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ABSTRACT
The detection of 3D objects and landmarks in arbitrary ori-

entations is one of the most challenging tasks in biomedical

3D image analysis. In this paper we introduce the spherical

Bessel Filter (BF) for rotation invariant 3D object detection

tasks. The BF is based on the Harmonic Filter (HF) and thus

inherits all the gentle properties of the HF, in particular the

data driven adaptability and the processing speed. In contrast

to the HF the BF benefits from a better object representation

based on local spherical Fourier basis functions leading to no-

ticeably better object detections and localizations.

1. INTRODUCTION

The rotation invariant object detection in 3D images is a chal-

lenging task, due to the huge data size and the non-trivial 3D

rotation. Facing these kind of problems, the Harmonic Fil-

ter (HF) [5, 8] is a state-of-the-art approach that automati-

cally adapts to certain detection tasks based on training im-

ages. Furthermore, it is fast and able to detect 3D objects,

feature or landmarks in arbitrary orientations. What we intro-

duce here is an extension of the HF by using spherical Fourier

basis functions to describe and locate the desired objects more

precisely.

The paper is structured as follows: In section 2 we give a

rough overview on the mathematical notations and definitions

we use in this paper. In section 3 we introduce the Bessel Fil-

ter (BF) itself by pointing out the extensions we make with

respect to the HF and we show how to design the filter in an

efficient way. Finally, the experiment in section 4 demon-

strates the performance of the BF outperforming the HF sig-

nificantly.

2. PRELIMINARIES

Volumetric images, usually represented in Cartesian coordi-

nates r = (x, y, z)
T

, can equivalently be considered to be

represented in spherical coordinates r = (r, θ, φ), where r
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Fig. 1. Left: Spherical harmonics Y0,Y1,Y2 evaluated on

the 2-sphere. Right: Spherical Bessel functions j�(kr) for

� = 0,1,2,3 and frequency k = 2.

represents the distance to the origin, and θ, φ denote the di-

rection as point on the 2-sphere. The Bessel Filter (BF) is

mainly based on the theory of spherical Fourier analysis. In

order to do Fourier-analysis in spherical coordinates we must

know, that the spherical expansion of the plane wave eik
T r is

given by eik
T r =

∑
�(i)

�(2�+1)j�(kr)Y
�(r)•0Y�(k). The

functions Y� : R
3 → C

2�+1 are called spherical harmon-
ics and are widely known from angular momentum theory

[3] describing the rotational state of physical systems. The

single components Y �
m={−�...�} with � ∈ N0 build an orthog-

onal basis system for functions on the 2-sphere (see figure

1). The functions j�(kx) with k ∈ R (the frequency of the

wave) are the spherical Bessel functions [1] which build an

orthogonal basis (k �= k′ ⇒ j�(kx) ⊥ j�(k
′x)) for one di-

mensional signals with respect to the weighting function r2

(see plot depicted in figure 1). In [10] it is shown how to

expand a function f : R
3 → R in terms of Fourier basis

functions B�
k(r) := Y�(θ, φ)j�(kr) separately in angular di-

rection using Y� of order � and in radial direction using j�
with frequency k. Hence we can represent a function f in

terms of B�
k and the object center c by expansion coefficients

a�k(r) = 〈fc,B�
k〉, where fc(r) := f(r+ c).

In order to explain the meaning of the symbol • we have

to introduce the concept of spherical tensor fields [3], first.

Cartesian tensor fields are widely used for 3D image analy-

sis, e.g. the gradient vector field or a field based on structure

tensors. They all have in common that a rotation acting on

the whole field is acting on the field’s elements, too. For each
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Fig. 2. One of the most important properties of •� and Y:

Recursively deriving higher order spherical harmonics Y�+1

by element-wise coupling the previous spherical tensor fields

Y� and Y1.

Cartesian tensor exists an equivalent irreducible representa-

tion consisting of vector-valued spherical tensors v ∈ C
2�+1,

where � denotes the tensor rank. A scalar field can directly

be considered as a spherical tensor field of order 0. The sym-

bol •� represents the spherical tensor product •� : C2�1+1 ×
C

2�2+1 → C
2�+1 (see [6] for details) which can be used to

efficiently couple two spherical tensors of rank �1 and �2 to

obtain a new tensor of rank � (A Cartesian counterpart of •0
is the dot product reducing the tensor rank to 0. A Cartesian

counterpart of •2 is the traceless outer product of two gradient

vectors increasing the rank to 2.). The most important reason

for using tensor algebra for 3D image processing is the fact

that combining two tensors always implicitly preserves their

rotation state. Further when combining tensors using •0 we

obtain a tensor of order 0. This 0-ordered tensor is scalar val-

ued and thus is rotation invariant.
The spherical harmonic Y� can be considered as a spher-

ical tensor field of order �. One very important property of

Y� is that we can utilize •� to recursively obtain an Y�+1 =
Y� •�+1 Y

1 as depicted in figure 2. It further follows that if

the spherical harmonics are spherical tensors, then B�
k(r) and

the coefficients a�k are spherical tensors, too.

The symbol •̃� (see [6]) denotes a convolution combin-

ing the ordinary convolution and the tensor product •�. The

resulting tensor field has order �. The operators ∇� and ∇�

[6] are called the spherical up derivatives and spherical down

derivatives, respectively. ∇� is recursively defined by ∇� :=
∇ •� ∇�−1f , where ∇ =

Ä
1√
2
(∂x − i∂y), ∂z,− 1√

2
(∂x + i∂y)

äT
is the

spherical gradient and ∂x, ∂y, ∂z are the (ordinary Cartesian)

partial derivatives. ∇� is defined similarly but decreases the

tensor rank by �. ∇�
and ∇� denote the complex conjugate

operators of ∇� and ∇�, respectively.

As mentioned before, a volumetric image can be repre-

sented in terms of spherical tensor valued expansion coeffi-

cients a�k. These coefficients can be computed very efficiently

when computing them for all voxels simultaneously. This is

done by making use of a differential interrelation of spherical

Fourier functions (as shown in [9]). The differential formula-

tion is given by

∇�B0
k = (−1)�k�B�

k , (1)

Fig. 3. Voting functions of the Harmonic filter and the Bessel

filter: Centered Z-slices showing the 3D voting functions

Vc(r− c) voting for a supposed object center r′. i) Voting of

the Harmonic Filter of order 10. ii) Bessel Filter of order 10

with 2 radial Bessel frequencies. iii-iv) Accurate localization

with 3 Bessel frequencies and slightly better location with 4

frequencies, respectively. The green dashed circle indicates

the size of the scale of the kernel.

leading to

ak� (r) ∝ 〈fr,∇�B0
k〉 = ∇�

(f ∗B0
k)(r) . (2)

The differential formulation of spherical Bessel function is

crucial for realizing the trainable voting scheme of the Bessel

Filter in a memory and runtime efficient way.

3. THE BESSEL FILTER

The Bessel Filter (BF) is an extension to the Harmonic Fil-

ter (HF) [5]. The HF as well as the BF can be regarded as

a kind of a context depending voting scheme. Each voxel

in the volume casts votes to its surrounding, depending on

the appearance of its local neighborhood. The function that

maps the local appearance of a voxel onto the vote distribu-

tion is learned automatically in a parametric way. For the

representation of both the local appearance descriptors and

voting distribution the HF uses a particular kind of orthog-

onal functions. We propose to use a different and complete

set of functions, which enables the BF to detect and localize

objects much more precisely and, additionally, preserves the

high efficiency in computation via spherical derivatives.

First, the HF utilizes the Gaussian windowed solid har-

monics (GSH) to represent the voting distribution. For the

Bessel Filter we use the Fourier basis B�
k. Consider Figure 3:

assume we are at position c and want to cast a vote to posi-

tion r′. Ideally we just want to have a sharp peak at position

r′, but the HF is restricted to use GSH as a basis. Figure 3i)

shows the best approximation of this peak with respect to the

GFH basis, which is rather blurry and inaccurate. By chang-

ing the basis to the proposed Fourier basis B�
k we can see that

we are able to represent the peak much better (Figure ii-iv).

In contrast to eq. (4) in [5] the contribution to r originating

from position c is now determined by

Vc(r) =
∑
i

∞∑
�=0

V�
Ki

(c) •0 B�
Ki

(r− c) , (3)
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where V�
K ∈ C

2�+1 are the expansion coefficients of the filter

and Ki ∈ R is a finite number of radial frequencies consid-

ered for the filter expansion. According to the definition of

the HF the BF of order N can then be defined by

H{f}(r) :=
∫
R3

Vc(r)dc

=
N∑
�=0

∑
i

(B�
Ki

•̃0V�
Ki

)(r) . (4)

In a similar way to [5] we can determine the differen-

tial formulation of H in terms of ∇ using the properties of

∇,•̃0 [6] and eq. (1), highly reducing the computation time

by making the number of scalar valued convolutions indepen-

dent from �, namely

H{f} :=
∑
i

B0
Ki

∗
N∑
�

∇�V
�
Ki

. (5)

The key idea is that differentiating using ∇ can be realized in

linear time in number of voxel O(N) using finite differences

while the convolution •̃0 has complexity O(N logN) (where

N is the number of voxel).

Secondly, the way of describing the local appearance

of a voxel differs, too. Instead of Gaussian windowed solid

harmonics we also use the Fourier basis B�
k to find appro-

priate coefficients V�
Ki

in an image content dependent way.

This is done by selecting a finite set of radial frequencies

{k1, k2, . . . } with which we directly select a subset of Fourier

expansion coefficients a�kj
describing each voxel surrounding

as local image descriptors, with (according to eq. (2))

V�
Ki

:=
∑

jV
�
Kikj

[a0kj
, . . . ,aNkj

] ,

=
∑

jV
�
Kikj

[∇0
a0kj

, . . . ,∇N
a0kj

] , (6)

where

V�
Kikj

[a0kj
, . . . ,aNkj

] :=
∑

|�1−�2|≤�≤�1+�2
�1+�2+� even
�1,�2,�≤N

α
Kikj

�1,�2,�
(a�1kj

•� a�2kj
). (7)

α
Kikj

�1,�2,�
∈ R are scalar valued expansion coefficients and

kj ∈ R denotes the radial frequency used for the local im-

age descriptors. The scalar valued, image content dependent

expansion coefficients α
Kikj

�1,�2,�
are determined in a training

phase by a least square fit of the filter response to a binary-

valued label image (similar to [5]).

4. EXPERIMENT

It has already been shown in [5] that the Harmonic Filter (HF)

outperforms a general Hough transform [2] based on local

3D SIFT descriptors in rotation invariant 3D object detection

tasks in precision and speed. It is further shown [5] that the

HF outperforms spherical harmonic based descriptors (see.

e.g. [4, 9]) in combination with a nearest neighbor classi-

fier or a support vector machine when only the detection and

not the classification of objects is required. However, when

using Fourier basis functions instead of Gaussian windowed

solid harmonics for both the computation of local image de-

scriptors and for expanding the filter we expect a lower false

positive rate due to a better object description and a much

more accurate object localization due to the improved voting

scheme (see figure 3). We conduct an experiment where we

compare the performance of the HF to the performance of

the Bessel Filter (BF) using the same database as used in [5],

where we detect porates of airborne pollen. Due to the fact

that the Bessel functions are infinite, we use the scalar-valued

Gaussian windowed convolution kernel

B0
k(r/t)e

−r2/(2t2) (8)

for implementation, where t ∈ R defines the scale of the ker-

nel.

In addition to the murgwort pollen dataset used in [5] (15

3D images, 45 porates) we use a birch pollen dataset (15 3D

images, 45 porates) and an alder pollen dataset (15 3D im-

ages, 60 porates). Each dataset is recorded by a confocal laser

scanning microscope (see [7]) and is used to compare the per-

formance of the BF to the HF in a landmark detection task

in biological images. Each image size is about 803 voxels.

The voxel size corresponds to 0.408948μm. The experimen-

tal setup is identical to the experiment in [7] using only one

training image containing one single pollen having 3 porates

(mugwort and birch) or 4 porates in case of the alder pollen

dataset. The three training images are depicted in figure 5.

The porates are labeled manually by an expert and these la-

bels are used for training and evaluating the performance.

We first conduct experiments for finding the most suit-

able parameters for the BF. The following parameters must

be set: A small set of frequencies {K1, ..,Ki, k1, .., kj} used

for designing the voting function and computing the local im-

age descriptors. Secondly, we have the parameters already

known from the HF, namely, the filter degree N determining

the granularity of the voting function (see e.g. figure 8) and of

Fig. 4. a) 3D rendering of an airborne pollen. b) Labels (here:

3 voxel have been set to 1, all others to 0) are indicating the

center of the porates and are used for training and evaluation.

c) Isosurface showing the response of the Bessel Filter. d)

Local maxima of the responses. The porates are localized

very precisely.
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Fig. 5. Birch pollen 1 (3 train, 42 test ), murgwort pollen 5 (3

train, 42 test ), alder pollen 0 (4 train, 56 test )

the local descriptors. Furthermore, the size of the surround-

ing considered for computing the local features (we call this

σ, which means we set t := σ in eq. (8) when computing the

features) and the scale of the voting function (setting t := η
when computing the voting function). Consider, that the pa-

rameters might vary strongly for different kind of data. How-

ever, we experienced that the procedure we introduce here

helps to find a good parameter set reliably.

The Bessel Filter is able to steer its voting function very

precisely, hence choosing η to be half the diameter of the

structure we aim to detect already leads to a very good per-

formance. σ should be about half the size of η. To find a

good combination of frequencies and the filter order we use

the following procedure: As exemplary shown in figure 6 for

varying the parameters of the voting function we train each

filter for different orders N (here we use the training image

of the birch-pollen dataset). In figure 6 the Euclidean dis-

tance between the label image used for training (zero-valued

image but 3 one-valued voxel at the porate positions) and the

filter response on the training image is depicted as a func-

tion of increasing filter order N . Considering the different

curves we can observe that no significant improvement can

be expected when using more than three radial frequencies

(here Ki = {1, 3, 5}) and a filter of order 5. The training and

detection procedure is illustrated in figure 4. Images demon-

strating the adaptability of the corresponding voting functions

and the filter responses on the training image are depicted in

figure 8. With this method we find the following parameters

for the birch pollen dataset: (N = 5,Ki = {1, 3, 5}, kj =
{1, 3}, η = 2.86μm, σ = 1.4μm). Evaluating the perfor-

mance on the corresponding test dataset justifies our decision

(see figure 9 exemplary showing the performance for different

orders N, and figure 10 comparing the performance of differ-

ent kind of filters of order 5).

The parameters used for the three databases are summa-

rized in table 1. The parameters for the Harmonic Filter are

Fig. 6. Bessel Filters of order up to 6 have been trained using

the training dataset of the birch-pollen database. The graph

shows the Euclidean distance between the filter response and

the label image (The label images consists of three one-valued

voxels marking the positions of the porates. All other voxels

are set to 0). The performance of three different kind of filters

with two (V2), three (V3) and four (V4) radial frequencies

are shown. Considering the results, a filter of order N=5 with

3 radial frequencies should be close to the best results that

we can expect when given one training sample and using the

Bessel Filter.

determined in the same way. However, due to both the simpler

voting scheme and the features the HF is much more sensitive

to small changes in η and σ. Hence it takes a lot more effort

to find good parameters for the HF compared to the BF.

For being comparable to the experiments conducted in [5]

we only use one image for training for each dataset (figure 5

shows the images used for training and determining the pa-

rameters). For each dataset we considered two scenarios ac-

cording to the experiments in [5] comparing the performance

of the BF to the performance of the HF. For evaluation we

consider the local maxima of the filter response. The first

scenario counts a detection as true-positive when it lies in a

4-voxel surround of the ground-truth label, else we count a

false-positive. We count a false-negative for each label that is

not detected. We use the magnitude of the local filter response

for thresholding when generating the PR-graphs. The second

scenario tolerates detections in an 8-voxel surrounding. The

results for the birch-dataset are depicted in figure 7 a), the re-

sults for the murgwort pollen are shown in figure 7 b) and for

the alder pollen in figure 7 c), respectively.

In all our experiments the Bessel Filter outperforms the

Harmonic Filter. Especially for birch and alder pollen (both

inducing hypersensitivity) the BF outperforms the Harmonic

Filter significantly (figure 7 a) and b) ).

5. CONCLUSION

We have shown how to utilize the basis functions of the spher-

ical Fourier transformation to build an image filter for detect-

ing 3D objects in arbitrary orientations. The Bessel Filter is
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(a) Birch (b) Murgwort (c) Alder

Fig. 7. Detection of airborne-pollen porates. The dashed line represents the performance when tolerating a 8 voxel (≈ 3.27μm)

displacement to the ground truth. The continuous line the results when tolerating a 4 voxel (≈ 1.64μm) displacement. The

Bessel Filter outperforms the Harmonic Filter significantly.

based on the Harmonic Filter and thus inherits all the gen-

tle properties of the Harmonic Filter, in particular the data

driven adaptability and the processing speed outperforming

many common techniques like SIFT based voting approaches

or steerable filters (see [5, 8]). We conducted experiments

demonstrating that due to the much more accurate representa-

tion of local surroundings in radial directions when using the

spherical Bessel functions the Bessel Filter outperforms the

Harmonic Filter significantly. Due to the data driven adapt-

ability of the Bessel Filter and the low number of required

training samples there are a lot of further applications in the

biomedical field that will highly benefit from this framework

(e.g. automated landmark detection for landmark based reg-

istrations, or for pre-aligning deformable models to the data).
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