterpart. We always try to find
a good weighting (usually \) between data and regulariza-
tion term. We do not change the ratio between weights
among regularizers as for TGV (a; and ag).

4.2. Image denoising
We consider the extension of the well-known Rudin, Os-

her, and Fatemi (ROF) model [24] to non-convex norms

LA
min 5w = gull3 + Fa(Ku),



Figure 3. Natural image denoising problem. Displayed is the zoom into the right part of watercastle. Non-convex norms yield sharper
discontinuities and show superiority with respect to their convex counterparts. From left to right: Original image, degraded image with
Gaussian noise with o = 25. Denoising with TGV prior, &1 = 0.5, a2 = 1.0, A = 5 (PSNR = 27.19), and non-convex log TGV
prior with § = 2, oy = 0.5, a2 = 1.0, A = 10 (PSNR = 27.87). The right pair compares the learned prior with convex norm
(PSNR = 28.46) with the learned prior with non-convex norm p = 1/2 (PSNR = 29.21).
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Figure 4. Left to right: Comparison of the energy decrease for the
non-convex log TV and TGV between our method and NIPS [25].
Our proposed algorithm achieves a lower energy in the limit and
drops the energy much faster in the beginning.

and arbitrary priors K, e.g., here, K,, = V,, or K, from
[15]. Since ker T, = ker I,, = {0} Condition (12) is triv-
ially satisfied for all priors, c.f. Corollary | and 2. The reg-
ularizing norms F>(|z|) = 3 °.(F2(|x])); are the £,-norm,
0 < p < 1, and the log-function according to (9).

Figure 3 compares TGV, the learned image prior from
[15] and their non-convex counterparts. Using non-convex
norms combines the ability to recover sharp edges and being
smooth in between.

Figure 4 demonstrates the efficiency of our algorithm
compared to a recent method, called, non-convex inexact
proximal splitting (NIPS) [25], which is based on smooth-
ing the objective. Reducing the smoothing parameter € bet-
ter approximates the original objective, but, on the other
hand, increases the required number of iterations. This is
expected as the € directly effects the Lipschitz constant of
the objective. We do not require such a smoothing epsilon
and outperform NIPS.

4.3. Image deconvolution

Image deconvolution is a prototype of inverse problems
in image processing with non-trivial kernel, i.e., the model
is given by a non-trivial operator T,, # I in (14) or (15).

Usually, T}, is the convolution with a point spread func-
tion k,, acting as a blur operator. The data-term here reads
[[ku * u — gu||3. Obviously ker k,, = {0} and Corollaries 1
and 2 are fulfilled. We assume Gaussian noise, hence, we
use g = 2.

We use the numerical scheme of [8] based on the fast
Fourier transform to implement the data-term and combine
it with the non-convex regularizers.

Deconvolution aims for the restoration of sharp discon-
tinuities. This makes non-convex regularizers particularly
attractive. Figure 5 compares different regularization terms.

4.4. Optical flow

We estimate the optical flow field v = (u',u?)T be-
tween an image pair f(z,t) and f(x,t+ 1) according to the
energy functional:

min - Aflp(u, w1 + [[Vewl|s
+ a1 B (|Vyu — v|) + e Fo (| V,v)),

where local brightness changes w between images are as-
sumed to be smooth [&]:

p(u,w) = fi + (V)T - (u—ug) + yw.

We define V,u = (V,1u!, V,2u?) T, and v according to the
definition of TGV.

A popular regularizer is the total variation of the flow
field. However, this assigns penalty to a flow field describ-
ing rotation and scaling motion. TGV regularization deals
with this problem and affine motion can be described with-
out penalty. Figure 6 shows that enforcing the TGV prop-
erties by using non-convex norms yields highly desirable
sharp motion discontinuities and convex TGV regulariza-
tion is outperformed.

Since we analysed TGV already for Condition (12) only



Figure 5. Deconvolution example with known blur kernel. Shown is a zoom to the right face part of romy. From left to right: Original
image, degraded image with motion blur of length 30 rotated by 45° and Gaussian noise with o = 5. Deconvolution using TGV with
A =400, a1 = 0.5, a2 = 1.0 (PSNR = 29.92), non-convex log-TGV, 8 = 1, with A = 300, a1 = 0.5, az = 1.0 (PSNR = 30.15),
the learned prior [15] with A = 25 (PSN R = 29.71), and its non-convex counterpart with p = 1/2 and A = 40 (PSN R = 30.54).

the data-term is remaining. We obtain (8) by setting

T (diag((gff)T) vfw) = (ft — (Vi)' -u())

Vw 0

and the kernel of 7" can be estimated as
ker T = {(u,w)" : T(u,w)" =0}
={(u,w)" (Vi f)" -u=—yw A V,w = 0}
={(u,t1,) " (Vs )T -u = —7t1,, t €R}.
For TV and TGV this requires a constant or linear depen-
dency for z- and y-derivative of the image for all pixels.

Practically interesting image pairs do not have such a fixed
dependency, i.e., Lemma 2 applies.

4.5. Depth map fusion

In the non-convex generalization of TGV depth fusion
from [22] the goal is minimize

K
A = gill + ea Fa(|Vuu — vl) + aa Fa(| Vo))
i=1
with respect to v and v, where the g;, ¢ = 1,..., K, are

depth maps recorded from the same view. The data-term in
(8) is obtained by setting T = (T, , ..., Ty, )" and T}, =
I,,,, the identity matrix. Hence, Condition (12) is satisfied.

Consider Figure 7; the streets, roof, and also the round
building in the center are much smoother for the result with
non-convex norm, and, at the same time discontinuities are
not smoothed away, they remain sharp (c.f. Figure 1).

5. Conclusion

The iteratively reweighted ¢; minimization algorithm for
non-convex sparsity related problems has been extended to
a much broader class of problems comprising computer vi-
sion tasks like image denoising, deconvolution, optical flow
estimation, and depth map fusion. In all cases we could
show favorable effects when using non-convex norms.

)y =

b HY H

)

Figure 6. Comparison between TGV (left) and non-convex TGV
(right) for the image pair Army from the Middlebury Optical Flow
benchmark [ ] and two zooms. The TGV is obtained with A\ = 50,
v = 0.04, a1 = 0.5, a2 = 1.0 and the result with non-convex
TGV using p = 1/2, A =40, v = 0.04, au = 0.5, a2 = 1.0.

The presentation of an efficient optimization framework
for the considered class of linearly constrained non-convex
non-smooth optimization problems has been enabled by
proving decreasing function values in each iteration, the ex-
istence of accumulation points, and boundedness.
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Figure 7. Non-convex TGV regularization (bottom row) yields a
better trade-off between sharp discontinuities and smoothness than
its convex counterpart (upper row) for depth map fusion. Left:
Depth maps. Right: Corresponding rendering.
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Here we give a detailed proof of Lemma 1 of Subsec-
tion 3.2 (Convergence analysis). We also show that the
functions F'(x) = Fi(z) + F2(|x|) we optimize in appli-
cations fulfill the technical Conditions (C1) and (C2) which
are necessary for the results of Subsection 3.2 to hold. We
remind what these conditions are:

(Cl) Fy is twice continuously differentiable in 4 and
there exists a subspace H. C H such that for all
r € H, holds: hT9*Fy(z)h < 0if h € H,. and
hTO?Fy(x)h = 0if h € HE.

(C2) Fx(]z|) is a C!'-perturbation of a convex function, i.e.
can be represented as a sum of a convex function and
a Cl-smooth function.

We start by proving Lemma 1:

Lemma 1 (see Subsection 3.2 of the main text). Let (x*)
be the sequence generated by the Algorithm (3) and suppose
(x*) is bounded and the Condition (C1) holds for I. Then

Jim (OFy(|2*|) — 0Fy(|z**1])) = 0. (1)

Proof. Taylor theorem for F; gives:

Fi(a¥]) — Fala 1)) = (A%)T R ()
— AT R(F A"

where AF = |2F| — |2* L) |ZF| € [|aF]; |2 T1]]. We use
this to refine the inequalities (6) from the proof of Proposi-

2 Graz University of Technology, Austria
pock@icg.tugraz.at

tion 1 in Subsection 3.2 (see main text for details):

F(l‘k) F($k+1)
= Fi(a") = Fi(a"") + Fy(|2*]) — Fa(l2"))
> (dk+1)T(x _l,k+l) +( k)TAk
%(Ak)'l'a F2(|fk|)Ak (AT k-‘rl) (C(Jk— k+1)
(W) T (|ah] = et = (@ -2t )
(AN TP By ([ AT RN
+(w'“)T(\x'“|— M ak) — (Ak)T@2 H(|Z*) Ak
— (qk—i-l —b +Zw |$k‘ k+1 k)
1<M)T52 (A > (M)TaQ (35)AF > 0.
Therefore,
F(a*) = F(z"*1) > (A")Ta2 H(|Z5) AR > 0,
and, hence,

lim (AM)To2Fy(|2%) A% = 0.

k—o0

Using definition of the space . we get that

lim (Pry, AF)TO?Fy(|7%)Pry. AF =0, (2

k— o0

where Pr 4, denotes orthogonal projection onto .. From

boundedness of (z*) and negativity of 82F2’ we con-

clude that there exists v > 0 such that for all k: ‘
(Pra, AF) T O Fy(|2%])Pr o, AF < —v||Pryy AF|2

Together with (2) this gives

lim |[Prq, A2 =0. 3)
k—o0 :
Now we note that
OF,(|2¥]) — OFy(|a" 1)) = 9* Fa(|2"|)Pry, AF,



for some |Z%| € [|a*|; |#¥*1]]. Together with (3) this com-
pletes the proof. O

Now we show that the Conditions (C1) and (C2) actually
hold for the functions F> used in applications, namely (cf.
Equations (8) and (9) of the main text):

Fy(|z|) :Z)\if(|a:i|), where

flail) = (Joi| + )" or f(lil) = log(1 + Bli]),

withe > 0, 8 > 0and \; > 0, Vi. Obviously, for both
choices the functions are infinitely differentiable and con-
cave in Ry. Therefore it suffices to prove the following
lemma:

Lemma 3. Let F5(|z|) = >, Aif(|xi]), where \; > 0, Vi
and f: Ry — Ris increasing, twice continuously differen-
tiable and has strictly negative second derivative. Then the
Conditions (C1) and (C2) hold for F5.

Proof. We start with proving (C1). Obviously,
O Fy(x) = diag((Ni f" (21)))i=1:aim(r)),  for = € Hy.

Hence,

WP Fy(x)h =Y Nif"(zi)hi.

Denote by A a diagonal operator with \;’s on diagonal.
Then for H,. = (ker A)* the desired condition holds.

Now we prove (C2). For each term of F> we perform the
following decomposition:

Aif(Jil) = N f'(0)|zi| + Ni(f (|i]) — £/(0)]i]).-

The first summand is convex due to non-negativity of \; and
£/(0). The second summand is continuously differentiable
for z; # 0 and its derivative equals

Ail(f' (i) = f1(0)), if ;i >0,

Ai(=f(=zi) + f(0), if x; <O0.
Both these values approach zero when x; approaches 0, so
the function is differentiable at 0 and, therefore, continu-
ously differentiable on R.

We proved that each term of F, is a sum of a con-

vex function and a C'-smooth function. Sum of C!-

perturbations of convex functions is a C!-perturbation of
a convex function, so this completes the proof. O



