
Supplementary Material for “2D/3D Rotation-Invariant Detection using Equivariant
Filters and Kernel Weighted Mapping”

Kun Liu, Qing Wang, Wolfgang Driever, and Olaf Ronneberger

University of Freiburg, Germany

This supplementary material contains more detail about the implementation of the techniques used in the main
paper.

Appendix A: 2D covariant HOG-based descriptions Although a histogram-of-oriented-gradient is often
shown in a discrete manner, the original information it encodes is a continuous distribution. This distribution is a
function of the angle, so we can also use Fourier series to encode the information. In practice, we start the projection
on Fourier basis from the gradient field. Let the gradient field of an image be d(x), with its orientation ϕd(x). The
“histogram” of the gradient on a single pixel is like a Dirac function δ(ϕ− ϕd(x)) of height ||d(x)||. Projecting it on
the Fourier basis eimϕ, we get

d̂m(x) =< ||d(x)||δ(ϕ− ϕd(x)), eimϕ >= ||d(x)||e−imϕd(x) .

We can convolve a triangular kernel (of width = b) with d̂m(x) to create d̃m(x), which actually represent the HOG
with spatial soft-binning. Then, as a matter of choice, we construct the local description from the Fourier HOG fields
by sampling d̃m={1,...,M}(x) on two circles around each position, with the radii r1 = 0.5b and r2 = 1.5b. The
sampling will be done by convolving with templates of the form δ(r − rp)einϕ (the template are shown in Fig.1. The
Dirac function is smoothed), as

fmnp = d̃m ∗ δ(r − rp)einϕ .

What we get is a group of covariant features, encoding the information of HOG in 2b range around each point. And
the feature fmnp has the rotation order n−m. So in our framework, this description can be used as the same as the
features coming from self-steerable filters.

Figure 1: The template δ(r − r′)einϕ for sampling the HOG features projected on Fourier basis. Top row: real part.
Bottom row: imaginary part

Appendix B: Implementation detail for the 3D Filter Based on the explanation in Sec.3.4 and Eq.(6) in the
main paper, the general form of the filter can be rewritten for the 3D setting as

S =
∑
j

(
∑
k

∑
d

md=mj

K̃kwjkdFd)•̃0uj , (1)

where the symbol •̃0 means coupling two spherical tensor fields into a zero-order tensor field by the spherical tensor
convolution, which combines the convolution and spherical tensor product. Here, we explicitly write out the terms

1

which respect equivariance. The constraint md = mj is decided by the nature of the spherical tensor product, i.e.,
only two spherical tensor fields of the same order can be coupled into a zero-order tensor field by the tensor product
(convolution) [1].

Using the SGD basis for description (∇p
qGσd

: R3 → C2(p−q)+1) and voting (∇jGσv
: R3 → C2j+1), and taking

advantage of the commutativity between convolution and differentiation, we can write the computation procedure on
an image V as

S = Gσv
∗
∑
j

∇j [
∑
p,q

p−q=j

(
∑
k

K̃kwjkpq)∇p
q(Gσd

∗ V)] . (2)

The detection process is shown in Algorithm 1. Refer to the main paper about how to adapt the process for training.

Algorithm 1 The Landmark Detection Scheme

Input: image V : R3 → R trained model {f̂k, h, wjkpq}
Output: probability map y : R3 → R(T0), y := H(V)

//compute SGD filtering by taking advantage of the the commutativity between convolution and differentiation
The first convolution F 0 := Gσd

∗ V
for p = 1 : pmax do
F p = ∇1F p−1

for q = 1 : min(pmax − p, p) do
F pq := ∇1F

p
q−1

end for
end for
//create rotation-invariant features
I(F(x)) := [||F 0(x)||, ||F 1(x)||, ||F 1

1 (x)||, ||F 2(x)||, ||F 2
1 (x)||...]

//evaluate the weighting kernel values

K̃k(x) =
exp(−||I(F(x))− f̂k||2/2h2)∑
k′ exp(−||I(F(x))− f̂k′ ||2/2h2)

//assign voting coefficients to each voxel
for j = 0 : pmax do
Ãj(x) =

∑
k

∑
p,q

p−q=j

K̃k(x)wjkpqF pq (x)

end for
//carry out the voting (using the commutativity again)
Initialize ypmax = [0, ..., 0︸ ︷︷ ︸

pmax

] ∈ Tpmax

for j = pmax : −1 : 1 do
yj−1 = ∇1(yj + Ãj)

end for
y = y0 + Ã0

The second convolution y = Gσv ∗ y

Here we further show the computational detail of spherical (tensor) derivatives [1], which are used to create basis
functions with spherical harmonics as the angular part. The spherical up-derivate is computed as V = ∇1V′,
where V′ : R3 → C2(`−1)+1, V : R3 → C2`+1 are the input and output tensor fields. It is defined as a tensor
product between spherical gradient operator ∇ = [1√

2
(∂x − i∂y), ∂z,− 1√

2
(∂x + i∂y)] and a spherical tensor field.

The computation of a tensor product needs some real coefficients (called Clebsch-Gordan coefficients [2], which
depend on the orders of the coupled tensor fields). By indexing the elements of V and V′ as {V−`, ..., V`} and
{V ′−`+1, ..., V

′
`−1}, the computation rule of ∇1 is:

Vm = c(m,m+1,−1)
1√
2
(∂x− i∂y)V ′m+1

+ c(m,m,0) ∂zV
′
m

− c(m,m−1,1)
1√
2
(∂x+ i∂y)V ′m−1 , (3)

2

where c(m,m′,a) is computed from two Clebsch-Gordan coefficients <`m|(`−1)m′,1a>
<`0|(`−1)0,10> [2]. When m′ goes out of the

range [−` + 1, ` − 1], take the value V ′m′ as zero. Thus, the computation of the spherical derivatives is a group of
weighted finite differences.

Those coefficients compute as:

c(m,m+1,−1) =
√

(`−m)(`−m−1)
2`2 , (4)

c(m,m,0) =
√

(`+m)(`−m)
`2 , (5)

c(m,m−1,1) =
√

(`+m)(`+m−1)
2`2 . (6)

Equation (3) also fits the spherical down-derivative V = ∇1V
′, by taking V : R3 → C2(`+1)+1 and V′ :

R3 → C2`+1. Then we need different Clebsch-Gordan coefficients for the different coupling orders, c(m,m′,a) =
<(`+1)m|`m′,1a>
<(`+1)0|`0,10> :

c(m,m+1,−1) =
√

(`+m)(`+m+1)
2`2 , (7)

c(m,m,0) =
√

(`+m)(`−m)
`2 , (8)

c(m,m−1,1) =
√

(`−m)(`−m+1)
2`2 . (9)

References
[1] M. Reisert and H. Burkhardt. Spherical tensor calculus for local adaptive filtering. In S. Aja-Fernández, R. de Luis Garcı́a,

D. Tao, and X. Li, editors, Tensors in Image Processing and Computer Vision, Advances in Pattern Recognition. Springer,
2009. 2

[2] M. Rose. Elementary theory of angular momentum. Dover Publications, 1995. 2, 3

3

