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ABSTRACT

We propose to use a kernel intensity penalizer (KIP) in
the blind maximum likelihood expectation maximization
(MLEM) deconvolution scheme. With this very general ker-
nel regularization term, we can stabilize the blind MLEM
scheme even for the deconvolution of wide-field microscopic
recordings. No complex prior point spread function models
are needed. We combine state of the art optimization schemes
using Tikhonov-Miller and TV regularization with our new
kernel regularization. The proposed method improves the
conventional deconvolution methods in terms of SNR on real
and simulated datasets.

Index Terms— Wide-field microscopy, kernel penalizer,
blind deconvolution, Total Variation, residual denoising.

1. INTRODUCTION

Wide-field microscopes are prevalently available and are,
because of their low phototoxicity, capable to record living
specimen over time. The disadvantage of wide-field record-
ings is the large amount of recorded defocused light that
makes a deconvolution of the data indispensable for many
applications. In order to reconstruct the specimen from the
image, it is crucial to correctly estimate the point spread
function (PSF) of the recording system. For non-blind de-
convolution, PSF estimates can be generated by recording
fluorescent beads or by theoretical models (e.g. [1]). How-
ever, the exact PSF depends on many parameters and can not
be modeled completely.
Therefore, blind deconvolution techniques, that try to esti-
mate both specimen and PSF from the recording, are appeal-
ing, even though the estimation of the large wide-field PSF is
especially challenging. For the deconvolution of wide-field
microscopic data, maximum likelihood expectation maxi-
mization (MLEM) deconvolution methods have proved to be
very efficient [2, 3, 4]. However they are not convergent if
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no regularization is implemented [2]. Blind deconvolution
methods even tend to converge to the trivial solution, where
the convolution kernel (the estimated PSF) collapses to the δ-
impulse and the reconstructed specimen equals the recorded
image. Thus, the regularization of the specimen function and
the convolution kernel is necessary.
State of the art methods use prior models such as the Tikhonov
Miller (TM) penalizer [5] or Total Variation (TV) regulariza-
tion [6] on the specimen estimate, enforcing smoothness in
the deconvolved data. [7] proposes to additionally use a
residual denoising (RD) technique for specimen and PSF
estimation as done before in [8] for the deconvolution of as-
tronomical images. The regularization of the estimated PSF
is more tricky, because no smoothness can be assumed.
Theoretical models have been employed for the kernel reg-
ularization. For example in [9] and [7] the kernel update is
regularized by a projection of the current kernel estimate onto
a theoretical PSF model [1]. Theoretical models however
are cumbersome to compute and need to be adapted to every
microscope and every specimen individually. In figure 1, we
show for example the influence of the refractive index of the
specimen on the PSF.
In this paper, we propose to use the zero-order Tikhonov reg-
ularizer, that performs a kernel intensity penalization (KIP),
in the blind MLEM deconvolution scheme. With this very
general penalty term, we can easily avoid the trivial solution
and stabilize the blind MLEM scheme. The introduction of
a complex prior PSF model can be omitted. A similar kernel
regularization has been used before in [10] for motion deblur-
ring. However [10] use the L2 norm for the data fitting term
resulting in a different optimization scheme.
We have introduced the KIP stabilizer into the state of the art
MLEM optimization schemes with TM and TV regulariza-
tion on the data term as well as the optimization scheme with
residual denoising. We show improvements of the deconvo-
lution result for all three optimization schemes on simulated
as well as on a real microscopic dataset.
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Fig. 1. YZ-section of simulated wide-field PSFs without (a)
and with (b) spherical aberration with hot color map, gener-
ated with [11].

2. BLIND DECONVOLUTION

The image formation can be described by

o = n(s ∗ h), (1)

where the objective function o : Ω ⊆ R3 → R denotes
the recorded image, s : Ω → R is the specimen function,
h : Ω → R the microscope specific point spread function
(PSF), ‘∗’ is the convolution operator and n : R → R is a
voxelwise noise function. Generally, the PSF h is assumed to
integrate to one:

∫
Ω
h(x)dx = 1.

The aim of the blind MLEM deconvolution algorithm is to
reconstruct s and h by finding ŝ = arg max

s
{p(o|s, h)} and

ĥ = arg max
h
{p(o|s, h)}. Since photon noise is Poisson dis-

tributed , ŝ and ĥ maximize the likelihood function [9]:

p(o|s, h) =
∏
x∈Ω

((s ∗ h)(x))o(x)e−(s∗h)(x)

o(x)!
. (2)

This likelihood can be maximized by minimizing functional

JMLEM(s, h) =

∫
Ω

(s ∗ h)(x)− o(x) · log(s ∗ h)(x)dx, (3)

corresponding to the negative log-likelihood− log(p(o|s, h)).
The resulting update scheme that minimizes eq. (3) is given
by alternately updating [7]

ŝk+1(x) = ŝk(x) ·

(
ĥmk ∗

o

(ĥk ∗ ŝk)

)
(x) (4)

and

ĥk+1(x) =
ĥk(x)∫

Ω
ŝk(x)dx

·

(
ŝmk ∗

o

(ĥk ∗ ŝk)

)
(x). (5)

where sm(x) = s(−x) is the mirrored specimen function and
hm(x) = h(−x) is the mirrored PSF function.
Since the measured objective function o is noisy, this update
scheme can lead to amplified noise in the deconvolved data.

This effect can be reduced by denoising the residual Rk [8]
defined by

o = ŝk ∗ ĥk +Rk. (6)

Rk can be denoised with any denoising function as for exam-
ple wavelet denoising [8] or median filtering [7]. We follow
[7] in using a 3×3×3 median filter. With the denoised resid-
ual denoted by R̄k = denoise(Rk), the denoised objective
function ōk = ŝk ∗ ĥk + R̄k can be computed. ōk can be used
instead of o in the update scheme.

3. DATA TERM REGULARIZATION

3.1. Tikhonov Miller Regularization

To enforce smoothness in the reconstructed image, the
quadratic Tikhonov-Miller regularizer can be employed. The
energy functional becomes

JTM(s, h) = JMLEM(s, h) + λTM

∫
Ω

|∇s(x)|2dx (7)

where λTM is the weighting for the regularization. The TM
regularized specimen estimation update scheme is then:

ŝk+1(x) =
ŝk(x)

1− 2λTM∆ŝk(x)
·

(
ĥmk ∗

o

(ĥk ∗ ŝk)

)
(x). (8)

where ∆s = ∂2s
∂x2

1
+ ∂2s

∂x2
2

+ ∂2s
∂x2

3
.

3.2. Total Variation Regularization

An alternative is total variation (TV) regularizer. TV does
not enforce smoothness but piecewise constancy. Thus, it
depends on the specimen which of the two models performs
best. The energy functional with TV regularizer on the data
term is

JTV(s, h) = JMLEM(s, h) + λTV

∫
Ω

|∇s(x)|dx (9)

where λTV is the weighting for TV regularization. The TV
regularized specimen estimation update scheme is given by:

ŝk+1(x) =
ŝk(x)

1− λTVdiv
(
∇s(x)
|∇s(x)|

) ·(ĥmk ∗ o

(ĥk ∗ ŝk)

)
(x),

(10)
where div(s) = ∂s

∂x1
+ ∂s

∂x2
+ ∂s

∂x3
.

4. KERNEL INTENSITY PENALIZER

To stabilize the deconvolution kernel, we add a simple
Tikhonov stabilizer of zero order to the energy functional.
With this regularization, we can avoid the trivial solution



h=δ-impulse. The kernel intensity penalized energy func-
tional becomes

JKIP(s, h) = JMLEM(s, h) + λKIP

∫
Ω

h(x)2dx, (11)

where λKIP is the weighting for the intensity penalty regular-
ization of the kernel. The resulting update scheme for the
kernel is given by

ĥk+1(x) =
ĥk(x) ·

(
ŝmk ∗ o

(ĥk∗ŝk)

)
(x)∫

Ω
ŝk(y)dy + 2 · λKIPh(x)

. (12)

5. EVALUATION

We have evaluated our new kernel penalizer in three different
blind deconvolution settings:

• Residual denoising in both specimen and kernel update
(RD RD),

• TM regularization for the specimen and residual de-
noising for the kernel update (TM RD),

• TV regularization for the specimen and residual denois-
ing for the kernel update (TV RD).

All three settings have been evaluated on simulated and on
real microscopic data.

5.1. Simulated Data

For authentic specimen simulations, we used the HeLa Cell
Nucleus simulation tool from [12]. The central slice from
the simulated cell nucleus is shown in fig. 3(a). For the
recording, we assumed a background fluorescence of 1.2%
of the maximum specimen fluorescence. The specimen was
blurred with an ideal wide-field PSF without aberration down-
loaded from 1. The PSF is generated assuming a refractive
index of 1.518, numerical aperture NA = 1.4, wavelength
λ = 530nm, spatial resolution δr = 64.5nm and an axial
resolution δz = 160nm.
The simulated HeLa Cell nucleus was first blurred with this
PSF. Then, we added two different levels of Poisson noise,
resulting in a SNR of 27.552 (SIM 1) and 18.588 (SIM 2)(be-
tween the blurred image before adding noise and the final
recording simulations). The SNR between the ground truth
and the final simulations is 1.628 (SIM 1) and 1.6135 (SIM
2) respectively.
We also simulated the PSF estimation from the bead record-
ing. The bead recording was simulated by convolving a
small sphere with a radius of 90nm with the PSF. A back-
ground fluorescence of 1% of the bead fluorescence L was
assumed. Then, we added Poisson noise. The resulting SNR
was 2.9856.

1http://bigwww.epfl.ch/deconvolution/?p=bead

(a) SIM 1 (b) SIM 2 (c) MIC

Fig. 2. Resulting SNR with and without KIP.

5.2. Real Data

The actual recordings where taken from a fixed DAPI stained
Drosophila S2 cell nucleus. For the wide-field microscope,
we used a resolution of 0.0642 × 0.0642µm in x-y direction
and 0.2µm in z-direction. With the same microscope settings
and resolution, we also recorded a TetraSpeck 0.2µm bead in
order to generate an initial PSF estimate.
The identical Drosophila S2 cell nucleus was recorded with
a spinning disk confocal microscope for comparison. Since
the PSF of the spinning disk microscope is very small, this
data serves us as ground truth for the wide-field deconvolu-
tion. The spinning disk recording was taken with a resolution
of 0.1×0.1µm in x-y direction and 0.2µm in z-direction. The
two recordings were registered using affine registration from
2. The central slice of the spinning disk recording after regis-
tration is shown in fig. 4(a), the same slice of the wide-field
recording is displayed in fig. 4(b). The SNR computed be-
tween the recordings from the different modalities is 0.9229.

5.3. Results

We have tested weightings λTM and λTV between 10−7 and
10−3 for the two simulated datasets (SIM1 and SIM2) and for
the real data (MIC). The best results for SIM 1 were achieved
with λTM = 10−7 and λTV = 5 · 10−3. For SIM 2 λTM =
5 · 10−6 and λTV = 10−3 worked best. For the real data, we
found that λTM = 10−7 and λTV = 10−3 performed best.
For the kernel penalizer, we have chosen the relative weight-
ing λKIP = 6 ·

∫
Ω
o(x)dx for all three datasets. After 400

iterations, we have found that the energy is converged for all
methods. The resulting SNR for the three different methods
with and without kernel intensity regularizer is plotted in fig.
2. All methods were improved by the new regularization term.
The results on simulated data can be seen in fig. 3 (d)(e), and
(f), the results on real data are displayed in fig. 4(c)(d), and
(e). Without the kernel penalizer, spurious edges from out-
of-focus planes are visible, that can be eliminated with our
new approach. Additionally, the contrast within the nucleus
is much better with our method.

2http://www.fil.ion.ucl.ac.uk/spm/software/
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Fig. 3. Simulated data and results on SIM 1. The arrows in-
dicate artificially introduced edges from out-of-focus planes.

6. CONCLUSION

We have introduced a new kernel penalizer into the blind
MLEM deconvolution framework. This penalizer avoids the
trivial solution in the blind deconvolution framework and has
improved the deconvolution results on simulated as well as
on real data. The penalizer has also shown to be beneficial in
combination with TM and TV regularization as well as with
a residual denoising technique.
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Fig. 4. Results on a Drosophila S2 cell nucleus recording.
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