2D/3D Rotation-Invariant Detection using Equivariant Filters and Kernel Weighted Mapping
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Overview

e Equivariance from Fourier analysis

- using features which have simple multiplicative transforms under
rotations, instead of purely invariant features.

- the desired “rotation-invariance” is analytically guaranteed.

o A flexible non-linear model utilizing covariant/invariant
features together

- the core feature mapping function is constructed for each feature
vector by a kernel weighted interpolation.

e Easy generalization from 2D images to 3D volumetric
data

- analogous analytic forms.
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Equivariance from Fourier Analysis

@ The desired “invariance” in detection problems is the equivariance [1].

@ In the polar coordinates (r, ¢), with an arbitrary radial profile R(r), a
basis function u = R(r)e™¥ has the “self-steerability” as

u(r, o — B) = e"™u(r, p). (1)

@ Considering a convolution H(I) = I * u, we have

HI(r,p—p)) =e™ [HWD)](r,e —PB), (2)

filtering on the rotated image rotated filtering output
of the original image

Hy(H (I(r, o — B))) = ™8 Hy(H(1))](r, 0 — B).  (3)

@m; + my = 0 & equivariance: H(I(r,p — 3)) = [H(I)|(r, ¢ — 3).

Building the Feature Mapping

@ For the modeling capacity, we need a nonlinear feature mapping
between the two layers of convolutions (Eq.(3)). This mapping has to
respect the equivariance.
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@ A rotation-invariant kernel function as similarity measure:

Kz(f,f') = K(Z(f), Z(f")), (4)

where Z is an operator to create a rotation-invariant feature vector from
given covariant features, K is a RBF kernel.

@ Kernel weighted mapping
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where fi.—11... k.3 1S @ set of (selected) points distributed in the feature
space, wy, (the local linear model at f,) are the parameters to estimate.
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From 2D to 3D

@ Projection of a 2D angular signal on the Fourier basis
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@ Spherical Harmonics: the wave basis on a sphere (the angular
part of the spherical coordinates)
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@ Projection of a 3D angular signal on the spherical harmonics
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Under an arbitrary 3D rotation g, ‘ —> ‘
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Dt € C*** is a matrix determined by the rotation angles [2].

2D Experiment - Freestyle Motorbike

@ Detections/ground-truth are drawn in green/red. The quantitative
measure is comparable to [3].

@ HOG features can be easily embedded into the method, as they can
be represented as angular signals [4].
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3D Landmark Detection in Zebrafish Embryos

@ Task: using landmark detection to initialize the elastic registration, for
gene-expression colocalization analysis in zebrafish
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@ Qualitative result (nuclei/AcTub staining)
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@ The full gene-expression colocalization analysis framework using this detection
filter will appear in Nature Methods [5]. Implementation available on our
website.
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