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Abstract

Despite great progress achieved in 3-D pose tracking duhiagpast
years, occlusions and self-occlusions are still an opeareis§his is partic-
ularly true in silhouette-based tracking where even \isitrts cannot be
tracked as long as they do not affect the object silhouetidtijMe cameras
or motion priors can overcome this problem. However, midtipameras
or appropriate training data are not always readily avhilaldVe propose a
framework in which the pose of 3-D models is found by minimgsthe 2-D
projection error through minimisation of an energy funatidepending on
the pose parameters. This framework makes it possible Widacclusions
and self-occlusions by tracking multiple objects and dfjjects simultane-
ously. Therefore, each part is described by its own imagmmegach of
which is modeled by one probability density function. Thilews to deal
with occlusions explicitly, which includes self-occlus® between differ-
ent parts of the same object as well as occlusions betwekeneatif objects.
The results we present for simulations and real-world sceleenonstrate
the improvements achieved in monocular and multi-cametags. These
improvements are substantiated by quantitative evalstie.g. based on
the HumanEVA benchmark.

1 Introduction

Following the 3-D position, orientation and, if preseng Hrticulations of an ob-
ject in a video is necessary for many applications rangiogfself localisation
and object grasping in robotics, body language interpoetahuman computer
interaction, traffic or security surveillance, characteinaation, analysis of ath-
letes up to content-based video retrieval. For a detailesvosw of the field, we
refer to the surveys by Gauvrila [1], Forsyghal.[2], Moeslund [3], and Poppe [4].
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Figure 1: Examples for problems that can occur in feature@dand in varia-
tional segmentation algorithmseft: SIFT features [12] found in two consecu-
tive frames are depicted. The green crosses denote théopssif SIFT features
found in the frame shown, while the yellow boxes show theesponding feature
position in the last frame. Here, the tea box was to be trackedan be seen, no
SIFT feature has been found that is on the tea box for thesé&rantes, making
a tracking with SIFT-features infeasible. See Galhl. [13] for further details.
Middle: A part of the segmentation is concave although the objebettracked
is convex, and an undesired split up into several connedetponents.Right:
The spout is not accurately segmented due to oversmoothurthermore, holes
generated in the segmentation are not always correct. Ftdjn [

This task, which is called pose tracking, is bound to somd &irfeature matching
between entities of the 3-D model and their correspondiagifes in the image.
Such features can be points [5], lines [6, 7], or more comfdatures such as ver-
tices, T-junctions, cusps, three-tangent junctions, lanld edge injections, and
curvature L-junctions [8]. Drummond and Cipolla used edgé=ction to achieve
real-time tracking of articulated objects [9]. In [10], angbination of two track-
ing algorithms that use edges and texture information,eesely, are used to
achieve improved results. In [11], the pose is predictedgipixel displacements
and improved afterwards by using image-based cues suclhaesgedtes.
Techniques building on keypoint tracking are usually féstt they also share
some common problems. First of all, a sufficient number of mam keypoints
must be detected in two frames, which is not always the casethe left image
in Figure 1. Moreover, when not matching all images to a comkeyframe,
e.g. the first frame in the sequence, tracking errors acateaind result in an
undesired drift.

Drift is avoided in detection-based tracking approachdsere a description of
an object model is assumed and the instance of this mode¢imthge is sought
to be detected in each frame. Reliable detection is a very pablem. Thus,
various assumptions that simplify the problem are commapjylied. Many ap-
proaches assume a static background in order to detect pbet sBhouette with



background subtraction, e.g. [15]. Other approaches assuifficiently many
discriminative features on the object to detect it in a tdéamanner [16]. Suet
al. learn different object parts from a number of view pointsgocagnise the view
point of new images [17]. Ottlik and Nagel segment the optfto initialise
the position of cars in inner-city sequences [18]. Ramaataah. rely on detection
only in frames where it is reliable and follow a tracking aggeh for the frames
in between [19]. Rosenhahat al. assumes a good initialisation of the pose of
a 3-D model in one frame and limited motion between framesptdate the sil-
houette and the pose parameters in an iterative approaehne\e object model
serves as a shape prior for the segmentation [20]. Whilestingirement of an ini-
tial pose and limited motion resemble a classical trackp@ach, the matching
of the surface model to the silhouette in the image avoids and involves the
silhouette of the object as a general descriptor (see [21]).

If we are only interested in the pose of the object and nosicantour, the draw-
back of the technique in [20] is that it solves a much hardebl@m than actu-
ally necessary. In particular, it estimates an intermedt@ntour in an infinite-
dimensional space only to derive aré-dimensional pose vector, whenas the
number of articulations. The many degrees of freedom iserdlae computation
time, decrease the robustness, and lead to inaccurachesdéonntour; see Figure 1.
Building upon the ideas we presented in an earlier conferpaper [14], we pro-
pose an energy function that involves optimisation onlyfiniée low-dimensional
space. This method also uses silhouettes as featuresdkinga However, instead
of separately estimating 2-D segmentation and 3-D posermeas, we directly
estimate 3-D pose parameters by minimising the projecticor ef a given 3-D
model in the respective 2-D images. Thus, the contours mdxdaivith our algo-
rithm are by construction consistent with the object modéh e estimated 3-D
pose. Since we only need to estimate a small number of poaenpters instead
of an infinite-dimensional level set function, the runtinfeatee algorithm signif-
icantly decreases compared to the algorithm describedip [Revertheless, we
can use the same general statistical representation ahn®gEstimating a sepa-
rate silhouette may be advantageous if the provided sunfacke| does not fit the
tracked object. However, as shown in [22], there are wayxpoess the typical
variations of a surface model in a parametric form. As we ddawe access to a
rich surface database, we stick to fixed surface models frafD &canner, but the
approach would also work with parametric adaptive surfad®hile we restrict
the model here to shape deformations at predefined joinésSsetion 3.6), the
model and optimisation scheme could be extended to incluate general shape
variations in a similar way as recently shown in [23]. Notattthe 3-D object
models used here do not include any appearance informatiah @s colour or
texture information).

One reason why contemporary solutions to the tracking teskat yet satisfac-
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tory is that there are a lot of issues that make pose trackiatienging. Especially
partial occlusions are a big problem for many pose trackess second contribu-
tion of this paper, we show how to deal with partial occlusitetween different
objects by making use of the estimated 3-D positions in diwerodel occlusions
explicitly. To this end, we minimise an energy function jiyrdefined over mul-
tiple objects. In a similar manner, self-occlusions of@tated objects can be
handled by using object models consisting of multiple congos. This tackles a
typical shortcoming of silhouette-based methods, wheea &isible parts cannot
be tracked if their presence is not seen in the object siliteue

The approach in [24] can handle occlusions between an unkmowmber of ob-
jects. However, the objects must be very clearly distingaiide from each other
and from the background. In [25], images from a camera amayaggregated,
and the resulting image was used for successfully trackaspite occlusions. In
these approaches, tracking is only performed in 2-D, though26], a multi-
hypothesis approach to track multiple occluded personspr@sosed. It relies
on human appearance models and ground plane homograptiasaeks the po-
sition at which the person is standing. In [27], several asidn layers are used
to detect occlusions with static occluders. Those layersganerated by render-
ing via computer graphics. Grabnetral. propose to handle occlusions by using
supporters found in the visual context around the trackéeco[28].

Another way to deal with occlusion is by using motion priosed [29]). As
such a prior incorporates information on the most likelytoawration of a motion
pattern, it principally allows to track even objects thag abmpletely occluded.
However, this is only possible if there are only few possihlation patterns, and
if the object to be tracked approximately follows the pattes stated in the prior.
Consequently, the results depend on the choice and quélibeanotion priors.
Furthermore, tracking results are biased towards thegnmahnich is undesired in
applications in which derivations from the usual motionldb@found. This is the
case e.g. in medical applications or when analysing theanaif athletes. The
method presented in this paper allows the incorporationaifan priors, but they
are only required to deal witfull occlusions. In all our experiments we did not
use any prior data from motion databases. Neverthelesdramking approach
yields results that surpass those of most other state ofrtregorithms, as we
will demonstrate using the HumanEVA-II benchmark.

This article is organised as follows: In Section 2 we revi@ms basic mathe-
matical concepts and pose estimation from point correspoces needed for our
region-based approach introduced in Section 3. The methexténded to multi-
ple objects in 4 and to multiple component models in Sectidn Section 6, both
approaches will be combined such that several objects witllipte components
can be tracked. Experiments presented after each chdpsdrate the achieved
improvements. Section 7 concludes the paper with a summary.
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2 Basics

This section reviews the concept of representing rigid amstias twists, the con-
cept of Plucker lines and the basic point-based pose trgetgorithm used later.
An isomorphism that preserves orientation and distancealied rigid motion.
Such isomorphisms are of interest to us, since a rigid bodyordy perform a
rigid motion. Any rigid body motion in 3-D can be represenésin(x) := Rx+t,
with a translation vector € R® and a rotation matriR € SQ(3) with SQ(3) :=
{Re R®3: detR) = 1}. Using homogeneous coordinates, one can also write
as a 4x 4 matrixM:

R t
m((x1,%2,%3) ") = M(x1,%2,x3,1) T = (Oixz 31“) X . (1)
X

The set containing all matrices of this form is the so-callexigroup SE3). To
every Lie group there is an associated Lie algebra, whoserlymag vector space
is the tangent space of the Lie group evaluated at the origive Lie algebras
associated witl$Q(3) andSE(3) aresq(3) := {A € R33|AT = —A} andsg3) :=
{(v,w)|v € R, w € s0(3)}, respectively. The elements o 3) are calledwists
Elements of a Lie group can be converted to elements of thesmonding Lie
algebra, and vice versa. In particular, a rigid motion cawbiéen as a twist.
Since a rigid motion given as element $E(3) has twelve parameters while a
twist has six, it makes sense to prefer estimating twisteausof rigid motions
given as matrix. Moreover, when solving for the pose parameah Section 2.2,
a twist can easily be linearised.

Since elements &fo(3) andse(3) can be written either as vectams= (wy, Wy, w3),
& = (w1, Wy, W3,V1,V2,V3) OF as matrices

0 -w w

w=| wg 0 —w | €sqa3), (2)
-0 W 0

2 ® v

i~ (o0, o) <53 ®

we distinguish these two ways of representing elements bgt @ign. A twist

¢ can be converted to an element of the Lie grodipe SE(3) by the exponen-
tial function exgé) = M, which can be computed efficiently with the Rodriguez
formula (see [30]).

2.1 Plicker forms

3-D lines can be represented in different ways. Here, we husdtiicker form
from [31] to represent lines. In the context of this articles consider projection
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Figure 2: Identifiers used in the proof that the distance betwa poink and a
Plucker lineL = (n,m) is given by||xx n—m||.

rays, i.e. lines containing all points which are projected certain image point.
Consequently, these lines always go through this image paohthe camera cen-
tre.

A line in Plucker formL = (n,m) is given by a normalised vector(pointing in
the direction of the line) and a momentum= x' x n for a pointx’' on the line.
The distance of a point to such a lineL = (n,m) can easily be computed as
|xx n—m||. To understand this, we writeas sum 0¥k, a vectorx; = An parallel
to n and a vectox, perpendicular ta, i.e. x= X+ x; + %o (see Figure 2) and
compute

[Xxxn—m|| = ||(X +An+Xx2) x n—m||
= || X x n+Anx n+xz x n—m|| (4)
—— ——
=-m -0
=[xz xnlf = [l -

2.2 Pose estimation with 2-D-3-D point correspondences

The region based pose tracking approach in this paper ugsgspaoespondences
as well as the point based pose estimation algorithm detiib[20] to imple-
ment a gradient descent. Let X) be a 2-D-3-D point correspondence, i.e. let
X € R* be a point on the 3-D silhouette of the object model in homeges co-
ordinates anc € R? its position in the image. Furthermore, let= (n,m) be
the Plucker line througlk and the respective camera origin. We will explain in
Section 3 how such point correspondences emerge from aegtatBscent.

In order to track the object, we need to find a twjghat maps the transformed
model points ex(%,)X; as close as possible to the corresponding Plucker lines

sy (o)), <n - g
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where the functiong, 1 : R* — R3 removes the last entry, which is 1. This results
in a system of equations that is hard to solve due to the expahdéunction.
However, since the twist corresponds to the pose change, it is rather “small”. As
in [9], we can linearise the exponential function by the finster Taylor expansion

expé)=S = ~l+E (6)

k=0
with an identity matrid without introducing a large error. Then, we get

argrginy | (exe(£) ), xn-m Y

oy [((4)), nomf @

To solve this least squares problem, the cross product isaea, resulting in

three linear equations of rank two for each correspondéxck;). Thus, three

non-colinear correspondences are sufficient to obtain@uersolution of the six
parameters in the twist. Since correspondences are usudlaccurate, however,
it is advantageous to consider more correspondences. ©haspbtains a least
squares problem, which can be solved efficiently with steshdaethods, e.g. the
Householder algorithm [32]. In order to further minimise #&rror introduced by
the Taylor expansion, we iterate this minimisation process

3 Region-based Model Fitting

Previous approaches usually try to match a contour obtdgestgmentation to
the projected model surface. Since segmentation and mgtchn be time con-
suming and erroneous, our idea is to avoid both the explcitaur computation
as well as the matching step. Instead, we directly optintisegpbse parameters
such that all images are optimally partitioned into an ofsgexd a background re-
gion by the projected surface model. To simplify the degimip we explain the
algorithm for a sequence created with a single camera. Tiemg®n to multiple
views is straightforward, though.

3.1 Energy model

To find the set of pose parameters that splits the image damiaito a foreground
regionQ;, and a background regiddo;, we minimise the energy function

E(€) =~ /Q (Pe()1ogpin + (1~ P¢(x) log Pou ) dx 9)
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wherePg (x) := P(€,X) € (R® x Q +— {0,1}) is an indicator function for the pro-
jected object surface, i.e., itis 1 if and only if the surfa¢ehe 3-D model with
poseg projects to the point in the image plane. The functiopg,, pout: F X Q —
R are two probability density functions (abbreviated as “PRRat model the dif-
ferent feature distributions. Both take the featufesf the image (such as colour
or texture) and an image point as input and return the préibathiat the features
at the pointx occur inside or outside the object region, respectivelymtdke the
formulas more readable, the arguments of the PDFs are annitthe equations.
Similar PDFs appear in [20] for estimating the contour. Intcast, the energy in
(9) does not require the estimation of an intermediate eortbat only the opti-
misation of the six pose parameters. This simplifies theregion considerably.
Also the length constraint on the contour used in [20] is mykr required.
Good and straightforward choices for the input featurestla@amage intensity
(for grey-scale images), or the colour in CIELAB colour sp&83] (for colour
images). These features are used in every experiment shengn Additionally,
we employ the texture feature space in [34] to improve tragkesults for objects
with a more complex appearance (see Table 2). Any otherriesatvhich can be
densely computed in the image, such as Gabor filters, carbalased.

To keep the model tractable, we assume that all pixels artdreeahannels are
independently distributed. That is, the probability fuaos pj, .t are given by
the product

N .
Pin/out = [ Pin/out (10)
in/out il:! in/out

whereN is the number of feature channels apf and p},; are the estimated
PDFs of thei-th feature channel for the inside or outside region, retbgsy.
This is also one reason why we use the CIELAB colour space,separates the
different channels well. If the models appearance is notctooplex, we model
the PDFs with a non-parametric Parzen density

/ Ko(F'(x) —F'(y))dy, (11)

p
m/out( |Q|n/out| Qin/out

whereF'(x) is thei-th feature at the image positionandKq(z) = ﬁw exp(%)

is a Gaussian kernel with standard deviatme= /30, approximated by three
box filters of width 11. For more complex appearances, we eynplocal Gaus-

sian distribution as introduced in [20] and very common icerd segmentation

approaches, e. g. [35] or [36]:

i _ 2
pgn/out(Fi(X)7X) = ﬁ@(p<( (Zij:n:)]:t/(ojt; X ) ; (12)
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where the local means and standard deviations are compuaaiylas

i . fQin/out Ko'(y_X>Fi (y>dy 1
u‘in/Out<X) - fQin/out Kc(y _ X) dy ’ ( 3)
S oa KoY =X (F (Y) — Hy ()2

Oin/out(X) = Jou o Koy =X)0y

(14)

in/out

3.2 Minimisation
The gradient of the energy function (9) with respect to theegmarameters reads:

~DE(E) = | (OP(x)10gpn — 0P () 10g Pur)
+ (P:(x)O(log pin) 4 (1 — Px(x))d(log pout) ) dx
%A) (OPs(x)(log pin — l0g Pout) ) dX . (15)

The approximation neglects the dependency of the pose péeesron the PDFs.
Both are actually not independent, since changing the pesally leads to a
different object region in which the PDFs are estimated.ré&fage several works
that discussed the use of the complete shape gradient indpe sf segmentation,
e.g. [37]. Our own experiments did not reveal a practicalaatege, such as
considerably faster convergence, and iterations are mastlerfwhen using the
approximation. The approximation is motivated by the faet the PDFs usually
change very slowly when changing the pose parameters. Imguementation,

we use Sobel operators (see [38]) to approximie

SincelJE(§) is zero unless we are at the 2-D silhouetts the projected object,
we can rewrite Equation (15) as

~DE(&) ~ [ (OP(c(s))(10g i — log Pou)) ds (16)

c

wheresis the arc-length parameterisationooin the discrete setting, only a small
number of object points is projected onto the 2-D silhouditenoting the set of
these points bys, we have

—DE(§) = 0Pk (xs) (log pin — log pout) - (17)

Xs€Osg

Interpreting (17), the energy function (9) is minimised bgvimg each contour
point along the direction indicated by the gradiéi®. Speed and sign of this
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For each frame:

Extrapolate new pose from previous poses and compute image features
- Project 3D object model onto image plane

— Generate PDFs for interior/exterior of projected ma@skekion 3.1)

- Adapt 2D-3D point correspondences (X ,X ) tp (' ,¥gction 3.2)

— Construct projection rays from (X’ , X(Jection 2.1)

- Generate and solve system of equations to get newpesien 2.2)

Iterate

Figure 3: Overview over the steps done by the basic poseitigekgorithm.

motion are given by the log-likelihood ratio I((%) Employing the methodol-

ogy from Section 2.2, this motion can be transferred to epwading 3-D points
on the surface model. Thus, the gradient vectors creatsdviy are reprojected
back to the 3-D space in order to find the most consistent 330 Body mo-
tion that corresponds to the gradient in the image. Vicsaighe estimated rigid
body motion changes the 2-D silhouette such that the feaareseparated more
clearly.

In practical implementation, we create 2-D—3-D point cep@ndenceéx;, X;) by
projecting silhouette point using the current poseto the image plane where
they yieldx;. If the PDF for the inside region evaluatedxati.e. pir (i), exceeds
the corresponding function value for the outside regim(X;)), we suppose that
X belongs to the object region. Thugswill be moved in outward normal direction
to a new poink{. Conversely, points whengn (X)) < pout(Xi) holds will be shifted
into the opposite direction.

According to the gradient (17) the shift vector should halength ofl := || log pi, —
log pout||- We noticed that settingto a fixed value tends to work better. We be-
lieve that this is because in the optimum the silhouettewsllally be close to an
image boundary. If the model does not exactly fit the objeattsoof the contour
will still be in the wrong region and induce large gradienttees. Note that the
absolute value of the difference of the logarithms stateslii@ly it is that a point
belongs to a certain region, which does usually not cormedpo the distance of
the point to the object boundary, and thus to the optimaltleinfthe shift vec-
tor. Moreover, image boundaries are often blurred and le@dkel values that do
not fit well to either PDF. Capturing only the sign of the lakelihood ratio can
be regarded as a robust variant of the gradient, where palioiig the silhouette
all have equal weights when voting for the direction of moeam Especially in
case of unexpected occlusions, a condtéalips to reduce the influence of points
assigned to the wrong region. We tested various other metiocatapt the length
of the gradient vector, but results were usually inferion éxample result where
| was not fixed is shown in the last image in Figure 10. Note thatdptimal
value ofl depends on various factors such as the acceleration of {eetpthe
type of movement, and the amount of silhouette points. Tihisscurrently a free
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parameter in our tracker. All experiments shown use valeésden 0L and 2.

A gradient descent in the pose parameters very similar toribave first proposed
in [14] has recently been presented in [39]. The gradieneiszdd in 3-D space,
which yields an additional multiplicative factor depenglion the curvature of the
object. In their implementation, however, this factor waglected. Moreover,
they use the exact gradient without discarding the diffeeeidog pi, — 109 pout||-
While this makes the optimisation theoretically more squhelir approach would
probably also benefit from discarding this factor.

After each gradient descent step in the pose parameter®hRe in the object
and background region are recomputed. In order to haverleitial pose param-
eters - which includes a region that better fits the objediénimage - we predict
the object’s pose in a successive frame by linearly extedpa the pose from
the previous two frames. This is also beneficial when lirsagi the exponential
function. A more sophisticated approach, e.g. using a physimulation as in
[40], could be used here as well. However, even if the ini@de estimated for a
frame is quite bad, the optimisation will usually find thereat pose, as we will
show later in an experiment. Figure 3 depicts an overvievaefigorithm.

3.3 lllustrative example

Figure 4 illustrates the adaptation of the probability dées The image in this
example shows the contour of the pose estimated by our picedistep. PDFs
are generated using the Parzen model for each feature dleathtor the object
and background region of the projected model. The algoritinen tries to opti-
mise the pose in order to separate these PDFs. The threesfighures the PDFs
generated from the initial pose guess (red lines) and atrideoéthe pose esti-
mation step (green lines) for the three channels used fieeluminance and the
two colour channels in the CIELAB colour system) for the imde (thick lines)
and exterior (thin lines) of the puncher shown. It can be $katthe initial pose
contains parts of the cyan mouse pad, which has values a(®lnd15, -5) in
CIELAB colour space, and of the orange measuring tape, wtiosenels are ap-
proximately (55,40,55). This is also clearly visible in tARBFs (thick red lines).
After pose tracking, the projected pose extends almostedntover the white
puncher in the image. As a consequence, the peak in the lagereround 53 —
as well as those in the colour channels around 35 and 50,atasgg — have dis-
appeared (thick green lines). Also note that the differdreteveen the PDFs after
pose tracking (green lines) is greater than before poskitig€red lines). The
difference between the PDFs for the outside regions befudeaéter pose track-
ing is very small because only a small fraction of the outsitka has changed.
The evolution of the pose is shown in Figure 5.

Figure 6 illustrates how the force vectors affect the posguré 6b depicts the
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Figure 4:Upper left corner: Contour of an initial pose guess (red) and the con-
tour after tracking (green)Upper right corner: PDFs generated for the lumi-
nance channeLower two figures: PDFs generated for the colour channé&led
lines: PDFs before pose estimatioGreen lines: PDFs after pose estimation is
finished. Thick lines: PDFs for the interior of the objecthin lines: PDFs for
the exterior of the object. The black arrows indicate howRbBd-s evolved. Note
that, as explained in the text, the PDFs for the backgrougmbmechanged only
marginally.

Figure 5:From left to right: Initial guess, and pose estimated after 10, 30, 50,
and 70 iterations (magnified).
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Figure 6:From left to right: (a) Input image. The puncher is to be tracked. (b)
Projection of the model in an inaccurate pose onto the imagegified). The two
marked points are the points referenced to in Section 3)3[He 2-D contour of
the projection (magnified). The arrows show into which dimts these points
should move in our algorithm. From [14].

Figure 7:From left to right : Tracking results for frames 121, 214, 269 and 274 in
one of the two available views of a tea box sequence. Onlyitheugttes of the
tracking results are shown such that the orientation ofe¢hdbx and the specular
highlights can be seen.

surface model corresponding to the puncher which has begacped in an in-
accurate pose onto the input image (Figure 6a). Figure 6wsktize boundary
between the interior and exterior of the projected modaetc&most of the inte-
rior is white, the white point marked by the circle on the tigiile of the image fits
to the statistical model of the object region better tharhtd of the background.
Thus, it is shifted away from the object, i.e. to the righteTdther marked point,
which is cyan, better fits the PDF of the background and is siifsed towards
the interior of the object, and thus also roughly to the right

If the estimated pose is close to the optimal one, the posegesainduced by
the force vectors will mutually cancel out. Thus, the pracesterated until the
average pose change after up to three iterations is snmiadlera threshold. The
optimal threshold depends on the sequence and the pardmiéterexample, the
farther the object is from the camera, the lar§ieshould be.
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Figure 8: lllustration of the quality/speed tradeoff of fhase tracking algorithm.
From left to right : Tracking results for frame 220 in both cameras and change
of the three translation parameters in the first 160 framesghich the static tea
box was partially occludedJpper row: Fast but imprecise resulttower row:
Precise but slower results. In addition to being impredike,fast results also
oscillate stronger.

3.4 Experiments

The experiment in Figure 7 demonstrates the abilities obtsac tracker. A tea
box is tracked in a stereo setup. Despite partial occlusmoraplete rotations and
specular highlights, tracking worked very well. As in alhet experiments, we
use a given pose in the first frame (usually created by hanid)tadisation.

In Figure 8 we highlight the quality-speed tradeoff by compgtwo variants of

the tracking algorithm: a fast version where only intensity colour are con-
sidered, the time step size in the gradient descent is laagera less restrictive
stopping criterion is used (upper row), and a more accutEon where we also
incorporate the texture features from [34] (lower row). A&s e clearly seen in
the diagrams, the version with texture features and finez 8teps is much more
precise as errors are mostly below 3mm. On the other handg sl in the upper

row was computed nearly an order of magnitude faster, asateti in Table 2. In

many applications the fast result may already be suffigigoikcise. The worst
tracking error of the fast tracker appeared in frame 220¢kvis the one depicted
in Figure 8.
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3.5 Reusing old probability densities

The extrapolated pose used as initial guess for a new framofes inaccurate.
Therefore, the PDFs based on this pose might differ stroingiy the PDFs cor-
responding to the correct object position in the image. Thislead to a slower
convergence rate or even to an unpleasant local optimumndiar the sought so-
lution.

One way to deal with this problem is to replace the simpleagdfation step by a
more sophisticated method. For example, a 2-D pose trackiag optical flow
algorithm can be incorporated to improve the initial guess new frame as done
in [41].

As an alternative to such rather complex approaches, weopeojp diminish the
problem of inaccurate PDFs at the beginning of a new frame=bging the PDF
estimates from the previous frame. The inherent assumitmat the appear-
ance of the object and background, or more precisely theicrg#ion by a PDF,
changes only marginally each frame. This assumption isllyswall satisfied,
though care has to be taken in case of the local Gaussian mBdakequently,
we recompute the probability density functions only afte estimation of the
object position is completed, i.e. once per frame. Sincerégjuires significantly
fewer PDF estimations, it also leads to a speedup of theitigaor

Keeping the PDFs from the previous frame has another adyant&ince the
PDFspin, and poyt are constant for every iteration, the derivativé&$og pin) and
O(log pout) are zero, and Equation (15) is not an approximation anymore.

As mentioned above, the situation is a bit more complex wbeally varying den-
sities are employed. If the object (and possibly the baakgid moves between
two frames, the positional information of the local derstirom the previous
frame are no longer valid. There are two possible approxanst The PDFs for
a 2-D-3-D point corresponden@e X) can be evaluated either: a)abr b) at the
position to whichX was projected in the previous frame. This second alter@ativ
is not available in pose tracking algorithms that use exmegmentation, since
there is no real 3-D information incorporated into the segiaigon step.

Both approximations have advantages and disadvantagetho®ié) results in
better approximations of static backgrounds. Howeverbidekground is often
not static. Moreover, since it ignores the motion of the objthe approximation
of the object model is often better when using method (b)tHemmore, method
(b) has slightly higher computational costs and memoryirequents, as more in-
formation from the previous frame must be stored and evatlidh practise, how-
ever, both methods yield very similar results and the aolaiii costs of method
(b) are negligible. Since the results are similar, we usethat(a) because itis a
bit faster in our implementation.

Figure 9 shows five frames of a monocular sequence with a wotmjegiraffe.
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Figure 9: Estimated pose for five frames of a colour sequernitte avwooden
giraffe. From left to right: Frames 32, 48, 64, 74, and 84. Since the surface
model consists of a single closed point grid, it is possibléobk through the
projected pose.

Since only one view is available, and since the appeararnte efooden giraffe is
rather complex, tracking is quite hard in this sequencd, 8te projection of the
estimated model fits the object in the image well. For thizisege, as well as for
all experiments described from now on, we used the prolpabiinsity functions
from the previous frame as described before.

Figure 10 shows an example of a scene with fast movementdamd siccelera-
tions. Although only one view was available the white punichas tracked even
though it moved with more than 50 pixels per frame. Moreotles, algorithm
was able to deal with accelerations of more than 70 pixelamé& / frame. With
the proposed algorithm, 171 frames have been successftled. The best re-
sult we achieved without reusing PDFs is a successful tngaki 25 frames, after
which tracking failed completely. An example result ob&dmnwith a non-constant
| is also shown in this figure.

In Figure 11 it is illustrated that the proposed algorithm edso handle move-
ments towards the camera even if only one view is availablethErmore, there
is a second aeroplane visible in the background with an appea very similar
to that of the aeroplane being tracked. Nevertheless,itrgekas successful. In
the very last frame, in which only a very small part of the adaioe is visible,
tracking results still look good but are in fact quite badcas be seen in the last
image and the plot in Figure 11.

3.6 Articulated objects

This section explains an extension of the model that all@nsaindle articulated
objects by employing kinematic chains as introduced in.[4dhematic chains

are a system of rigid bodies connected by joints, wherebf ¢@at has only

one degree of freedom. Since every joint angle is an additiparameter that
must be estimated, and due to self-occlusions, pose tdleénomes far more
challenging. Incorporating kinematic chains, the funcfo- and thus the energy
function (9) — does not only depend on the tw§dtut also on the joint angles in
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Figure 10: In the upper row, the estimated poses for the fsatfe 16, 134, and
142 of a monocular sequence are shown. The last row showstiheaéed con-
tours for the frames 101, 102 and 103 in black, followed byttaeking result
in frame 103 when the length of the shift vectois not set to a fixed value in
turquoise. Note the fast movement between frame 10 and &&ath that the
object partially left the image around frame 142 and thetpseidden turnaround
in the frames 101 to 103. Also note the motion blur visibleranie 103. The
red pose shown in the image to frame 103 is the pose estimatedr Initial pre-
diction step. Although it is initially far away from the cewet pose, our algorithm
is able to successfully track the puncher i fixed. The position of the puncher
estimated by our algorithm is indicated by the black contdote that only the
camera moves while the scene itself is static.
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Figure 11: Tracking results for the frames 0, 10, 20, 30, 40,ahd 47 of a
monocular, synthetic scene with a moving aeroplane, iéistl as cyan contours
in the original images. Four images are cropped, and soras illustrating the
coordinate system were added in frame 30. The plot showsahsiational track-
ing errors per frame in meter. Although there is another@ar@ with similar
appearance in the background, the tracking results lookl.géacording to the
guantitative evaluation, there is some inaccuracy due pthdembiguity, and the
last frame was tracked badly due to the fact that most of thepéene was not
visible. Input sequence generated and kindly provided lmh&d Steffen from
the University of North Carolina at Chapel Hill.
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the chain. Apart from the additional parameters there ishamge in the energy.

A joint can be modelled by a twist of the for@; with unknown joint anglé; €

R and known joint axi<; (the rotation axis is a part of the model representation,
and there is no translation). The complete pose that musitheated for a model
with n joints is given byx = (£,04,...,68n) € R6™,

The equation of a poinX; behind thej-th joint then has to satisfy

(exp(®) expB28a) - exp(Oi))X ) xmi—m =0 (18)
in order to lie on the Plucker line = (nj, m;). After all exponential functions are
linearised in the same way as in Section 2.2, one such camstesults in three
rank two equations in the six pose parameters and the jogisn
A problem typically arising with kinematic chains is thattlk might be no 2-
D silhouette points for a rigid body in the chain, either hesmit is completely
surrounded by other parts of the object (e.g. a small hanim 6f a big torso) or
because it is occluded. In both cases, the angle of the pomdgng joint cannot
be estimated. This problem can be alleviated by includingr gnowledge on
joint angle configurations; see for instance [43] for furttetails of this optional
extension. However, since a prior is never as good as a ielrabasurement,
particularly when there is little training data, we ratheogose to improve the
silhouette model. This will be done in Section 5, where wedretxploit the
available information provided by the image.

Tracking results with an articulated object model are deplien Figure 12. For
this scene, grey-scale images from four cameras as well@siormation were

used. Apart from smaller problems due to the fact that a husaanot be perfectly
modelled by a kinematic chain, the only tracking inacciea@ccur at the feet.
This is due to the feet being white while the rest of the obgbtack.

4 Simultaneous Tracking of Multiple Objects

As shown above, the basic pose tracking approach can haadialwcclusions

in some situations. However, once the percentage of theidedlarea is too big,
tracking will fail. This is because a large part of the idigatimate of the object
region covers the background and thus, the estimated PDthdbregion will

be very inaccurafe As a consequence, the estimated PDFs cannot be used to
distinguish between interior and exterior anymore.

lWhen reusing the PDFs from the previous frame, this effepbitponed to the successive
frame. The problem is not solved, though.
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Figure 12: A sequence where a person turns two backflips. @réyout of four
camera views is shown. The left image (frame 50) shows theatéthe second
flip. The two images in the middle show the frames 96 and 148jathe image
on the right (frame 190) the backflip is completed. The bottom shows the
estimated pose in zoomed images.
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In this section, we show how to handle occlusions that ard@o®ultiple objects
by a coupled tracking of all involved objects. The basic ides presented in a
preliminary conference paper [44].

4.1 Basics of multiple object tracking

In order to track multiple objects, we assume that a modebgrake initialisation
is available for each object. The goal is to find the poseslafgécts. That is, if
N is the number of objects to be tracked, the algorithm shounttithe posex; of
each object. For the methodology we present here, it is not importaneitrack
rigid or articulated objects, or both. Hence, we will alwayste x; for the pose
parameters even thoughcould be simplified t&; in case of rigid objects.

The simplest way to track multiple objects with the approattoduced in the
last section is to estimate PDFs for the interior and extefi@ach object, and to
minimise an energy function that is the sum of energy fumdtiof the form (9):

E(X1,---,XN) (19)

- S Py.i (¥)10g Piin + (1= Py,i(X)) log pi out ) dx.
ig\ Q

Here,R; ; is a projection functio — {0, 1} which projects the-th object with
posey; to the image plane. Minimising this energy function can beedm basi-
cally the same way as with the old energy function: Each alggurojected, PDFs
are estimated, the 2-D parts of the 2-D-3-D point correspooés are adapted
according to the gradient derived from the correspondingfand a system of
equations is solved for each object. As soon as the poseaiptlane object is
small, its position can be considered as final and only thegpo§the remaining
objects are searched. This approach treats all objectpémdently. As soon as
two objects partially occlude each other, however, the pedeence assumption
is no longer satisfied.

4.2 Occluding objects

In order to understand the problem of occluding objects sar the illustra-
tive example in Figure 13(a) in which a green puncher and Bwedbox is to

be tracked. Suppose the 3-D pose of both objects is alreadgctly estimated.
When the green puncher is projected onto the image plar@itg the image into
the background region (blue region in Figure 13(b)) anddgoyend region (green
and yellow region in Figure 13(b)). Clearly, the foregrouedion not only in-

cludes the green region, but also a considerable area oktlmwtea box. As a
consequence, the PDF estimated for the interior of the pamths two modes:
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Figure 13: lllustration of two problems occurring when oéhe tracked objects
occludes an other, and how our algorithm solves them bysingithe visibility

functions explained in Section 4: Suppose the initial pagéise two objects to be
tracked in the artificial inputimage (a) are correct. Theadlg used for PDF esti-
mation and silhouette (c) used without visibility functeoare suboptimal. When
using the visibility functions, the area (d) and silhou¢&teare more reasonable.

one from the green and one from the yellow area. Therefotlnwearts of the
image are falsely believed to belong to the interior of theqier. Those silhou-
ette points which are yellow (the silhouette is shown in FeglB3(c)) consequently
generate gradient vectors that point towards the outsitieeasbject. The tracked
puncher will get stuck in the yellow area and tracking fails.

4.3 Coupled tracking

In order to prevent problems due to occlusions, it is necgdsamake sure that
each image point is only assigned to the visible object. deme introduce a
visibility function [45] v; for each object. Let O;()x;j,X) be the set of those point
on thei-th object model with posg; that are projected onto the image poxnt

Next we define

di(Xi,x) :=d(Gi(xi,x),C) = min {d(y,C)} (20)
yeOi(Xi,X)
as the minimal distance of the $8tto the camera origi€. Finally, the visibility
functions are given by

1 ifdi(xi,x)= min {dj(xi,X)},
Vi (X17 e 7Xn7X> = - Jeil,n} o (21)
0 else .

That is, a point is considered to be visible if there is no poinanother object
closer to the camera origin projecting to the same imaget pdims local visibility
testing is clearly superior to approaches which simply a&sall parts of one
object to be in front ofll parts of another.

The arguments of the visibility functions — the pose of albilved objects and the
image point — will be omitted to keep the formulas readable.
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In [44], the energy function
E(Xl,...,XN) (22)

= ii/ﬁ (Vi Pyi.i(¥)10g piin+ (1—ViPy,i(x)) log pi,out) dx.

was used for tracking multiple objects: When multiplyinglegrojection func-
tion Ry, j with the corresponding visibility function;j, occluded points are not
considered as being inside the interior of the object rediortrigure 13(a), only
the green part of Figure 13(d) is therefore used to estinha®DF of the interior
region of the green object. Consequently, the PDF is pdyfacturate here.
However, the PDFs estimated for the outside of each objgabmestill overlap
and are thus inaccurate. Thus, we propose to use a singlgroackl region here
instead of one outside region per object.

The necessary functions(X1, - - ., XN, X) andPo(X1, - - -, XN, X) for the background
region are given byo (X1, - -, XN, X) := [T~ (1— Vi) (the background is visible if
no other object can be seen) aRg§lx1,...,Xn,X) := 1 (ignoring visibility, the
background covers the whole image), while the energy fanas:

N
E(X1,---,XN) = _i;/ﬂ (Vi Py.i(X)log pi)dx (23)

The minimisation is basically the same as in the single dlmase. For each ob-
ject, a silhouette is found by projecting the object, andgbiat correspondences
on the silhouette are adapted by comparing the PDFs of thedgions next to
the considered silhouette point, i.e. the PDF of the regiomhich the point lies
and the next region in outwards normal direction. The vigybiunctions can be
computed efficiently by projecting the objects with openGL.

In addition to the improved way to estimate the PDFs, we cahéua benefit from
the explicit modelling of occluding objects by consideriogly true silhouette
points and neglecting occluding contours, as illustratgéigure 13(d) and (e).

It is advantageous to normalise the lengths of the forceovedepending on the
number of correspondencesavailable for each object Thus, we linearly scale
the lengthl of the force vectors depending @nin each iteration step: For a
correspondence on objacthe length of the force vector is set&), wherecy, =
miaxci. This is beneficial since, when only few correspondencesaeadable,

each force vector has a larger influence on the pose. Thustgpeize should be
smaller to prevent oscillations.

Figure 14 shows a scene in which two Lego Dupl@bjects were successfully
tracked. Despite the cluttered backgrounds and occlusiobsth views, both
objects were tracked accurately.

23



Figure 14:From left to right: Four frames (15, 45, 75, and 105) of a sequence
with two objects. Top: View 1, Bottom: View 2. Despite simultaneous occlu-
sions in both frames, the tracking was successful.

Figure 15:From left to right: Four frames (210, 240, 270, and 510) of a sequence
with a bike and a cyclist. Only one of the four views is showrtan be seen that
the tracker can handle mutual occlusions. These occlusiomgllustrated for
frame 240: The parts where the cyclists occludes the bikeslang/n in green
while it is vice versa for those parts shown in blue.
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The Figure 15 shows an example in which there are mutual siceis: The bike
partially occludes the cyclist and vice versa in all viewstlghout the complete
sequence. For this sequence, we used the soft constram$46] that encourage
the hands to stay close to the handlebar and the feet to peafoircular trajectory.

5 Objects With Multiple Components

As long as all objects to be tracked are rigid, the only pnotalec occlusions
occur because one object occludes another, since selfsioet are usually un-
problematic. Once kinematic chains are tracked, there eaelh occlusions that
result in ambiguities, though. An example for such a sitrats shown in Fig-
ure 17. For some frames, the right forearm is completelydashe silhouette of
the person. As a result, an approach using a single silleuatt only guess the
joint angles of the forearm from the prior distribution. Bvie case of a learned
prior, there remains a lot of uncertainty in the forearmreate although the arm
Is clearly visible in the image. We will now present an extenf the tracking
approach in order to make better use of the image data in suehisns.

5.1 Energy Function using Multiple Internal Regions

We follow the idea discussed in [47], which is to assign défe rigid parts of
the articulated object to be tracked into one of several @mapts. Then, each
component has a separate PDF and is projected separateipéntmage plane,
yielding an increased number of silhouettes for trackingteNhe difference be-
tween “part” and “component” used throughout this sectitiart” refers to a
rigid part of the kinematic chain, while “component” is a eébne or more parts
with similar appearance. For the moment, assume that a giittthg) into | dif-
ferent components!;,i = 1,...,I is already given. We will explain in Section 5.2
how the number and composition of the components can be found

As in the case of multiple objects, visibility functions st be defined that ac-
count for occlusions. Thus, we similarly defifé(x, x) as the set of those points
on thej-th componenM; with posey that are projected onto the image pont
and

d(x,x) :=d(0(x,x),C)= min {d(y,C)} (24)
yeOl(x,x)

as the minimal distance of the €2t to the camera origi€. The visibility function
for the multiple internal regions case are then given by

Vix) =1 if dj(x,x):jemim}{dj(x,x)}. (25)
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Defining the visibility and projection functions for the b@acound as/p(x,X) :=
|_||j=1 (1—vj (x,x)) (the background is visible if no other object can be seen) and
Po(X,X) := 1 (ignoring visibility, the background covers the whole e leads

to the following energy function:

E(X) =— J;/Q <Vj (X,X)P>£ (x)log pj>dx ) (26)

There is another potential problem that can be solved byapgsoach: Some
parts of the object might look too similar to the backgroundhsthat including
this part degrades the results. For example, this can beag® when tracking
someone standing in front of a large white background whaanwng a white T-
shirt. In this case, white pixels are more likely in the backod. Consequently,
the tracker tries to reduce the number of white points in thjec region, even
those of the white T-shirt. This challenge can be easily leghoh our approach.
All that must be done is to exclude the corresponding parteebbject from all
regionsM;. Then it is automatically assigned to the background regibrhe
removed parts are not at one end of the kinematic chain, thiksawithout any
problems since the approach does not require that eachfihe object is in one
component. Furthermore, it is also possible that a compawenains parts that
are not connected, e.g. both arms but not the torso.

5.2 Automatic component generation

The tracking approach using multiple internal regions meguthat the appear-
ances of the different components can be distinguished.s,Tlva assume that
parts with similar appearance should be in the same componen

To automatically split an articulated object model, wetdbgrputting each rigid
part of the articulated object into a component of its owrthére are significant
appearance differences in rigid parts, these parts shdsiddbe separated into
several components. We have done this manually for the Empet shown in
Figure 20. However, it should also be possible to automatestep, e.g. by
segmenting the 3-D model based on its appearance visildhe image.

Next, each component is projected into the image plane, &idrafor each re-
gion is estimated. Then, the two components whose PDFs ase simoilar are
combined. After computing the PDF for the new, combinedargthese steps
are repeated until the difference between all PDFs excetassholda.

For this algorithm, it is necessary to compare two PDFs. Rtwenseveral pos-
sible ways how to compare PDFs, the Jenson-Shannon diveer 48], which is
a symmetric and smooth variant of the Kullback-Leibler dijgnce [49], works
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Figure 16: Result of the automatic splitting explained it 5.2.Leftmost:
Input image (cropped)eft: Object in initial pose.Right: Similarity matrix of
the first step. The darker a dot, the more similar two parts &ne circles show
the two region pairs which are merged first: Head and lowdrtragm (green),
followed by the two hands (blue)Rightmost: Final splitting suggested with
splitting threshold in the interva0.15,0.33].

best in our experiments. It is given by

IS0p.q) == J(p,M)JZrJ(q,M)7 27)

wherep andq are the PDFs to be comparéd,is equal to@, and wherel is the
Kullback-Leibler divergence
p(i)

J(p,q) == Zp<i>log@ (28)

5.3 Experiments

Figure 16 demonstrates the automatic splitting algoritiNote that upper arms
and torso are clustered in the same component, becausedwatlhe appearance
of the shirt.

In Figure 17 we show tracking results of a monocular scenehichvinternal
regions and the splitting by the automatic splitting altori with thresholdx =
0.25 is used. As can be seen, the tracking works quite well & rtionocular
sequence, despite the fact that one arm is completely itisedsilhouette of the
whole object.

Figure 18 shows more results using internal componentsraatavitha = 0.25.
The sequence in this experiment is Sequence S4 of the Huradh&atabase [50],
for which four cameras are available. The advantage of #msbmark is that it is
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Figure 17: Tracking results for a monocular sceff@m left to right : Pose and
silhouette estimated in frames 10, 38 and 54. Although narmétion about the
right arm is included in the silhouette, the arm is correttigked.
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Figure 18: Tracking results for Sequence S4 of HumanEvahé [Eftmost im-

age shows the tracking error with and without internal regiol he left image in
each block shows the tracking result without using interegions, the right when
using internal regions. The same colours have been usetb ah easy com-
parison of the results. Without using multiple componemgsking can be wrong
due to occlusions (middle images, frame 50), or becausestiraaed PDFs are
inaccurate (rightmost images, frame 200). Only one of tlne &vailable views is
shown. Images have been cropped.
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possible to receive the average tracking error in millimeer frame via an online
interface at Brown university, i.e. a quantitative evalortis possible. The se-
quence illustrates that multiple component models cantasaseful in multiple
camera settings. It is not surprising that the arms are hietieked around frame
50 (see middle images in Figure 18). However, there are aipoavements that
look surprising at first glance: when using a model with a lemgpmponent, the
two legs crossed around frame 200 (see right images in FitR)xeWhen using
the split model, more accurate PDFs are estimated. As atrésalcrossing of
legs disappears.

Later in the sequence, tracking without using internaloegifails as indicated by
the error plotin Figure 18. Sample frames for the whole segeiewhich includes
three different types of movement, are shown in Figure 1% Bdttom row also
shows the frame with the largest tracking error.

Table 1 shows the average tracking error obtained with otlhogewhen using a
single component, and when using multiple components mthole sequence,
i.e. until frame 1257. It can be seen that the average trgakiror is much smaller
using the multi-component model. Moreover, these reshtigrghat our tracking
approach yield very accurate results: In [51], an averageking error of 80mm
is reported for the same sequence. However, only the firstraiies were used,
as tracking became less robust and started failing aftesvafor these frames,
we obtain an average error of 32.13mm. Brubaieal. achieve a mean error of
54mm using only two of the four cameras [52]. Their approacly bandles the
lower body part, as a physical model of walking is used. Tloua$y/ the walking
part of the sequence is evaluated (frames 15 to 350). Werohteaverage error
of 33.4mm in these frames.

Gall et al. proposed to perform a global optimisation based on interg&imu-
lated annealing, followed by a local optimisation [53]. Bacglobal optimisation
step prevents tracking failures from propagating into teet frame, resulting in
an average error of 32.01mm for the whole sequence. Suchproagh can also
be incorporated as first step into the tracking approach beszl but would ap-
proximately increase the run time of our algorithm by a facidive.

6 Simultaneous Tracking of Multi-Part Objects

The two methods described in the last two sections, i.ekitmg multiple objects
and tracking an object with multiple internal regions, candombined into a
single energy function in a straightforward manner. By miising this function,
multiple object with multiple internal regions can be tradk
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Figure 19: Each row shows tracking results in the four cameas for se-
quence S4 of the HumanEva-II benchméafkom top to bottom: A frame in the
walking part (frame 222), a frame in the jogging part (frardd )} a frame in the
“balancing” part (frame 888), and the frame with the worsuies (frame 757).
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Table 1: Some statistics of the tracking error with and withasing internal re-
gions for the sequence shown in Figure 18. Given are the geexad standard
deviation of the tracking error and the maximal trackingerAll numbers are in
millimetres.

Model Avg. error Std. deviation Max. error
Multi-part object 48.87 21.94 156.53
Single-part object 142.48 89.82 300.30

6.1 Tracking Multiple Multi-Part Objects

To track n objectsM; (1 < i < n) with unknown poseg;, where objeci con-
sists ofl; partsMil, M '(as explained above), we use functions similar to those
used before: We defn‘lﬁJ (Xi) as projection function of the componeMﬂ pI :

P (X1,...Xn,X) as the PDF oM!, andO!(xi,x) as the set of those point dv/
that are projected onto the image pomFurthermore we set

d)(xi,) == d(O}(xi,x),C) = min{d(.C)} (29)

as the minimal distance m{' to the camera origi€, and

V0 = 1ifd xx) = min  min {0} (30)

as visibility function of the componemi‘.
Then the function to be minimised reads:

E(X1,.. /VI‘P)iI Iogpl}d (31)

For the background we sé& = 1, since it has only a single component. Fur-
thermore, we set3(X1, - -, Xn,d) = [T, |‘|'ji:1 (1—vi‘ (X15- -5 Xny q)) (again, the
background is visible if no other object is visible) aﬁ@i(xl,...,xn,q) =1in
this case. Minimisation of this energy function is perfotme a similar way as

minimising the energy function (26). The only differencehat the poses of all
objects are optimised simultaneously, like in (23).

6.2 Experiments

In Figure 20 we track another scene with three Lego Duploatbjhat was first
used in [44]. Two of those objects are red, and the third etsisif a large green

31



Figure 20: Relevance of using multiple internal regidrest two columns, from
top to bottom: The two input images for frame 139, result with internalioeg
(magnified), and with a single region (magnified) Only théailette is shown
for one view to make the details better visibRight two columns, from top to
bottom: Tracking results in frame 20, 190, and 350 using interngibomes.

board with blue Duplos attached to it. We track this multiplgect sequence once
without internal regions, and once after splitting the lalsject into a green and
a blue part. Without using internal regions, tracking istgunaccurate for some
frames. Trying to track the blue/green object without tragkhe red objects fails

completely. These experiments clearly shows that usiregnat regions is also

advantageous when tracking rigid objects.

7/  Summary

In this paper, we have presented a region-based pose tgaakjarithm that can
incorporate various statistical models for object and bemknd region without
explicitly estimating a contour in the image. We showed thetis advantageous,
since it leads to a significant speedup compared to otheonmdgased methods
that require costly segmentation and contour matchingsteprthermore, results
are often better than those achieved with alternating setatien and pose esti-
mation steps. Moreover, we demonstrated that this framew@an be extended
to kinematic chains in order to track human motion. We alsippsed to reuse
probability density functions from previous frames. ThasHed to substantial
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Table 2: In this table, several pieces of information areegifor each image sequence shown in this paper: the number of
views (Views), the degrees of freedom per object (Unknowthg)size of each image (Size), the average number of bewsati
necessary (Iterations), the average amount of real timedtrclock time) required per tracked frame (RTime), therage
amount of processor time required per tracked frame (PTithe)number of frames tracked (Frames), if information from
the textures space proposed in [34] was used (Texturepligiility density functions from the last frame were usedikB),

and the figure(s) in this article in which results are showgyFe(s)). All times are from computations on an Intel Pemii

4 with 3.2 GHz. Since the wall clock time is influenced by otherning processes and delays due to accessing a hard drive,
we also included the processor time unaffected by thesdgmsh

Sequence Views Unknowns Size Iterations RTime PTime Fram@&sxture PDFs Figure(s)
Tea box 2 6 384288 12.7 5.05s 4.75s 395 yes new 7,8
Tea box 2 2 6 384288 4.5 0.79s 0.51s 395 no new 8
Giraffe 1 6 384288  280.0 6.94s  6.63s 84 yes old 9
Puncher 1 6 376284 50.2 1.04s  0.92s 171 no old 10
Aeroplane 1 6 640480 39.4 13.79s 13.43s 48 no old 11
Flip 4 27 500<380 59.7 19.81s 18.75s 260 no old 12
Duplo2 2 6/6 646480 36.7 24.77s 24.22s 110 yes old 14
Bike 4 6/28 64480 23.2 42.86s 42.17s 550 no old 15
Arm 1 30 640<480  155.7 24.09s 23.42s 59 no old 17
HumanEva 4 28 656490 18.3 15.48s 14.63s 1257 no old 18,19
Duplo3 2 6/6/6 646480 12.8 489s  4.27s 380 no old 20




speedups and increased the robustness of the algorithreeroféast object mo-
tions with high accelerations.

In order to deal with partial occlusions in tracking, we sesigd a generative ap-
proach, which tracks all objects simultaneously. Thankbéadepth reasoning in
this approach, occlusions can be dealt with, which leadgtofeantly improved
performance than when treating occlusions merely as maigtnThe same con-
cept can deal with self-occlusions that have been a nuisansithouette-based
approaches. We also showed a way how to generate reasonalbileamponent
object models from a single model automatically. The methagly was eval-
uated in various settings and the experiments revealedaa itlgorovement in
performance due to the occlusion reasoning.

Table 2 summarises all the presented experiments. As caadmetke number
of required iterations varies strongly from sequence taeaqge: More iterations
are needed if the prediction of the object’s pose for the fraxbe is bad. Fur-
thermore, rotating object (parts) require more iterati@specially in monocular
setting. Similarly, the computation time per frame alsaesastrongly. In all ex-
periments excepea box 2 we optimised the parameters independently for each
sequence to get optimal results. Thus the runtimes are gitiémhigh. This is due
to the tradeoff between quality and speed mentioned befdote that real-time
performance was obtained with an algorithm similar to owsid&acker in [54]
by using CUDA. Thus, one can expect significant lower runsirng performing
processing on the GPU using NVIDIAs CUDA framework.

Even if partial occlusions are handled, there are stillagitins in which our ap-
proach is likely to fail, e. g. if one (part of an) object canddg be distinguished
from the surrounding background, or if the projection of thigial pose guess
does not overlap with the correct object region due to stemuglerations. This is
the topic of our ongoing research. Similarly, we plan toreate the parameters of
our algorithm (the length of the shift vecthrthe threshold’, and possibly even
the models underlying the PDF, as well as the image featwed)automatically
in the future.
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