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Motivation
Distances based on alignment are more meaningful
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Minimize the energy:
E(u) = ED(u)+λEP(u)

Data term:
ED(u) = ∑

x
|F2(x+u(x))−F1(x)|1−〈F2(x+u(x)),F1(x)〉

Combination of l1-norm
and dot product:

l1-norm: is robust but is likely to match
weak features to the background
dot product: Aligns all features but no
direct penalty for unmatched features
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Regularization term:
EP(u) = ∑

x,y∈N (x)
|u(x)−u(y)|1 ,

where N (x) denotes the neighborhood of x.

Coarse to fine approach:
Alignment on whitened HOG (WHOG) features [1]
+ Features more discriminative - Resolution is limited by construction
Alignment on HOG features
+ Higher resolution⇒ finer details - More clutter
Coarse to fine: Use the coarse deformation uWHO as constraint for alignment on
HOG level

E(u) = ∑
x

δ (x) |uWHO−u|1+ED(u)+λEP(u)

δ (x) =

{
1, If uWHO defined at x
0, otherwise
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Comparison between 3 state of the art techniques:
(1) Fast PD [2] (2) Belief propagation (BP)
(3)α−expansion with Quadratic pseudo boolean optimization [3] (QPBO)
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⇒ In our case α-expansion with QPBO (better scaling with a large amount of labels)

Results
Datasets:
Images show the different poses we defined for each dataset. (a) Horses from
PASCAL 2007 (724) (b) Own cat dataset from Flickr (120), (c) 3D car dataset (80),
(d) cats from PASCAL 2006 (200)

(a)

(c)

(b)

(d)

Evaluation:
For each pose we compute the precision and recall on the nearest neighbors (ground
truth was manually labeled). For the feature based distances, we use

d(F1,F2) =
〈F1,F2〉

‖F1‖2 · ‖F2‖2
.

Table: Comparison of various distances with and without non-rigid alignment in terms of
average precision (AP). The left block uses pure energies, the two blocks in the middle
use HOG and WHO features, before and after the alignment. Methods with +λEP make
use of the deformation cost. The last two blocks use the coarse to fine method, which
yields the best results.
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Cars 30.39 30.4 31.74 30.79 44.94 43.57 28.09 30.05 30.45 39.42 30.05 46.01 33.8
Cats own 13.6 13.78 13.81 31.18 31.97 32.23 33.04 30.66 30.99 32.93 30.66 33.41 32.29

Cats Pascal 6.55 6.61 6.56 33.16 31.81 31.05 31.32 30.97 31.24 27.82 27.42 32.58 33.17
Horse Pascal 4.32 4.31 4.22 29.49 36.47 37.38 33.34 35.43 36.42 36.87 35.43 38.83 33.8

Mean 13.72 13.78 14.08 31.16 36.3 36.1 31.45 31.78 32.28 34.26 30.89 37.71 33.27

Table: Performance of exemplar-SVM [4], rigid alignment and non-rigid aligned
HOG-features. The non-rigid alignment consistently shows better AP.

Cars Cats own Cats Pascal Horse Pascal Mean
ESVM [4] 24.07 16.83 10.68 19.08 17.67

rigid alignment 41.25 27.76 27.05 29.77 31.46
HOG aligned 44.94 31.97 31.81 36.47 36.3

For the reference images (left), we show the 9 nearest neighbors
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