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Abstract
Despite great progress achieved in 3-D pose tracking duringthe past

years, occlusions and self-occlusions are still an open issue. This is partic-
ularly true in silhouette-based tracking where even visible parts cannot be
tracked as long as they do not affect the object silhouette. Multiple cameras
or motion priors can overcome this problem. However, multiple cameras
or appropriate training data are not always readily available. We propose a
framework in which the pose of 3-D models is found by minimising the 2-D
projection error through minimisation of an energy function depending on
the pose parameters. This framework makes it possible to handle occlusions
and self-occlusions by tracking multiple objects and object parts simultane-
ously. Therefore, each part is described by its own image region each of
which is modeled by one probability density function. This allows to deal
with occlusions explicitly, which includes self-occlusions between differ-
ent parts of the same object as well as occlusions between different objects.
The results we present for simulations and real-world scenes demonstrate
the improvements achieved in monocular and multi-camera settings. These
improvements are substantiated by quantitative evaluations, e.g. based on
the HumanEVA benchmark.

1 Introduction

Following the 3-D position, orientation and, if present, the articulations of an ob-
ject in a video is necessary for many applications ranging from self localisation
and object grasping in robotics, body language interpretation, human computer
interaction, traffic or security surveillance, character animation, analysis of ath-
letes up to content-based video retrieval. For a detailed overview of the field, we
refer to the surveys by Gavrila [1], Forsythet al.[2], Moeslund [3], and Poppe [4].
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Figure 1: Examples for problems that can occur in feature based and in varia-
tional segmentation algorithms:Left : SIFT features [12] found in two consecu-
tive frames are depicted. The green crosses denote the positions of SIFT features
found in the frame shown, while the yellow boxes show the corresponding feature
position in the last frame. Here, the tea box was to be tracked. As can be seen, no
SIFT feature has been found that is on the tea box for these twoframes, making
a tracking with SIFT-features infeasible. See Gallet al. [13] for further details.
Middle : A part of the segmentation is concave although the object tobe tracked
is convex, and an undesired split up into several connected components.Right:
The spout is not accurately segmented due to oversmoothing.Furthermore, holes
generated in the segmentation are not always correct. From [14].

This task, which is called pose tracking, is bound to some kind of feature matching
between entities of the 3-D model and their corresponding features in the image.
Such features can be points [5], lines [6, 7], or more complexfeatures such as ver-
tices, T-junctions, cusps, three-tangent junctions, limband edge injections, and
curvature L-junctions [8]. Drummond and Cipolla used edge-detection to achieve
real-time tracking of articulated objects [9]. In [10], a combination of two track-
ing algorithms that use edges and texture information, respectively, are used to
achieve improved results. In [11], the pose is predicted using pixel displacements
and improved afterwards by using image-based cues such as silhouettes.
Techniques building on keypoint tracking are usually fast,but they also share
some common problems. First of all, a sufficient number of common keypoints
must be detected in two frames, which is not always the case; see the left image
in Figure 1. Moreover, when not matching all images to a common keyframe,
e.g. the first frame in the sequence, tracking errors accumulate and result in an
undesired drift.
Drift is avoided in detection-based tracking approaches, where a description of
an object model is assumed and the instance of this model in the image is sought
to be detected in each frame. Reliable detection is a very hard problem. Thus,
various assumptions that simplify the problem are commonlyapplied. Many ap-
proaches assume a static background in order to detect the object silhouette with
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background subtraction, e.g. [15]. Other approaches assume sufficiently many
discriminative features on the object to detect it in a reliable manner [16]. Sunet
al. learn different object parts from a number of view points to recognise the view
point of new images [17]. Ottlik and Nagel segment the optic flow to initialise
the position of cars in inner-city sequences [18]. Ramananet al. rely on detection
only in frames where it is reliable and follow a tracking approach for the frames
in between [19]. Rosenhahnet al. assumes a good initialisation of the pose of
a 3-D model in one frame and limited motion between frames to update the sil-
houette and the pose parameters in an iterative approach, where the object model
serves as a shape prior for the segmentation [20]. While the requirement of an ini-
tial pose and limited motion resemble a classical tracking approach, the matching
of the surface model to the silhouette in the image avoids drift and involves the
silhouette of the object as a general descriptor (see [21]).
If we are only interested in the pose of the object and not in its contour, the draw-
back of the technique in [20] is that it solves a much harder problem than actu-
ally necessary. In particular, it estimates an intermediate contour in an infinite-
dimensional space only to derive a 6+n-dimensional pose vector, wheren is the
number of articulations. The many degrees of freedom increase the computation
time, decrease the robustness, and lead to inaccuracies in the contour; see Figure 1.
Building upon the ideas we presented in an earlier conference paper [14], we pro-
pose an energy function that involves optimisation only in afinite low-dimensional
space. This method also uses silhouettes as features for tracking. However, instead
of separately estimating 2-D segmentation and 3-D pose parameters, we directly
estimate 3-D pose parameters by minimising the projection error of a given 3-D
model in the respective 2-D images. Thus, the contours obtained with our algo-
rithm are by construction consistent with the object model with the estimated 3-D
pose. Since we only need to estimate a small number of pose parameters instead
of an infinite-dimensional level set function, the runtime of the algorithm signif-
icantly decreases compared to the algorithm described in [20]. Nevertheless, we
can use the same general statistical representation of regions. Estimating a sepa-
rate silhouette may be advantageous if the provided surfacemodel does not fit the
tracked object. However, as shown in [22], there are ways to express the typical
variations of a surface model in a parametric form. As we do not have access to a
rich surface database, we stick to fixed surface models from a3-D scanner, but the
approach would also work with parametric adaptive surfaces. While we restrict
the model here to shape deformations at predefined joints (see Section 3.6), the
model and optimisation scheme could be extended to include more general shape
variations in a similar way as recently shown in [23]. Note that the 3-D object
models used here do not include any appearance information (such as colour or
texture information).
One reason why contemporary solutions to the tracking task are not yet satisfac-
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tory is that there are a lot of issues that make pose tracking challenging. Especially
partial occlusions are a big problem for many pose trackers.As a second contribu-
tion of this paper, we show how to deal with partial occlusions between different
objects by making use of the estimated 3-D positions in orderto model occlusions
explicitly. To this end, we minimise an energy function jointly defined over mul-
tiple objects. In a similar manner, self-occlusions of articulated objects can be
handled by using object models consisting of multiple components. This tackles a
typical shortcoming of silhouette-based methods, where even visible parts cannot
be tracked if their presence is not seen in the object silhouette.
The approach in [24] can handle occlusions between an unknown number of ob-
jects. However, the objects must be very clearly distinguishable from each other
and from the background. In [25], images from a camera array are aggregated,
and the resulting image was used for successfully tracking despite occlusions. In
these approaches, tracking is only performed in 2-D, though. In [26], a multi-
hypothesis approach to track multiple occluded persons wasproposed. It relies
on human appearance models and ground plane homographies and tracks the po-
sition at which the person is standing. In [27], several occlusion layers are used
to detect occlusions with static occluders. Those layers are generated by render-
ing via computer graphics. Grabneret al. propose to handle occlusions by using
supporters found in the visual context around the tracked object [28].
Another way to deal with occlusion is by using motion priors (see [29]). As
such a prior incorporates information on the most likely continuation of a motion
pattern, it principally allows to track even objects that are completely occluded.
However, this is only possible if there are only few possiblemotion patterns, and
if the object to be tracked approximately follows the pattern as stated in the prior.
Consequently, the results depend on the choice and quality of the motion priors.
Furthermore, tracking results are biased towards the priors, which is undesired in
applications in which derivations from the usual motion shall be found. This is the
case e.g. in medical applications or when analysing the motion of athletes. The
method presented in this paper allows the incorporation of motion priors, but they
are only required to deal withfull occlusions. In all our experiments we did not
use any prior data from motion databases. Nevertheless, ourtracking approach
yields results that surpass those of most other state of the art algorithms, as we
will demonstrate using the HumanEVA-II benchmark.
This article is organised as follows: In Section 2 we review some basic mathe-
matical concepts and pose estimation from point correspondences needed for our
region-based approach introduced in Section 3. The method is extended to multi-
ple objects in 4 and to multiple component models in Section 5. In Section 6, both
approaches will be combined such that several objects with multiple components
can be tracked. Experiments presented after each chapter illustrate the achieved
improvements. Section 7 concludes the paper with a summary.
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2 Basics

This section reviews the concept of representing rigid motions as twists, the con-
cept of Plücker lines and the basic point-based pose tracking algorithm used later.
An isomorphism that preserves orientation and distances iscalled rigid motion.
Such isomorphisms are of interest to us, since a rigid body can only perform a
rigid motion. Any rigid body motion in 3-D can be representedasm(x) := Rx+ t,
with a translation vectort ∈ R

3 and a rotation matrixR∈ SO(3) with SO(3) :=
{R∈ R

3×3 : det(R) = 1}. Using homogeneous coordinates, one can also writem
as a 4×4 matrixM:

m((x1,x2,x3)
T) = M(x1,x2,x3,1)T =

(
R3×3 t3×1

01×3 1

)

x . (1)

The set containing all matrices of this form is the so-calledLie group SE(3). To
every Lie group there is an associated Lie algebra, whose underlying vector space
is the tangent space of the Lie group evaluated at the origin.The Lie algebras
associated withSO(3) andSE(3) areso(3) := {A∈R

3×3|AT =−A} andse(3) :=
{(ν,ω)|ν ∈ R

3,ω ∈ so(3)}, respectively. The elements ofse(3) are calledtwists.
Elements of a Lie group can be converted to elements of the corresponding Lie
algebra, and vice versa. In particular, a rigid motion can bewritten as a twist.
Since a rigid motion given as element ofSE(3) has twelve parameters while a
twist has six, it makes sense to prefer estimating twists instead of rigid motions
given as matrix. Moreover, when solving for the pose parameters in Section 2.2,
a twist can easily be linearised.
Since elements ofso(3) andse(3) can be written either as vectorsω =(ω1,ω2,ω3),
ξ = (ω1,ω2,ω3,ν1,ν2,ν3) or as matrices

ω̂ =





0 −ω3 ω2

ω3 0 −ω1
−ω2 ω1 0



 ∈ so(3), (2)

ξ̂ =

(
ω̂ ν

01×3 0

)

∈ se(3), (3)

we distinguish these two ways of representing elements by a hat sign. A twist
ξ can be converted to an element of the Lie groupM ∈ SE(3) by the exponen-
tial function exp(ξ̂) = M, which can be computed efficiently with the Rodriguez
formula (see [30]).

2.1 Plücker forms

3-D lines can be represented in different ways. Here, we use the Plücker form
from [31] to represent lines. In the context of this article,we consider projection
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Figure 2: Identifiers used in the proof that the distance between a pointx and a
Plücker lineL = (n,m) is given by‖x×n−m‖.

rays, i.e. lines containing all points which are projected to a certain image point.
Consequently, these lines always go through this image point and the camera cen-
tre.
A line in Plücker formL = (n,m) is given by a normalised vectorn (pointing in
the direction of the line) and a momentumm := x′×n for a pointx′ on the line.
The distance of a pointx to such a lineL = (n,m) can easily be computed as
‖x×n−m‖. To understand this, we writex as sum ofx′, a vectorx1 = λn parallel
to n and a vectorx2 perpendicular ton, i.e. x = x′ + x1 + x2 (see Figure 2) and
compute

‖x×n−m‖ = ‖(x′ +λn+x2)×n−m‖
= ‖x′×n

︸ ︷︷ ︸

=m

+λn×n
︸︷︷︸

=0

+x2×n−m‖ (4)

= ‖x2×n‖ = ‖x2‖ .

2.2 Pose estimation with 2-D–3-D point correspondences

The region based pose tracking approach in this paper uses point correspondences
as well as the point based pose estimation algorithm described in [20] to imple-
ment a gradient descent. Let(x,X) be a 2-D–3-D point correspondence, i.e. let
X ∈ R

4 be a point on the 3-D silhouette of the object model in homogeneous co-
ordinates andx ∈ R

2 its position in the image. Furthermore, letL = (n,m) be
the Plücker line throughx and the respective camera origin. We will explain in
Section 3 how such point correspondences emerge from a gradient descent.
In order to track the object, we need to find a twistξ that maps the transformed
model points exp(ξ̂)Xi as close as possible to the corresponding Plücker linesLi :

argmin
ξ

∑
i

∥
∥
∥

(

exp
(

ξ̂
)

Xi

)

3×1
×ni −mi

∥
∥
∥

2
(5)
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where the function·3×1 : R
4 7→ R

3 removes the last entry, which is 1. This results
in a system of equations that is hard to solve due to the exponential function.
However, since the twistξ corresponds to the pose change, it is rather “small”. As
in [9], we can linearise the exponential function by the firstorder Taylor expansion

exp(ξ̂) =
∞

∑
k=0

ξ̂k

k!
≈ I + ξ̂ (6)

with an identity matrixI without introducing a large error. Then, we get

argmin
ξ

∑
i

∥
∥
∥

(

exp
(

ξ̂
)

Xi

)

3×1
×ni −mi

∥
∥
∥

2
(7)

≈argmin
ξ

∑
i

∥
∥
∥

((

I + ξ̂
)

Xi

)

3×1
×ni −mi

∥
∥
∥

2
. (8)

To solve this least squares problem, the cross product is evaluated, resulting in
three linear equations of rank two for each correspondence(xi ,Xi). Thus, three
non-colinear correspondences are sufficient to obtain a unique solution of the six
parameters in the twist. Since correspondences are usuallynot accurate, however,
it is advantageous to consider more correspondences. Thus,one obtains a least
squares problem, which can be solved efficiently with standard methods, e.g. the
Householder algorithm [32]. In order to further minimise the error introduced by
the Taylor expansion, we iterate this minimisation process.

3 Region-based Model Fitting

Previous approaches usually try to match a contour obtainedby segmentation to
the projected model surface. Since segmentation and matching can be time con-
suming and erroneous, our idea is to avoid both the explicit contour computation
as well as the matching step. Instead, we directly optimise the pose parameters
such that all images are optimally partitioned into an object and a background re-
gion by the projected surface model. To simplify the description, we explain the
algorithm for a sequence created with a single camera. The extension to multiple
views is straightforward, though.

3.1 Energy model

To find the set of pose parameters that splits the image domainΩ into a foreground
regionΩin and a background regionΩout, we minimise the energy function

E(ξ) = −
Z

Ω

(

Pξ(x) logpin +
(
1−Pξ(x)

)
logpout

)

dx (9)
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wherePξ(x) := P(ξ,x) ∈ (R6×Ω 7→ {0,1}) is an indicator function for the pro-
jected object surface, i.e., it is 1 if and only if the surfaceof the 3-D model with
poseξ projects to the pointx in the image plane. The functionspin, pout : F×Ω 7→
R are two probability density functions (abbreviated as “PDF”) that model the dif-
ferent feature distributions. Both take the featuresF of the image (such as colour
or texture) and an image point as input and return the probability that the features
at the pointx occur inside or outside the object region, respectively. Tomake the
formulas more readable, the arguments of the PDFs are omitted in the equations.
Similar PDFs appear in [20] for estimating the contour. In contrast, the energy in
(9) does not require the estimation of an intermediate contour but only the opti-
misation of the six pose parameters. This simplifies the estimation considerably.
Also the length constraint on the contour used in [20] is no longer required.
Good and straightforward choices for the input features arethe image intensity
(for grey-scale images), or the colour in CIELAB colour space [33] (for colour
images). These features are used in every experiment shown here. Additionally,
we employ the texture feature space in [34] to improve tracking results for objects
with a more complex appearance (see Table 2). Any other features which can be
densely computed in the image, such as Gabor filters, can alsobe used.
To keep the model tractable, we assume that all pixels and feature channels are
independently distributed. That is, the probability functions pin/out are given by
the product

pin/out =
N

∏
i=1

pi
in/out, (10)

whereN is the number of feature channels andpi
in and pi

out are the estimated
PDFs of thei-th feature channel for the inside or outside region, respectively.
This is also one reason why we use the CIELAB colour space, as it separates the
different channels well. If the models appearance is not toocomplex, we model
the PDFs with a non-parametric Parzen density

pi
in/out(F

i(x)) =
1

|Ωin/out|

Z

Ωin/out

Kσ(F i(x)−F i(y))dy, (11)

whereF i(x) is thei-th feature at the image positionx, andKσ(z) = 1√
2πσ

exp( z2

2σ2 )

is a Gaussian kernel with standard deviationσ =
√

30, approximated by three
box filters of width 11. For more complex appearances, we employ a local Gaus-
sian distribution as introduced in [20] and very common in recent segmentation
approaches, e. g. [35] or [36]:

pi
in/out(F

i(x),x) =
1√
2πσ

exp

(
(F i(x)−µi

in/out(x))
2

2σi
in/out(x)

2

)

, (12)
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where the local means and standard deviations are computed locally as

µi
in/out(x) =

R

Ωin/out
Kσ(y−x)F i(y)dy

R

Ωin/out
Kσ(y−x)dy

, (13)

σi
in/out(x) =

R

Ωin/out
Kσ(y−x)(F i(y)−µi

in/out(x))
2dy

R

Ωin/out
Kσ(y−x)dy

. (14)

3.2 Minimisation

The gradient of the energy function (9) with respect to the pose parameters reads:

−∇E(ξ) =
Z

Ω
(∇Pξ(x) logpin −∇Pξ(x) logpout)

+
(
Pξ(x)∇(logpin)+(1−Pξ(x))∇(logpout)

)
dx

≈
Z

Ω

(
∇Pξ(x)(logpin − logpout)

)
dx . (15)

The approximation neglects the dependency of the pose parameters on the PDFs.
Both are actually not independent, since changing the pose usually leads to a
different object region in which the PDFs are estimated. There are several works
that discussed the use of the complete shape gradient in the scope of segmentation,
e.g. [37]. Our own experiments did not reveal a practical advantage, such as
considerably faster convergence, and iterations are much faster when using the
approximation. The approximation is motivated by the fact that the PDFs usually
change very slowly when changing the pose parameters. In ourimplementation,
we use Sobel operators (see [38]) to approximate∇P.
Since∇E(ξ) is zero unless we are at the 2-D silhouettec of the projected object,
we can rewrite Equation (15) as

−∇E(ξ) ≈
Z

c

(
∇Pξ(c(s))(logpin − logpout)

)
ds, (16)

wheres is the arc-length parameterisation ofc. In the discrete setting, only a small
number of object points is projected onto the 2-D silhouette. Denoting the set of
these points byOs, we have

−∇E(ξ) ≈ ∑
xs∈OS

∇Pξ(xs)(logpin− logpout) . (17)

Interpreting (17), the energy function (9) is minimised by moving each contour
point along the direction indicated by the gradient∇P. Speed and sign of this
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For each frame:

i

Ite
ra

te

Extrapolate new pose from previous poses and compute image features
− Project 3D object model onto image plane

− Generate and solve system of equations to get new pose

− Generate PDFs for interior/exterior of projected model 

− Construct projection rays from (x’ ,X )i

i iii− Adapt 2D−3D point correspondences (x ,X ) to (x’ ,X )
(Section 3.1)

(Section 3.2)

(Section 2.1)

(Section 2.2)

Figure 3: Overview over the steps done by the basic pose tracking algorithm.

motion are given by the log-likelihood ratio log
(

pin
pout

)

. Employing the methodol-

ogy from Section 2.2, this motion can be transferred to corresponding 3-D points
on the surface model. Thus, the gradient vectors created this way are reprojected
back to the 3-D space in order to find the most consistent 3-D rigid body mo-
tion that corresponds to the gradient in the image. Vice-versa, the estimated rigid
body motion changes the 2-D silhouette such that the features are separated more
clearly.
In practical implementation, we create 2-D–3-D point correspondences(xi ,Xi) by
projecting silhouette pointsXi using the current poseξ to the image plane where
they yieldxi . If the PDF for the inside region evaluated atxi , i.e. pin(xi), exceeds
the corresponding function value for the outside region (pout(xi)), we suppose that
xi belongs to the object region. Thus,xi will be moved in outward normal direction
to a new pointx′i . Conversely, points wherepin(xi) < pout(xi) holds will be shifted
into the opposite direction.
According to the gradient (17) the shift vector should have alength ofl := ‖ logpin−
logpout‖. We noticed that settingl to a fixed value tends to work better. We be-
lieve that this is because in the optimum the silhouette willusually be close to an
image boundary. If the model does not exactly fit the object, parts of the contour
will still be in the wrong region and induce large gradient vectors. Note that the
absolute value of the difference of the logarithms states how likely it is that a point
belongs to a certain region, which does usually not correspond to the distance of
the point to the object boundary, and thus to the optimal length of the shift vec-
tor. Moreover, image boundaries are often blurred and lead to pixel values that do
not fit well to either PDF. Capturing only the sign of the log-likelihood ratio can
be regarded as a robust variant of the gradient, where pointsalong the silhouette
all have equal weights when voting for the direction of movement. Especially in
case of unexpected occlusions, a constantl helps to reduce the influence of points
assigned to the wrong region. We tested various other methods to adapt the length
of the gradient vector, but results were usually inferior. An example result where
l was not fixed is shown in the last image in Figure 10. Note that the optimal
value of l depends on various factors such as the acceleration of the object, the
type of movement, and the amount of silhouette points. Thus,it is currently a free
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parameter in our tracker. All experiments shown use values between 0.1 and 2.
A gradient descent in the pose parameters very similar to theone we first proposed
in [14] has recently been presented in [39]. The gradient is derived in 3-D space,
which yields an additional multiplicative factor depending on the curvature of the
object. In their implementation, however, this factor was neglected. Moreover,
they use the exact gradient without discarding the difference‖ logpin − logpout‖.
While this makes the optimisation theoretically more sound, their approach would
probably also benefit from discarding this factor.
After each gradient descent step in the pose parameters, thePDFs in the object
and background region are recomputed. In order to have better initial pose param-
eters - which includes a region that better fits the object in the image - we predict
the object’s pose in a successive frame by linearly extrapolating the pose from
the previous two frames. This is also beneficial when linearising the exponential
function. A more sophisticated approach, e.g. using a physical simulation as in
[40], could be used here as well. However, even if the initialpose estimated for a
frame is quite bad, the optimisation will usually find the correct pose, as we will
show later in an experiment. Figure 3 depicts an overview of the algorithm.

3.3 Illustrative example

Figure 4 illustrates the adaptation of the probability densities. The image in this
example shows the contour of the pose estimated by our prediction step. PDFs
are generated using the Parzen model for each feature channel and for the object
and background region of the projected model. The algorithmthen tries to opti-
mise the pose in order to separate these PDFs. The three figures show the PDFs
generated from the initial pose guess (red lines) and at the end of the pose esti-
mation step (green lines) for the three channels used (i.e. the luminance and the
two colour channels in the CIELAB colour system) for the interior (thick lines)
and exterior (thin lines) of the puncher shown. It can be seenthat the initial pose
contains parts of the cyan mouse pad, which has values around(51, -15, -5) in
CIELAB colour space, and of the orange measuring tape, whosechannels are ap-
proximately (55,40,55). This is also clearly visible in thePDFs (thick red lines).
After pose tracking, the projected pose extends almost entirely over the white
puncher in the image. As a consequence, the peak in the luminance around 53 –
as well as those in the colour channels around 35 and 50, respectively – have dis-
appeared (thick green lines). Also note that the differencebetween the PDFs after
pose tracking (green lines) is greater than before pose tracking (red lines). The
difference between the PDFs for the outside regions before and after pose track-
ing is very small because only a small fraction of the outsidearea has changed.
The evolution of the pose is shown in Figure 5.
Figure 6 illustrates how the force vectors affect the pose. Figure 6b depicts the
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Figure 4:Upper left corner: Contour of an initial pose guess (red) and the con-
tour after tracking (green).Upper right corner : PDFs generated for the lumi-
nance channel.Lower two figures: PDFs generated for the colour channels.Red
lines: PDFs before pose estimation.Green lines: PDFs after pose estimation is
finished.Thick lines: PDFs for the interior of the object.Thin lines: PDFs for
the exterior of the object. The black arrows indicate how thePDFs evolved. Note
that, as explained in the text, the PDFs for the background region changed only
marginally.

Figure 5:From left to right: Initial guess, and pose estimated after 10, 30, 50,
and 70 iterations (magnified).
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Figure 6:From left to right: (a) Input image. The puncher is to be tracked. (b)
Projection of the model in an inaccurate pose onto the image (magnified). The two
marked points are the points referenced to in Section 3.3. (c) The 2-D contour of
the projection (magnified). The arrows show into which directions these points
should move in our algorithm. From [14].

Figure 7:From left to right : Tracking results for frames 121, 214, 269 and 274 in
one of the two available views of a tea box sequence. Only the silhouettes of the
tracking results are shown such that the orientation of the tea box and the specular
highlights can be seen.

surface model corresponding to the puncher which has been projected in an in-
accurate pose onto the input image (Figure 6a). Figure 6c shows the boundary
between the interior and exterior of the projected model. Since most of the inte-
rior is white, the white point marked by the circle on the right side of the image fits
to the statistical model of the object region better than to that of the background.
Thus, it is shifted away from the object, i.e. to the right. The other marked point,
which is cyan, better fits the PDF of the background and is thusshifted towards
the interior of the object, and thus also roughly to the right.
If the estimated pose is close to the optimal one, the pose changes induced by
the force vectors will mutually cancel out. Thus, the process is iterated until the
average pose change after up to three iterations is smaller than a thresholdT. The
optimal threshold depends on the sequence and the parameterl . For example, the
farther the object is from the camera, the largerT should be.
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Figure 8: Illustration of the quality/speed tradeoff of thepose tracking algorithm.
From left to right : Tracking results for frame 220 in both cameras and change
of the three translation parameters in the first 160 frames inwhich the static tea
box was partially occluded.Upper row: Fast but imprecise results.Lower row :
Precise but slower results. In addition to being imprecise,the fast results also
oscillate stronger.

3.4 Experiments

The experiment in Figure 7 demonstrates the abilities of thebasic tracker. A tea
box is tracked in a stereo setup. Despite partial occlusions, complete rotations and
specular highlights, tracking worked very well. As in all other experiments, we
use a given pose in the first frame (usually created by hand) asinitialisation.
In Figure 8 we highlight the quality-speed tradeoff by comparing two variants of
the tracking algorithm: a fast version where only intensityand colour are con-
sidered, the time step size in the gradient descent is larger, and a less restrictive
stopping criterion is used (upper row), and a more accurate version where we also
incorporate the texture features from [34] (lower row). As can be clearly seen in
the diagrams, the version with texture features and finer time steps is much more
precise as errors are mostly below 3mm. On the other hand, theresult in the upper
row was computed nearly an order of magnitude faster, as indicated in Table 2. In
many applications the fast result may already be sufficiently precise. The worst
tracking error of the fast tracker appeared in frame 220, which is the one depicted
in Figure 8.
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3.5 Reusing old probability densities

The extrapolated pose used as initial guess for a new frame isoften inaccurate.
Therefore, the PDFs based on this pose might differ stronglyfrom the PDFs cor-
responding to the correct object position in the image. Thiscan lead to a slower
convergence rate or even to an unpleasant local optimum far from the sought so-
lution.
One way to deal with this problem is to replace the simple extrapolation step by a
more sophisticated method. For example, a 2-D pose trackingor an optical flow
algorithm can be incorporated to improve the initial guess in a new frame as done
in [41].
As an alternative to such rather complex approaches, we propose to diminish the
problem of inaccurate PDFs at the beginning of a new frame by reusing the PDF
estimates from the previous frame. The inherent assumptionis that the appear-
ance of the object and background, or more precisely their description by a PDF,
changes only marginally each frame. This assumption is usually well satisfied,
though care has to be taken in case of the local Gaussian model. Consequently,
we recompute the probability density functions only after the estimation of the
object position is completed, i.e. once per frame. Since this requires significantly
fewer PDF estimations, it also leads to a speedup of the algorithm.
Keeping the PDFs from the previous frame has another advantage. Since the
PDFspin andpout are constant for every iteration, the derivatives∇(logpin) and
∇(logpout) are zero, and Equation (15) is not an approximation anymore.
As mentioned above, the situation is a bit more complex when locally varying den-
sities are employed. If the object (and possibly the background) moves between
two frames, the positional information of the local densities from the previous
frame are no longer valid. There are two possible approximations. The PDFs for
a 2-D–3-D point correspondence(x,X) can be evaluated either: a) atx, or b) at the
position to whichX was projected in the previous frame. This second alternative
is not available in pose tracking algorithms that use explicit segmentation, since
there is no real 3-D information incorporated into the segmentation step.
Both approximations have advantages and disadvantages. Method (a) results in
better approximations of static backgrounds. However, thebackground is often
not static. Moreover, since it ignores the motion of the object, the approximation
of the object model is often better when using method (b). Furthermore, method
(b) has slightly higher computational costs and memory requirements, as more in-
formation from the previous frame must be stored and evaluated. In practise, how-
ever, both methods yield very similar results and the additional costs of method
(b) are negligible. Since the results are similar, we used method (a) because it is a
bit faster in our implementation.
Figure 9 shows five frames of a monocular sequence with a wooden toy giraffe.
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Figure 9: Estimated pose for five frames of a colour sequence with a wooden
giraffe. From left to right: Frames 32, 48, 64, 74, and 84. Since the surface
model consists of a single closed point grid, it is possible to look through the
projected pose.

Since only one view is available, and since the appearance ofthe wooden giraffe is
rather complex, tracking is quite hard in this sequence. Still, the projection of the
estimated model fits the object in the image well. For this sequence, as well as for
all experiments described from now on, we used the probability density functions
from the previous frame as described before.
Figure 10 shows an example of a scene with fast movements and strong accelera-
tions. Although only one view was available the white puncher was tracked even
though it moved with more than 50 pixels per frame. Moreover,the algorithm
was able to deal with accelerations of more than 70 pixels / frame / frame. With
the proposed algorithm, 171 frames have been successfully tracked. The best re-
sult we achieved without reusing PDFs is a successful tracking of 25 frames, after
which tracking failed completely. An example result obtained with a non-constant
l is also shown in this figure.
In Figure 11 it is illustrated that the proposed algorithm can also handle move-
ments towards the camera even if only one view is available. Furthermore, there
is a second aeroplane visible in the background with an appearance very similar
to that of the aeroplane being tracked. Nevertheless, tracking was successful. In
the very last frame, in which only a very small part of the aeroplane is visible,
tracking results still look good but are in fact quite bad, ascan be seen in the last
image and the plot in Figure 11.

3.6 Articulated objects

This section explains an extension of the model that allows to handle articulated
objects by employing kinematic chains as introduced in [42]. Kinematic chains
are a system of rigid bodies connected by joints, whereby each joint has only
one degree of freedom. Since every joint angle is an additional parameter that
must be estimated, and due to self-occlusions, pose tracking becomes far more
challenging. Incorporating kinematic chains, the function P – and thus the energy
function (9) – does not only depend on the twistξ but also on the joint angles in
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Figure 10: In the upper row, the estimated poses for the frames 10, 16, 134, and
142 of a monocular sequence are shown. The last row shows the estimated con-
tours for the frames 101, 102 and 103 in black, followed by thetracking result
in frame 103 when the length of the shift vectorl is not set to a fixed value in
turquoise. Note the fast movement between frame 10 and 16, the fact that the
object partially left the image around frame 142 and the pretty sudden turnaround
in the frames 101 to 103. Also note the motion blur visible in frame 103. The
red pose shown in the image to frame 103 is the pose estimated by our initial pre-
diction step. Although it is initially far away from the correct pose, our algorithm
is able to successfully track the puncher ifl is fixed. The position of the puncher
estimated by our algorithm is indicated by the black contour. Note that only the
camera moves while the scene itself is static.
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Figure 11: Tracking results for the frames 0, 10, 20, 30, 40, 44, and 47 of a
monocular, synthetic scene with a moving aeroplane, illustrated as cyan contours
in the original images. Four images are cropped, and some lines illustrating the
coordinate system were added in frame 30. The plot shows the translational track-
ing errors per frame in meter. Although there is another aeroplane with similar
appearance in the background, the tracking results look good. According to the
quantitative evaluation, there is some inaccuracy due to depth ambiguity, and the
last frame was tracked badly due to the fact that most of the aeroplane was not
visible. Input sequence generated and kindly provided by Richard Steffen from
the University of North Carolina at Chapel Hill.
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the chain. Apart from the additional parameters there is no change in the energy.
A joint can be modelled by a twist of the formθiξi with unknown joint angleθi ∈
R and known joint axisξi (the rotation axis is a part of the model representation,
and there is no translation). The complete pose that must be estimated for a model
with n joints is given byχ = (ξ,θ1, . . . ,θn) ∈ R

6+n.
The equation of a pointXi behind thej-th joint then has to satisfy

(

exp(ξ̂)exp(θ1ξ̂1) · · ·exp(θ j ξ̂ j)Xi

)

3×1
×ni −mi = 0 (18)

in order to lie on the Plücker lineL = (ni,mi). After all exponential functions are
linearised in the same way as in Section 2.2, one such constraint results in three
rank two equations in the six pose parameters and the joint angles.
A problem typically arising with kinematic chains is that there might be no 2-
D silhouette points for a rigid body in the chain, either because it is completely
surrounded by other parts of the object (e.g. a small hand in front of a big torso) or
because it is occluded. In both cases, the angle of the corresponding joint cannot
be estimated. This problem can be alleviated by including prior knowledge on
joint angle configurations; see for instance [43] for further details of this optional
extension. However, since a prior is never as good as a reliable measurement,
particularly when there is little training data, we rather propose to improve the
silhouette model. This will be done in Section 5, where we better exploit the
available information provided by the image.
Tracking results with an articulated object model are depicted in Figure 12. For
this scene, grey-scale images from four cameras as well as prior information were
used. Apart from smaller problems due to the fact that a humancannot be perfectly
modelled by a kinematic chain, the only tracking inaccuracies occur at the feet.
This is due to the feet being white while the rest of the objectis black.

4 Simultaneous Tracking of Multiple Objects

As shown above, the basic pose tracking approach can handle partial occlusions
in some situations. However, once the percentage of the occluded area is too big,
tracking will fail. This is because a large part of the initial estimate of the object
region covers the background and thus, the estimated PDF forthat region will
be very inaccurate1. As a consequence, the estimated PDFs cannot be used to
distinguish between interior and exterior anymore.

1When reusing the PDFs from the previous frame, this effect ispostponed to the successive
frame. The problem is not solved, though.
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Figure 12: A sequence where a person turns two backflips. Onlyone out of four
camera views is shown. The left image (frame 50) shows the start of the second
flip. The two images in the middle show the frames 96 and 148, and in the image
on the right (frame 190) the backflip is completed. The bottomrow shows the
estimated pose in zoomed images.
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In this section, we show how to handle occlusions that are dueto multiple objects
by a coupled tracking of all involved objects. The basic ideawas presented in a
preliminary conference paper [44].

4.1 Basics of multiple object tracking

In order to track multiple objects, we assume that a model anda pose initialisation
is available for each object. The goal is to find the poses of all objects. That is, if
N is the number of objects to be tracked, the algorithm should find the poseχi of
each objecti. For the methodology we present here, it is not important if we track
rigid or articulated objects, or both. Hence, we will alwayswrite χi for the pose
parameters even thoughχi could be simplified toξi in case of rigid objects.
The simplest way to track multiple objects with the approachintroduced in the
last section is to estimate PDFs for the interior and exterior of each object, and to
minimise an energy function that is the sum of energy functions of the form (9):

E(χ1, . . . ,χN) (19)

=−
N

∑
i=1

Z

Ω

(

Pχi ,i(x) logpi,in +
(
1−Pχi ,i(x)

)
logpi,out

)

dx.

Here,Pχi ,i is a projection functionΩ 7→ {0,1} which projects thei-th object with
poseχi to the image plane. Minimising this energy function can be done in basi-
cally the same way as with the old energy function: Each object is projected, PDFs
are estimated, the 2-D parts of the 2-D–3-D point correspondences are adapted
according to the gradient derived from the corresponding PDFs, and a system of
equations is solved for each object. As soon as the pose update of one object is
small, its position can be considered as final and only the poses of the remaining
objects are searched. This approach treats all objects independently. As soon as
two objects partially occlude each other, however, the independence assumption
is no longer satisfied.

4.2 Occluding objects

In order to understand the problem of occluding objects, consider the illustra-
tive example in Figure 13(a) in which a green puncher and a yellow box is to
be tracked. Suppose the 3-D pose of both objects is already correctly estimated.
When the green puncher is projected onto the image plane, it splits the image into
the background region (blue region in Figure 13(b)) and foreground region (green
and yellow region in Figure 13(b)). Clearly, the foregroundregion not only in-
cludes the green region, but also a considerable area of the yellow tea box. As a
consequence, the PDF estimated for the interior of the puncher has two modes:
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(a) (b) (c) (d) (e)

Figure 13: Illustration of two problems occurring when one of the tracked objects
occludes an other, and how our algorithm solves them by utilising the visibility
functions explained in Section 4: Suppose the initial posesof the two objects to be
tracked in the artificial input image (a) are correct. The area (b) used for PDF esti-
mation and silhouette (c) used without visibility functions are suboptimal. When
using the visibility functions, the area (d) and silhouette(e) are more reasonable.

one from the green and one from the yellow area. Therefore, yellow parts of the
image are falsely believed to belong to the interior of the puncher. Those silhou-
ette points which are yellow (the silhouette is shown in Figure 13(c)) consequently
generate gradient vectors that point towards the outside ofthe object. The tracked
puncher will get stuck in the yellow area and tracking fails.

4.3 Coupled tracking

In order to prevent problems due to occlusions, it is necessary to make sure that
each image point is only assigned to the visible object. Hence we introduce a
visibility function [45] vi for each objecti. Let Oi(χi ,x) be the set of those point
on thei-th object model with poseχi that are projected onto the image pointx.
Next we define

di(χi,x) := d(Oi(χi,x),C) = min
y∈Oi(χi ,x)

{d(y,C)} (20)

as the minimal distance of the setOi to the camera originC. Finally, the visibility
functions are given by

vi(χ1, . . . ,χn,x) =







1 if di(χi ,x) = min
j∈{1,...,n}

{d j(χ j ,x)},

0 else .
(21)

That is, a point is considered to be visible if there is no point of another object
closer to the camera origin projecting to the same image point. This local visibility
testing is clearly superior to approaches which simply assume all parts of one
object to be in front ofall parts of another.
The arguments of the visibility functions – the pose of all involved objects and the
image point – will be omitted to keep the formulas readable.
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In [44], the energy function

E(χ1, . . . ,χN) (22)

=−
N

∑
i=1

Z

Ω

(

viPχi ,i(x) logpi,in +
(
1−viPχi ,i(x)

)
logpi,out

)

dx.

was used for tracking multiple objects: When multiplying each projection func-
tion Pχi ,i with the corresponding visibility functionvi , occluded points are not
considered as being inside the interior of the object region. In Figure 13(a), only
the green part of Figure 13(d) is therefore used to estimate the PDF of the interior
region of the green object. Consequently, the PDF is perfectly accurate here.
However, the PDFs estimated for the outside of each object region still overlap
and are thus inaccurate. Thus, we propose to use a single background region here
instead of one outside region per object.
The necessary functionsv0(χ1, . . . ,χN,x) andP0(χ1, . . . ,χN,x) for the background
region are given byv0(χ1, . . . ,χN,x) := ∏N

i=1(1−vi) (the background is visible if
no other object can be seen) andP0(χ1, . . . ,χN,x) := 1 (ignoring visibility, the
background covers the whole image), while the energy function is:

E(χ1, . . . ,χN) = −
N

∑
i=0

Z

Ω

(

viPχi ,i(x) logpi

)

dx. (23)

The minimisation is basically the same as in the single object case. For each ob-
ject, a silhouette is found by projecting the object, and thepoint correspondences
on the silhouette are adapted by comparing the PDFs of the tworegions next to
the considered silhouette point, i.e. the PDF of the region in which the point lies
and the next region in outwards normal direction. The visibility functions can be
computed efficiently by projecting the objects with openGL.
In addition to the improved way to estimate the PDFs, we can further benefit from
the explicit modelling of occluding objects by consideringonly true silhouette
points and neglecting occluding contours, as illustrated in Figure 13(d) and (e).
It is advantageous to normalise the lengths of the force vectors depending on the
number of correspondencesci available for each objecti. Thus, we linearly scale
the lengthl of the force vectors depending onci in each iteration step: For a
correspondence on objecti, the length of the force vector is set toci

cm
, wherecm =

max
i

ci . This is beneficial since, when only few correspondences areavailable,

each force vector has a larger influence on the pose. Thus, thestep size should be
smaller to prevent oscillations.
Figure 14 shows a scene in which two Lego DuploR© objects were successfully
tracked. Despite the cluttered backgrounds and occlusionsin both views, both
objects were tracked accurately.
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Figure 14:From left to right: Four frames (15, 45, 75, and 105) of a sequence
with two objects.Top: View 1, Bottom: View 2. Despite simultaneous occlu-
sions in both frames, the tracking was successful.

Figure 15:From left to right: Four frames (210, 240, 270, and 510) of a sequence
with a bike and a cyclist. Only one of the four views is shown. It can be seen that
the tracker can handle mutual occlusions. These occlusionsare illustrated for
frame 240: The parts where the cyclists occludes the bike areshown in green
while it is vice versa for those parts shown in blue.
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The Figure 15 shows an example in which there are mutual occlusions: The bike
partially occludes the cyclist and vice versa in all views throughout the complete
sequence. For this sequence, we used the soft constraints from [46] that encourage
the hands to stay close to the handlebar and the feet to perform a circular trajectory.

5 Objects With Multiple Components

As long as all objects to be tracked are rigid, the only problematic occlusions
occur because one object occludes another, since self-occlusions are usually un-
problematic. Once kinematic chains are tracked, there can be self occlusions that
result in ambiguities, though. An example for such a situation is shown in Fig-
ure 17. For some frames, the right forearm is completely inside the silhouette of
the person. As a result, an approach using a single silhouette can only guess the
joint angles of the forearm from the prior distribution. Even in case of a learned
prior, there remains a lot of uncertainty in the forearm estimate although the arm
is clearly visible in the image. We will now present an extension of the tracking
approach in order to make better use of the image data in such situations.

5.1 Energy Function using Multiple Internal Regions

We follow the idea discussed in [47], which is to assign different rigid parts of
the articulated object to be tracked into one of several components. Then, each
component has a separate PDF and is projected separately into the image plane,
yielding an increased number of silhouettes for tracking. Note the difference be-
tween “part” and “component” used throughout this section:“Part” refers to a
rigid part of the kinematic chain, while “component” is a setof one or more parts
with similar appearance. For the moment, assume that a good splitting into l dif-
ferent componentsMi , i = 1, . . . , l is already given. We will explain in Section 5.2
how the number and composition of the components can be found.
As in the case of multiple objects, visibility functions should be defined that ac-
count for occlusions. Thus, we similarly defineO j(χ,x) as the set of those points
on the j-th componentM j with poseχ that are projected onto the image pointx,
and

d j(χ,x) := d(O j(χ,x),C) = min
y∈O j(χ,x)

{d(y,C)} (24)

as the minimal distance of the setO j to the camera originC. The visibility function
for the multiple internal regions case are then given by

v j(χ,x) := 1 if d j(χ,x) = min
j∈{1,...,l}

{d j(χ,x)}. (25)
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Defining the visibility and projection functions for the background asv0(χ,x) :=
∏l

j=1

(
1−v j(χ,x)

)
(the background is visible if no other object can be seen) and

P0(χ,x) := 1 (ignoring visibility, the background covers the whole image) leads
to the following energy function:

E(χ) =−
l

∑
j=0

Z

Ω

(

v j(χ,x)P j
χ(x) logp j

)

dx . (26)

There is another potential problem that can be solved by thisapproach: Some
parts of the object might look too similar to the background such that including
this part degrades the results. For example, this can be the case when tracking
someone standing in front of a large white background while wearing a white T-
shirt. In this case, white pixels are more likely in the background. Consequently,
the tracker tries to reduce the number of white points in the object region, even
those of the white T-shirt. This challenge can be easily handled in our approach.
All that must be done is to exclude the corresponding parts ofthe object from all
regionsMi . Then it is automatically assigned to the background region. If the
removed parts are not at one end of the kinematic chain, this works without any
problems since the approach does not require that each part of the object is in one
component. Furthermore, it is also possible that a component contains parts that
are not connected, e.g. both arms but not the torso.

5.2 Automatic component generation

The tracking approach using multiple internal regions requires that the appear-
ances of the different components can be distinguished. Thus, we assume that
parts with similar appearance should be in the same component.
To automatically split an articulated object model, we start by putting each rigid
part of the articulated object into a component of its own. Ifthere are significant
appearance differences in rigid parts, these parts should also be separated into
several components. We have done this manually for the experiment shown in
Figure 20. However, it should also be possible to automate this step, e.g. by
segmenting the 3-D model based on its appearance visible in the image.
Next, each component is projected into the image plane, and aPDF for each re-
gion is estimated. Then, the two components whose PDFs are most similar are
combined. After computing the PDF for the new, combined region, these steps
are repeated until the difference between all PDFs exceeds athresholdα.
For this algorithm, it is necessary to compare two PDFs. Fromthe several pos-
sible ways how to compare PDFs, the Jenson-Shannon divergence [48], which is
a symmetric and smooth variant of the Kullback-Leibler divergence [49], works
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Figure 16: Result of the automatic splitting explained in Section 5.2.Leftmost:
Input image (cropped).Left: Object in initial pose.Right: Similarity matrix of
the first step. The darker a dot, the more similar two parts are. The circles show
the two region pairs which are merged first: Head and lower right arm (green),
followed by the two hands (blue).Rightmost: Final splitting suggested with
splitting threshold in the interval[0.15,0.33].

best in our experiments. It is given by

JSD(p,q) :=
J(p,M)+J(q,M)

2
, (27)

wherep andq are the PDFs to be compared,M is equal top+q
2 , and whereJ is the

Kullback-Leibler divergence

J(p,q) := ∑
i

p(i) log
p(i)
q(i)

. (28)

5.3 Experiments

Figure 16 demonstrates the automatic splitting algorithm.Note that upper arms
and torso are clustered in the same component, because both have the appearance
of the shirt.
In Figure 17 we show tracking results of a monocular scene in which internal
regions and the splitting by the automatic splitting algorithm with thresholdα =
0.25 is used. As can be seen, the tracking works quite well in this monocular
sequence, despite the fact that one arm is completely insidethe silhouette of the
whole object.
Figure 18 shows more results using internal components obtained withα = 0.25.
The sequence in this experiment is Sequence S4 of the HumanEva-II database [50],
for which four cameras are available. The advantage of this benchmark is that it is
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Figure 17: Tracking results for a monocular scene.From left to right : Pose and
silhouette estimated in frames 10, 38 and 54. Although no information about the
right arm is included in the silhouette, the arm is correctlytracked.
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Figure 18: Tracking results for Sequence S4 of HumanEva II. The leftmost im-
age shows the tracking error with and without internal regions. The left image in
each block shows the tracking result without using internalregions, the right when
using internal regions. The same colours have been used to allow an easy com-
parison of the results. Without using multiple components,tracking can be wrong
due to occlusions (middle images, frame 50), or because the estimated PDFs are
inaccurate (rightmost images, frame 200). Only one of the four available views is
shown. Images have been cropped.
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possible to receive the average tracking error in millimetre per frame via an online
interface at Brown university, i.e. a quantitative evaluation is possible. The se-
quence illustrates that multiple component models can alsobe useful in multiple
camera settings. It is not surprising that the arms are better tracked around frame
50 (see middle images in Figure 18). However, there are also improvements that
look surprising at first glance: when using a model with a single component, the
two legs crossed around frame 200 (see right images in Figure18). When using
the split model, more accurate PDFs are estimated. As a result, the crossing of
legs disappears.
Later in the sequence, tracking without using internal regions fails as indicated by
the error plot in Figure 18. Sample frames for the whole sequence, which includes
three different types of movement, are shown in Figure 19. The bottom row also
shows the frame with the largest tracking error.
Table 1 shows the average tracking error obtained with our method when using a
single component, and when using multiple components for the whole sequence,
i.e. until frame 1257. It can be seen that the average tracking error is much smaller
using the multi-component model. Moreover, these results show that our tracking
approach yield very accurate results: In [51], an average tracking error of 80mm
is reported for the same sequence. However, only the first 150frames were used,
as tracking became less robust and started failing afterwards. For these frames,
we obtain an average error of 32.13mm. Brubakeret al. achieve a mean error of
54mm using only two of the four cameras [52]. Their approach only handles the
lower body part, as a physical model of walking is used. Thus,only the walking
part of the sequence is evaluated (frames 15 to 350). We obtain an average error
of 33.4mm in these frames.
Gall et al. proposed to perform a global optimisation based on interacting simu-
lated annealing, followed by a local optimisation [53]. Such a global optimisation
step prevents tracking failures from propagating into the next frame, resulting in
an average error of 32.01mm for the whole sequence. Such an approach can also
be incorporated as first step into the tracking approach usedhere, but would ap-
proximately increase the run time of our algorithm by a factor of five.

6 Simultaneous Tracking of Multi-Part Objects

The two methods described in the last two sections, i.e., tracking multiple objects
and tracking an object with multiple internal regions, can be combined into a
single energy function in a straightforward manner. By minimising this function,
multiple object with multiple internal regions can be tracked.
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Figure 19: Each row shows tracking results in the four cameraviews for se-
quence S4 of the HumanEva-II benchmark.From top to bottom: A frame in the
walking part (frame 222), a frame in the jogging part (frame 444), a frame in the
“balancing” part (frame 888), and the frame with the worst results (frame 757).
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Table 1: Some statistics of the tracking error with and without using internal re-
gions for the sequence shown in Figure 18. Given are the average and standard
deviation of the tracking error and the maximal tracking error. All numbers are in
millimetres.

Model Avg. error Std. deviation Max. error

Multi-part object 48.87 21.94 156.53
Single-part object 142.48 89.82 300.30

6.1 Tracking Multiple Multi-Part Objects

To track n objectsMi (1 ≤ i ≤ n) with unknown posesχi , where objecti con-
sists ofl i partsM1

i , . . . ,M
l i
i (as explained above), we use functions similar to those

used before: We defineP j
i (χi) as projection function of the componentM j

i , p j
i :=

p j
i (χ1, . . .χn,x) as the PDF ofM j

i , andO j
i (χi,x) as the set of those point onM j

i
that are projected onto the image pointx. Furthermore, we set

d j
i (χi,x) := d(O j

i (χi,x),C) = min
y∈O j

i (χ,x)
{d(y,C)} (29)

as the minimal distance ofO j
i to the camera originC, and

v j
i (χi,x) := 1 if d j

i (χ,x) = min
i∈{1,...N}

min
j∈{1,...,l i}

{d j
i (χi ,x)} (30)

as visibility function of the componentM j
i .

Then the function to be minimised reads:

E(χ1, . . .χN) = −
N

∑
i=0

l i

∑
j=1

Z

Ω

[
v j

i P
j

χi ,i
(x) logp j

i

]
dx (31)

For the background we setl0 = 1, since it has only a single component. Fur-

thermore, we setv1
0(χ1, . . . ,χn,q) = ∏n

i=1∏l i
j=1

(

1−v j
i (χ1, . . . ,χn,q)

)

(again, the

background is visible if no other object is visible) andP1
0(χ1, . . . ,χn,q) = 1 in

this case. Minimisation of this energy function is performed in a similar way as
minimising the energy function (26). The only difference isthat the poses of all
objects are optimised simultaneously, like in (23).

6.2 Experiments

In Figure 20 we track another scene with three Lego Duplo objects that was first
used in [44]. Two of those objects are red, and the third consists of a large green

31



Figure 20: Relevance of using multiple internal regions.Left two columns, from
top to bottom: The two input images for frame 139, result with internal regions
(magnified), and with a single region (magnified) Only the silhouette is shown
for one view to make the details better visible.Right two columns, from top to
bottom: Tracking results in frame 20, 190, and 350 using internal regions.

board with blue Duplos attached to it. We track this multiple-object sequence once
without internal regions, and once after splitting the lastobject into a green and
a blue part. Without using internal regions, tracking is quite inaccurate for some
frames. Trying to track the blue/green object without tracking the red objects fails
completely. These experiments clearly shows that using internal regions is also
advantageous when tracking rigid objects.

7 Summary

In this paper, we have presented a region-based pose tracking algorithm that can
incorporate various statistical models for object and background region without
explicitly estimating a contour in the image. We showed thatthis is advantageous,
since it leads to a significant speedup compared to other region based methods
that require costly segmentation and contour matching steps. Furthermore, results
are often better than those achieved with alternating segmentation and pose esti-
mation steps. Moreover, we demonstrated that this framework can be extended
to kinematic chains in order to track human motion. We also proposed to reuse
probability density functions from previous frames. This has led to substantial
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Table 2: In this table, several pieces of information are given for each image sequence shown in this paper: the number of
views (Views), the degrees of freedom per object (Unknowns), the size of each image (Size), the average number of iterations
necessary (Iterations), the average amount of real time (orwall clock time) required per tracked frame (RTime), the average
amount of processor time required per tracked frame (PTime), the number of frames tracked (Frames), if information from
the textures space proposed in [34] was used (Texture), if probability density functions from the last frame were used (PDFs),
and the figure(s) in this article in which results are shown (Figure(s)). All times are from computations on an Intel Pentium
4 with 3.2 GHz. Since the wall clock time is influenced by otherrunning processes and delays due to accessing a hard drive,
we also included the processor time unaffected by these problems.

Sequence Views Unknowns Size Iterations RTime PTime FramesTexture PDFs Figure(s)

Tea box 2 6 384×288 12.7 5.05s 4.75s 395 yes new 7, 8
Tea box 2 2 6 384×288 4.5 0.79s 0.51s 395 no new 8
Giraffe 1 6 384×288 280.0 6.94s 6.63s 84 yes old 9
Puncher 1 6 376×284 50.2 1.04s 0.92s 171 no old 10

Aeroplane 1 6 640×480 39.4 13.79s 13.43s 48 no old 11
Flip 4 27 500×380 59.7 19.81s 18.75s 260 no old 12

Duplo2 2 6/6 640×480 36.7 24.77s 24.22s 110 yes old 14
Bike 4 6/28 640×480 23.2 42.86s 42.17s 550 no old 15
Arm 1 30 640×480 155.7 24.09s 23.42s 59 no old 17

HumanEva 4 28 656×490 18.3 15.48s 14.63s 1257 no old 18,19
Duplo3 2 6/6/6 640×480 12.8 4.89s 4.27s 380 no old 20

3
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speedups and increased the robustness of the algorithm in case of fast object mo-
tions with high accelerations.
In order to deal with partial occlusions in tracking, we suggested a generative ap-
proach, which tracks all objects simultaneously. Thanks tothe depth reasoning in
this approach, occlusions can be dealt with, which leads to significantly improved
performance than when treating occlusions merely as model noise. The same con-
cept can deal with self-occlusions that have been a nuisancein silhouette-based
approaches. We also showed a way how to generate reasonable multi-component
object models from a single model automatically. The methodology was eval-
uated in various settings and the experiments revealed a clear improvement in
performance due to the occlusion reasoning.
Table 2 summarises all the presented experiments. As can be seen the number
of required iterations varies strongly from sequence to sequence: More iterations
are needed if the prediction of the object’s pose for the nextframe is bad. Fur-
thermore, rotating object (parts) require more iterations, especially in monocular
setting. Similarly, the computation time per frame also varies strongly. In all ex-
periments excepttea box 2, we optimised the parameters independently for each
sequence to get optimal results. Thus the runtimes are oftenquite high. This is due
to the tradeoff between quality and speed mentioned before.Note that real-time
performance was obtained with an algorithm similar to our basic tracker in [54]
by using CUDA. Thus, one can expect significant lower runtimes by performing
processing on the GPU using NVIDIA’s CUDA framework.
Even if partial occlusions are handled, there are still situations in which our ap-
proach is likely to fail, e. g. if one (part of an) object can barely be distinguished
from the surrounding background, or if the projection of theinitial pose guess
does not overlap with the correct object region due to strongaccelerations. This is
the topic of our ongoing research. Similarly, we plan to estimate the parameters of
our algorithm (the length of the shift vectorl , the thresholdT, and possibly even
the models underlying the PDF, as well as the image features used) automatically
in the future.
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