3D Rotation-Invariant Description from Tensor Operation on Spherical HOG Field

Kun Liu^{1,3} Henrik Skibbe^{1,3} Thorsten Schmidt^{1,3} Thomas Blein^{2,3} Klaus Palme^{2,3} Olaf Ronneberger^{1,3}

Department of Computer Science, Univ. of Freiburg¹ Institute of Biology II - Botany, Univ. of Freiburg² BIOSS Centre for Biological Signalling Studies, Univ. of Freiburg³ Freiburg, Germany

This study was supported by the Excellence Initiative of the German Federal and State Governments (EXC294) and BMBF Project "New Methods in Systems Biology" (SYSTEC)

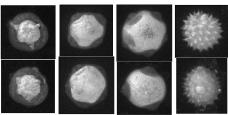
BMVC 2011

2 HOG as Continuous Angular Signal

3 Regional Description

Motivations

• Rotational-invariance is important for many applications with 3D volumetric data.



3D microscopic images of pollen

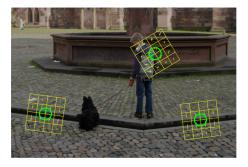
3D shape models

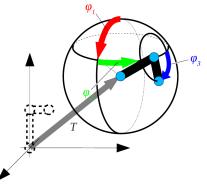
Regional Description

Experiment and Applicatio

Conclusion

Rotation-invariance from pose normalization





Pose normalization in 2D SIFT

3D pose is more complicated

- $\bullet~2D \rightarrow 3D;\,2$ more angles to be determined
- Pose normalization becomes more complicated and less reliable

Rotation-invariance from Fourier analysis

 \bullet Spherical Harmonics \rightarrow Analytical rotational-invariance

[Q. Wang, *et al*, Rotational Invariance based on Fourier Analysis in Polar and Spherical Coordinates. IEEE Transactions on PAMI, 2009]

• Our contribution:

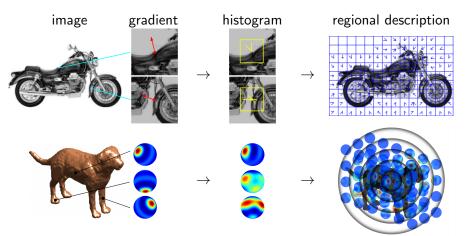
 $\rm HOG + Spherical Harmonics \rightarrow robust 3D$ rotation-invariant descriptions

Regional Description

Experiment and Applicatio

Conclusion

Proposal: Spherical HOG Feature + Regional Description



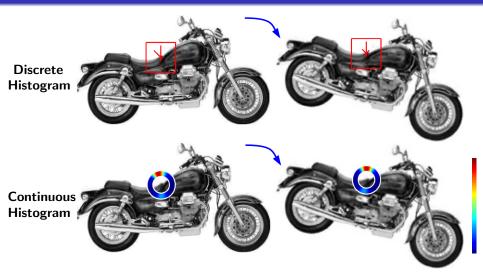
using Spherical Harmonics for features in the spherical coordinates

Regional Description

Experiment and Applicatio

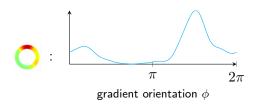
Conclusion

2D HOG as continuous circular signals



• Rotation can be easily addressed in Fourier space.

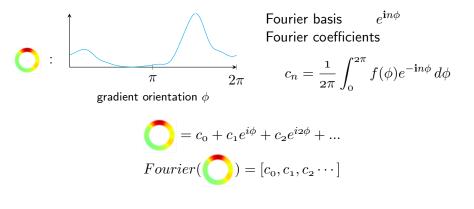
The continuous histogram in Fourier space



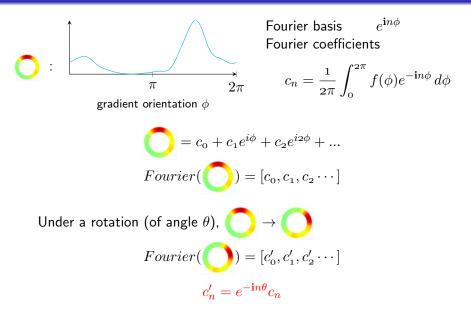
Fourier basis $e^{\mathbf{i}n\phi}$ Fourier coefficients

$$c_n = \frac{1}{2\pi} \int_0^{2\pi} f(\phi) e^{-\mathbf{i}n\phi} \, d\phi$$

The continuous histogram in Fourier space

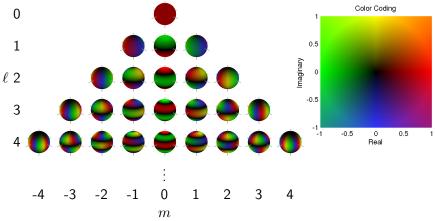


The continuous histogram in Fourier space



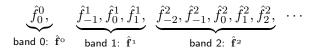
Circles \rightarrow Spheres, Fourier basis \rightarrow Spherical Harmonics

Analogously to the Fourier basis $e^{in\phi}$, the wave functions on a sphere are called spherical harmonics



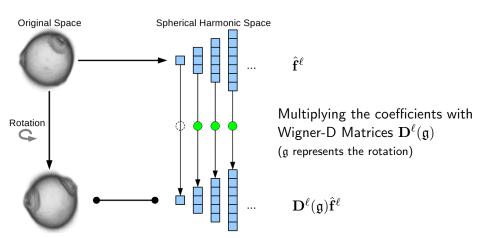
Expansion on spheres \rightarrow Spherical Harmonic Coefficients

 \hat{f}_m^ℓ are complex-valued coefficients:

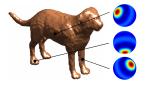


The coefficients in the same band transform together under rotations.

Rotation in Spherical Harmonic Space

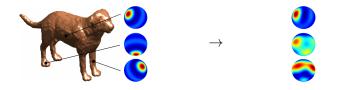


3D HOG represented in Spherical Harmonic space



- Take an individual gradient as a Dirac function on sphere
- Project it onto Spherical Harmonics

3D HOG represented in Spherical Harmonic space



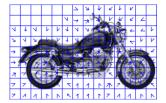
- Take an individual gradient as a Dirac function on sphere
- Project it onto Spherical Harmonics
- \bullet Spatial aggregation \rightarrow spatial smoothing on spherical harmonic coefficients

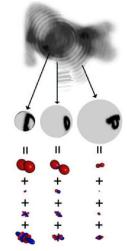
Regional Description

Experiment and Applicatio

Conclusion

Regional description of HOG arrangement





shell sampling + expansion

M. Kazhdan, et al, Rotation invariant spherical harmonic

representation of 3D shape descriptors, 2003.

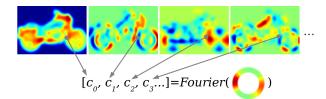
grid sampling

Regional Description

Experiment and Applicatio

Conclusion

2D example: radial sampling + Fourier expansion



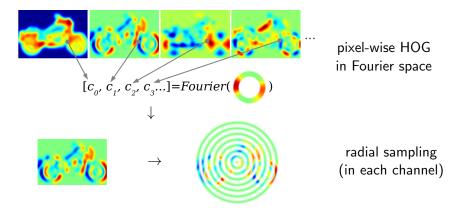
pixel-wise HOG in Fourier space

Regional Description

Experiment and Applicatio

Conclusion

2D example: radial sampling + Fourier expansion

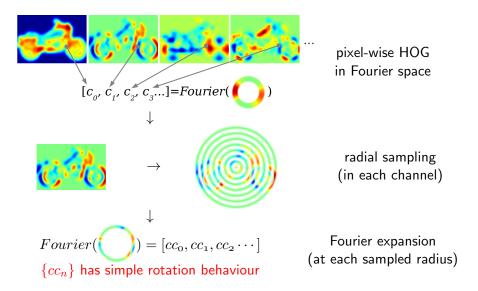


Regional Description

Experiment and Application

Conclusion

2D example: radial sampling + Fourier expansion



How to create rotation-invariance

image	f	f'= rotate f by angle $ heta$
feature	a	$a' = e^{-\mathbf{i}m\theta}a$
another feature	b	$b' = e^{-\mathbf{i}n\theta}b$

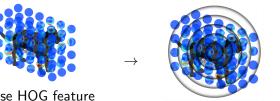
How to create rotation-invariance

image	f	$f' = { m rotate} \; f { m by} { m angle} \; heta$		
feature	a	$a' = e^{-\mathbf{i}m\theta}a$		
another feature	b	$b' = e^{-\mathbf{i}n heta}b$		
energy	$ a ^2 = \overline{a}a$	$ a' ^2 = \overline{a}e^{\mathbf{i}m\theta}e^{-\mathbf{i}m\theta}a = a ^2$		
coupled value	$\overline{a}b$	$\overline{a'}b' = e^{\mathbf{i}(m-n)\theta}\overline{a}b$		

Energy is rotation-invariant.

 $\overline{a}b$ is rotation-invariant if m = n.

Solution for the 3D HOG Field



shell sampling

Spherical Tensorial Expansion

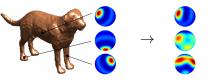
Dense HOG feature in *SH* space

• The dense HOG features in Spherical Harmonics space need the Spherical Tensorial expansion.

[M. Reisert and H. Burkhardt. Spherical tensor calculus for local adaptive filtering, 2009]

• Rotation-invariance: coupling two expansion coefficients which transform with the same Wigner-D matrices.

Summary of approach



• Representing HOG in Spherical Harmonics space

- \bullet Describing local region by shell-sampling + expansion
- Coupling the output of the same rotation behaviour

Evaluation on Princeton Shape Benchmark

Method	Nearest Neighbour(%)	First Tier(%)	Second Tier(%)	E-measure(%)	DCG(%)
HOG-ST	67.4	37.4	47.6	28.0	63.8
SH	56.0	28.4	37.6	22.3	56.0
StrT-ST	61.7	30.7	39.6	23.2	58.2
BoF_{SHcorr}	62.4	/	/	/	/
HOG_{align}	58	27	35	21	55

• Using the evaluation tools from the benchmark

Evaluation on Princeton Shape Benchmark

Method	Nearest Neighbour(%)	First Tier(%)	Second Tier(%)	E-measure(%)	DCG(%)
HOG-ST	67.4	37.4	47.6	28.0	63.8
SH	56.0	28.4	37.6	22.3	56.0
StrT-ST	61.7	30.7	39.6	23.2	58.2
BoF_{SHcorr}	62.4	/	/	/	/
HOG_{align}	58	27	35	21	55

• HOG-ST: Spherical HOG + shell-wise tensorial expansion.

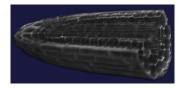
- SH: Spherical Harmonics Descriptor. [P. Shilane, et al, 2004.]
- StrT-ST: Structure Tensor + shell-wise tensorial expansion. [H. Skibbe, *et al*, 2009.]
- BoF_{SHcorr}: Bag-of-features approach with Spherical Correlation for feature comparison. [J. Fehr, *et al*, 2009.]
- HOG_{align}: HOG features on pose-normalized 3D shapes. [M. Scherer, *et al*, 2010.]

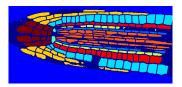
SHREC 2009 Generic Shape Benchmark

Method	Nearest Neighbour(%)	First Tier(%)	Second Tier(%)	E-measure(%)	DCG(%)
HOG-ST	90.0	50.6	62.0	43.4	80.2
StrT-ST	81.2	39.0	49.3	34.1	71.2
HOG_{align}	75	41	52	35	71

- HOG-ST: Spherical HOG + shell-wise tensorial expansion.
- StrT-ST: Structure Tensor + shell-wise tensorial expansion. [H. Skibbe, *et al*, 2009.]
- HOG_{align}: HOG features on pose-normalized 3D shapes. [M. Scherer, *et al*, 2010.]

Application on Biological data





Raw data

One slice of labelled data

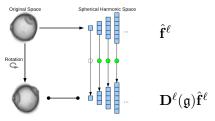
- Data: confocal microscopic imaging of plant roots
- Target: assign voxels into different classes (background / cell-wall / 6 layers...)
- Voxel-wise rotation-invariant descriptions + SVM

Fast computation for voxel-wise descriptions

- Shell-wise expansion is not efficient for dense description.
- Spherical Gaussian Derivative (SGD) is an efficient alternative.

 $[{\sf M}.$ Reisert and H. Burkhardt. Spherical tensor calculus for local adaptive filtering, 2009]

• It keeps the simple rotation behaviour.



Regional Description

Experiment and Application

Conclusion

Multi-scale SGD Filtering on HOG fields

14 out of 240 energy features

Regional Description

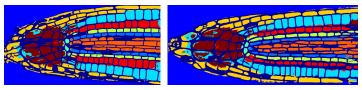
Experiment and Application

Conclusion

Experiment result

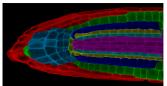
Train SVMs with the ground-truth labels

Apply to other roots:



classification result

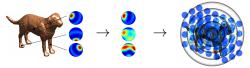
a cross-section



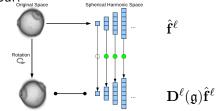
refined region segmentation (by energy minimization)

Conclusion

• A robust 3D rotation-invariant description is proposed, based on HOG and Spherical Harmonics.



 Relating features and operations to Fourier basis (2D) and Spherical Harmonics (3D) can lead to simple rotation behaviour.



Thank you!